Mesenchymal progenitors in skeletal muscle

mesenchymal progenitors might be the major source of heterotopic bones that develop in FOP.

Recently, PDGFRa has been shown to be a therapeutic target in alveolar
rhabdomyosarcoma (40). Alveolar rhabdomyosarcoma is an aggressive skeletal muscle cancer
of childhood. PDGFRa. is overexpressed in alveolar rhabdomyosarcoma and inhibition of
PDGFRa had a dramatic effect on tumor cell growth. Although the relation between PDGFRa:*
mesenchymal progenitors and alveolar rhabdomyosarcoma is unclear, the role of PDGFRa"
mesenchymal progenitors in the pathogenesis of this skeletal muscle cancer is of considerable

interest.

Importance of the interaction between muscle cells and PDGFRa" mesenchymal
progenitors on muscle homeostasis

To elucidate how in vivo adipogenesis of PDGFRo" mesenchymal progenitors is
regulated, we compared two different muscle injury models; one results in fatty degeneration,
the other leads to successful muscle regeneration. Using reciprocal transplantation between
regenerating and degenerating muscle, and co-culture experiments, we revealed that muscle
fibers themselves have a strong inhibitory effect on the adipogenesis of PDGFRo
mesenchymal progenitors (under submission). This study highlights the importance of the
interaction between muscle cells and PDGFRa’ mesenchymal progenitors on muscle
homeostasis. Several studies have shown that macrophages are indispensable for successful
muscle regeneration and the inhibition of macrophage activity leads to impaired muscle
regeneration with adipocyte accumulation (2, 33, 39). However, we believe that macrophages
do not directly play an inhibitory role in adipogenesis of PDGFRa." mesenchymal progenitors
because we could not see any obvious change in adipogenic differentiation of PDGFRa" cells
when PDGFRo." cells were co-cultured with macrophages. Therefore, adipogenesis observed in
this context seems to occur secondary to the effect of macrophage suppression on myogenic
cells.

Under the proper interaction with muscle cells, PDGFRa" mesenchymal progenitors
may have supportive functions for muscle tissue, as observed in several developmental contexts
where PDGFRa is expressed in the mesenchyme that supports tissue organogenesis (1, 17, 18).
Examples of the supportive functions of non-myogenic mesenchymal cells in adult skeletal
muscle have been reported. Non-myogenic mesenchymal cells in muscle side population cells
(41) stimulate the proliferation and migration of myoblasts (26). CD90" mesenchymal cells in
skeletal muscle produce laminin a2, and may have positive roles in muscle regeneration by
producing the basement membrane that acts as a scaffold for efficient myogenesis (13). The
interrelationship between PDGFRa' mesenchymal progenitors and non-myogenic
mesenchymal cells remains unclear. However, given the specificity and effectiveness of
PDGFRa to identify mesenchymal progenitors, we believe that PDGFRa is the best marker
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reported to date.

Conclusions

Here, we have reviewed the potential roles of the newly identified PDGFRa'
mesenchymal progenitors in skeletal muscle. The characteristics of these cells have led to the
concept that the cellular balance between muscle cells and mesenchymal progenitors has a
considerable impact on tissue homeostasis. The idea of lineage choice in multipotent satellite
cells seems to have become less important in an in vivo context. The relevance of PDGFRa"
mesenchymal progenitors in muscle pathology raises the possibility that these cells or
PDGFRa itself may be a therapeutic target. Although targeting PDGFRa” cells or PDGFRa
has not been tested in muscle disorders, the potency of this strategy was reported in other
pathological conditions, such as cardiac fibrosis (45) and alveolar thabdomyosarcoma (40).
Thus identification of PDGFRa" mesenchymal progenitors not only provides valuable insight
for a better understanding of the pathophysiology of skeletal muscle, but has also opened new
opportunities for designing therapeutic strategies for muscle diseases.
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Caveolins, components of the uncoated invaginations of plasma
membrane, regulate signal transduction and vesicular traf-
ficking. Loss of caveolin-3, resulting from dominant negative
mutations of caveolin-3 causes autosomal dominant limb-gir-
dle muscular dystrophy (LGMD) 1C and autosomal dominant
rippling muscle disease (AD-RMD). Myostatin, a member of
the muscle-specific transforming growth factor (TGF)-$ super-
family, negatively regulates skeletal muscle volume. Herein we

review caveolin-3 suppressing of activation of type I myostatin

receptor, thereby inhibiting subsequent intracellular signaling.
In addition, a mouse model of LGMDIC has shown atrophic
myopathy with enhanced myostatin signaling. Myostatin in-
hibition ameliorates muscular phenotype in the model mouse,
accompanied by normalized myostatin signaling. Enhanced
myostatin signaling by caveolin-3 mutation in human may con-
tribute to the pathogenesis of LGMDIC. Therefore, myostatin
inhibition therapy may be a promising treatment for patients
with LGMDI1C. More recent studies concerning regulation of
TGF-B superfamily signaling by caveolins have provided new
insights into the pathogenesis of several human diseases.

Key words: caveolin-3, limb-girdle muscular dystrophy 1C (LG-
MDIC), autosomal dominant rippling muscle disease (AD-RMD),
myostatin, transforming growth factorfﬁ (TGF-8)

Caveolins are primary components
of caveolae '

Caveolae, uncoated invaginations of the plasma

membrane, are an abundant feature of many terminally -

differentiated cells, such as adipocytes, endothelial cells,
and muscle cells. Caveolin family proteins, 21-24 kDa
integral membrane proteins, are the principle components
of caveolae, designated as caveolin-1, -2, and -3 (1, 2).
Caveolin-1 and caveolin-2 are coexpressed and form
heterooligomers in nonmuscle cells, whereas caveolin-3

is muscle specific and forms homooligomers in muscle
cells (3, 4). De novo synthesized caveolins assemble
to about 350 kDa oligomers in the endoplasmic reticu-
Ium, subsequently target to the plasma membrane via
the trans-Golgi network, and play a crucial role in the
formation of caveolae. These caveolin family proteins
have been implicated in numerous cellular events in-
cluding vesicular trafficking, lipid metabolism, and sig-
nal transduction (1-6). They directly bind to and regu-
late specific lipid and lipid-modified proteins including
cholesterol, G-protein, G-protein coupled receptors, Src
family kinase, Ha-Ras, and nitric oxide synthases (5-7).
The interaction between caveolins and these molecules is
mediated by a caveolin-binding motif on the target pro-
tein and a scaffolding domain in caveolin (7). The number
of in vitro studies linking caveolins to signal transduction
pathways has grown exponentially. To date, however,
only a few studies have been concluded the exact roles of
caveolins to signal transduction in vivo (3).

Dominant-negative mutations of
caveolin-3 gene causes LGMD1C/
AR-RMD

Many mutations in caveolin-3 gene have been detect-
ed in autosomal dominant limb-girdle muscular dystrophy
(LGMD) 1C and autosomal dominant rippling muscle
disease (AD-RMD) (8, 9). Mutations of the caveolin-3
gene cause a significant reduction in the cell surface level
of caveolin-3 protein in a dominant-negative fashion and,
to a lesser extent, mistargeting of the mutant caveolin-3
protein to the Golgi complex (8-10).

The loss of caveolin-3 by mutations of the caveolin-3
gene in LGMD1C/AD-RMD patients has resulted in subse-
quent abnormalities of caveolin-3-binding molecules. The
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enzymatic activity of neuronal nitric oxide synthase, which
is strongly suppressed by caveolin-3, increases in the skel-
etal muscles from a transgenic mouse model of LGMDIC
and LGMD1C/AD-RMD patients (11, 12). Consistently,
cytokine-induced NO production increases in C2C12 my-
oblast cells transfected with LGMD1C/AD-RMD-type
mutant caveolin-3 compared to ones transfected with wild-
type caveolin-3 (9). Src tyrosine kinase, a membrane tyro-
sine kinase whose activation regulates the balance between
cell survival and cell death, is extremely activated and
accumulates not in the plasma membrane but in the peri-
_ nuclear region in cells transfected in LGMD1C/AD-RMD
mutant caveolin-3 (13). Muscle-specific phosphofruktoki-
nase, an enzyme of central importance in the regulation of
glycolytic metabolism is also significantly reduced in cells
transfected with LDMD1C/AD-RMD mutant caveolin-3
probably through ubiquitin-proteasomal degradation (14).
Noteworthy also is the finding that dysferlin, a membrane-
 repair molecule deficient in LGMD2B/Miyoshi myopathy,
mistargets to the cytoplasm from sarcolemma in skeletal
muscle from LGMD1C/AD-RMD patients, probably due
to the caveolin-3’s delivery function to the correct targeting
of plasma membrane (15-18).
Despite these findings, the underlying molecular
mechanism leading to LGMD1C/AD-RMD in caveolin-
3-deficient muscle remains to be elucidated.

Myostatin, a muscle-specific
TGF-$ superfamily member, is a
therapeutic target of muscular
dystrophy

Myostatin is a muscle-specific transforming growth fac-
tor (TGF)-B superfamily member and negatively regulates
skeletal muscle growth and skeletal muscle volume (19).
Overexpression of myostatin causes severe muscle atro-
phy, whereas targeted disruption of myostatin increases
skeletal muscle mass in mice (19, 20). Like most members
of the TGF-B superfamily, myostatin is synthesized as a
precursor protein and undergoes proteolytic processing to
generate an N-terminal prodomain and a biologically ac-
tive, C-terminal disulfide-linked dimer (21). In the inac-
tive state, the prodomain strongly inhibits the biological
activity of the C-terminal dimer (22, 23), as do follistatin,
and the follistatin-related gene (FLRG); which are col-
lectively called natural inhibitors for myostatin (24). The
_ circulating active form of myostatin directly binds to and

phosphorylates the type II serine/threonine kinase recep-
tor, namely activin receptor IIB (ActRIIB) (Fig. 1) (25).
This, in turn, phosphorylates the type I serine/threonine
kinase receptors, namely activin receptor-like kinase 4/5
(ALK4/5) at the plasma membrane (25-27). The acti-

20

vation of a heteromeric receptor complex consisting of

_ phosphorylated type II and type I serine/threonine kinase

receptors induces the phosphorylation of intracellular
effectors, receptor-regulated Smads (R-Smads), namely
Smad?2/3 (26, 27). Phosphorylated R-Smads translocate
to the nucleus from the cytoplasm, where it regulate the
transcription of specific target genes inducing skeletal
muscle atrophy (26-28).

Notably, administration of ablocking antibody against -
myostatin, myostatin vaccine, and myostatin prodomain,
or genetic introduction of a follistatin-derivative amel-
iorates the pathophysiology of dystrophin-deficient mdx
mice (29-32). In addition, a blocking antibody against
myostatin improves the condition of young model mice
with §-sarcoglycan-deficient LGMD2F (33). An adeno-
associated virus. (AAV)-mediated myostatin prodomain
has ameliorates the pathology of calpain-3-deficient LG-
MD?2A model mice (34). Therefore, myostatin inhibition
through different strategies has recently come to be con-
sidered for a therapeutic option for muscular dystrophies.
However, the precise molecular mechanism by which
myostatin inhibition improves the above dystrophic skel-
etal muscle is not fully understood; i.e. the molecular
interaction of myostatin and the dystrophin-glycoprotein
complex is unknown.

Caveolin-1 regulétes TGF-3
superfamily signaling in vitro

Recently, caveolin-1 has drawn attention as a regula-
tor of TGF-§ superfamily signaling. Caveolin-1 binds to
and suppresses activation of the type I receptor of TGF-
B1, which induces growth arrest in nonmuscle cells (35).
Consistently, the binding affinity of caveolin-1 with type
I TGF-B1 receptor decreases after stimulation with TGF-
Bl. In addition, caveolin-1 associates with the type II
receptor of TGF-1 (36-38). Caveolin-1 also facilitates
ligand-bound TGF-B1 receptors internalization and deg-
radation via the formation of endocytic vesicles with
ubiquitin-ligase (39, 40). In addition, caveolin-1 interacts
with type II and type I receptors of bone morphogenic
proteins (BMPs) in vivo (41). These findings indicate that
caveolin-1 regulates TGF-§ superfamily signaling, in-
cluding TGF-f1 and BMPs, at its receptor level.

Caveolin-3 suppresses myostatin
signaling through its type |
receptor in vitro

Upon consideration of molecular analogy and tissue

distribution, we hypothesized that caveolin-3 inhibits my-
ostatin signaling in a similar manner to that of inhibition



of caveolin-1 to multiple TGF-§ superfamily signaling
in nonmuscle cells. We found several caveolin-3 binding
‘motifs (7); ¢XoXXXX XXX, where ¢ indicates aromat-
ic or aromatic-like amino acids in the cytoplasmic kinase
domain of type I serine/threonine myostatin receptors,
ALKA4/5 (42). Therefore, we cotransfected caveolin-3 and
these type I myostatin receptors in COS-7 monkey kidney
cells and found that caveolin-3 colocalized with type I
myostatin receptor. Immunoprecipitation and subsequent

immunoblot analysis revealed that caveolin-3 associates -

with the type I myostatin receptor. In addition, phospho-
rylation level of the type I myostatin receptor decreased
with the addition of caveolin-3 in cells cotransfected with
constitutively active type I receptor and caveolin-3. More-
over, caveolin-3 eventually suppressed subsequent intrac-
ellular myostatin signaling; the phosphorylation level of
an R-Smad of myostatin, Smad2 as well as the transcrip-
tion level of the Smad-sensitive (CAGA),,-reporter gene.
Therefore, caveolin-3 suppresses the myostatin signal at
its type I receptor level, in a similar manner to caveolin-1
for TGF-B1 signaling in vitro.

Caveolin-3 deficient muscles
exhibit enhanced intracellular
myostatin signaling

We previously generated transgenic (Tg) mice over-
expressing mutant caveolin-3 (CAV-3P1%L) to develop a
mouse model of LGMD1C/AD-RMD (11). The skeletal
muscle phenotype of the transgenic mice showed severe
myopathy with loss of caveolin-3. To determine wheth-
er caveolin-3 regulates myostatin signaling in vivo, we
generated and characterized the double-transgenic mice
showing myostatin deficiency and myostatin inhibition.
Heterozygous mating of mutant caveolin-3 Tg mice
with other Tg mice overexpressing myostatin prodomain
(MSTNP™) (43), a potent inhibitor of myostatin signaling,
gave rise to mice with four distinct phenotypes: wild-type,
mutant caveolin-3 Tg, mutant MSTN Tg, and double-mu-
tant Tg (CAV-3P"%L/MSTNP®). Growth curves revealed
that the double-mutant Tg mice were significantly larger
than the mutant caveolin-3 Tg mice and similar in size to
the wild-type mice beginning at 6 weeks until 16 weeks
of age (42). The muscle atrophy seen in the mutant ca-

veolin-3 Tg was reversed in the double-mutant Tg with .

* increased myofiber size and myofiber number. Thus, my-
ostatin inhibition reverses caveolin-3-deficient muscular
atrophy in vivo. ‘

Caveolin-3-deficient muscle from mutant caveolin-
3 Tg mice showed hyperphosphorylation of an R-Smad
of myostatin, Smad2 and significant upregulation of a
myostatin target gene, p21. These in vivo findings were
consistent with our in vitro study in which caveolin-3
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suppresses myostatin signaling. In the double-mutant Tg
mouse, the levels of phospho-Smad2 and p21 gene ex-
pression were significantly reduced compared to those in
the mutant caveolin-3 Tg mice and were similar to those
in the wild-type mice. Thus, myostatin inhibition by ge-
netic introduction of myostatin inhibitor normalized en-
hanced myostatin signaling and also reversed muscular

" phenotype in the caveolin-3 deficient mouse.

Myostatin inhibition therapy
reversed muscular atrophy
in caveolin-3 deficiency

We injected a soluble form of the extracellular do-
main of type II myostatin receptor, ActRIIB, which can
inhibit myostatin-its type II receptor binding (25, 44),
into the mutant caveolin-3 Tg mice to develop myosta-
tin inhibition through its type II receptor as a therapeutic
strategy for patients with LGMD1C. Intraperitoneal injec-
tion of soluble ActRIIB four times significantly increased
skeletal muscle mass and reversed myofiber hypotrophy
accompanied with suppression of Smad2 phosphoryla-
tion and downregulation of p21. This finding, therefore,
suggests that myostatin inhibition therapy may be a rea-
sonable and promising therapy for caveolin-3-deficient
muscular dystrophy associated with ‘enhanced myostatin
signaling.

Conclusions and prospective for
future research

Caveolin-3 has been considered to regulate numer-
ous signal pathways for maintaining the normal integrity
of skeletal muscles, but the in vivo significance of signal
alterations by loss of caveolin-3 in the pathogenesis of
LGMDI1C/AD-RMD has not been well delineated. As re-
viewed herein, caveolin-3 regulates myostatin signaling
in vitro, and thus disrupted interaction between caveolin-
3 and myostatin could contribute to the pathogenesis of
caveolin-3-deficient muscular dystrophy (Fig. 1).

We could not conclude that activated intracellular
signaling molecules, hyperphosphorylation of an R-
Smad, Smad2, and upregulation of p21 in the caeveolin-
3 deficient skeletal muscle result simply from enhanced
myostatin signaling by loss ‘of caveolin-3, because the
myostatin prodomain or the soluble myostatin recep-
tor suppresses not only myostatin, but also other TGF-
B ligands including growth and differentiation factor 11
(GDF11) (22, 25, 44, 45). In fact, evidence of an un-
known TGF-B ligand exists in the form of a similar nega-
tive regulator of muscle mass like myostatin (45, 46).
Thus TGF-B ligands other than myostatin also could be



Y. Ohsawa et al

involved in the pathogenesis of caveolin-3 deficieny via
the Smad2-p21-mediated pathway. Crossing of mutant
caveolin-3 mice with myostatin-null mice is a prospec-
tive project for obtaining straightforward evidence that
hyperphosphorylation of Smad2 and upregulation of p21
in caveolin-3-deficient muscles is the simple result of en-

hanced myostatin signaling.
More recent studies have shown to be caveolins as.

an exact negative regulator of TGF- superfamily signal-
ing because the loss of caveolins has play important roles
in the pathogenesis of human disorders. Mutations of the

caveolin-1 gene or downregulation of caveolin-1 protein
have been detected in some sporadic breast cancers (47)
and epithelial cells derived from caveolin-1 null. mice
have shown hyperphosphorylation of Smad2 and epithe-
lial mesenchymal transition, corresponding to premalig-
nant status (48). In addition, loss of caveolin-1 has been

_ strongly associates with idiopathic pulmonary fibrosis

(49, 50). Caveolin-1 protein has been found to be reduced
in the lung tissue from patients with idiopathic pulmonary
fibrosis. TGF-B1-induced extarcellular matrix production,
which is indicative of fibrosis, significantly increases in

= MSTN
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Typel
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R-Smads

nucleus
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_regulation .
e e i TR > Target genes

Figure 1, Putative scheme of the regulation of myostatin signaling by caveolin-3. Myostatin (MSTN) signaling is propa-
gated through the myostatin receptor, a heteromeric complex consisting with transmembrane receptor serine/threonine
kinases. Myostatin binds to and phosphorylates its type Il serine/threonine kinase receptor (Type Il Receptor). Sub-
sequently, its type | serine/threonine kinase receptor (Type | Receptor) is phosphorylated by Type Il Receptor and is
recruited into the heteromeric complex, which in turn phosphorylates receptor-regulated Smads (R-Smads), a family
of transcription factor controlling the expression of specific target genes. Caveolin-3 (CAV-3) binds to and suppresses
activation of the Type | Receptor of MSTN at the plasma membrane and suppresses intracellular myostatin signaling,

including phosphorylation of R-Smads and transcription of

specific target genes. Loss of caveolin-3 resulting from

dominant negative mutations of the caveolin-3 genes in patients with LGMD1C could enhance intracellular myostatin
signaling, and thereby result in muscle mass reduction. Type Il Receptor, ActRIIB; Type | Receptor, ALK4/5; R-Smads,

Smad?2/3. P indicates phosphorylation.
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primary fibroblasts isolated from patients with idiopathic
pulmonary fibrosis. Moreover, retroviral introduction of
caveolin-1 ameliorates bleomycin-induced lung fibrosis
in mice. Together with this review, it may be concluded
that aberrant TGF-f superfamily signaling by loss of ca-
veolins participate in the pathogenesis of some human
diseases, including LGMD1C/AD-RMD, breast cancer,
and idiopathic pulmonary fibrosis.

Myostatin inhibition therapy is effective, to some

extent, with mouse models of several types of muscular
dystrophies (29-34). Further investigation is needed to
determine which types of myostatin inhibition therapy
could be applied and to clarify the molecular mechanism
by which myostatin-inhibition improves muscular dys-
trophy for prospective treatment of patients with muscu-
lar dystrophy. As reviewed herein, myostatin inhibition
may be a potent therapy for caveolin-3-deficient muscu-
lar dystrophy with enhanced myostatin signaling.
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