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retinal IPL and hair cells in the inner ear. Pikachurin expression was not
detected in these sites, suggesting that pikachurin functions specifically
in photoreceptor-bipolar synaptic apposition,

The human PIKACHURIN gene is located on chromosome 5, region
p13.2-p13.1. Although human PIKACHURIN maps in the vicinity of
early-onset autosomal dominant macular dystrophy (MCDR3), which
was mapped to chromosome 5, region p13.1-p15.33 (RetNet, http://
www.sph.uth.tmc.edu/Retnet/), PIKACHURIN mutations do not seem
to be responsible for this disease when the phenotypes of the Pikachurin
null mouse are taken into consideration. Notably, the Pikachurin null
mouse showed an impairment of visual function detected by OKR
(Fig. 5i-k). Pikachurin null mice showed normal visual function for
large-angle stripes but significantly reduced visual function for small-
angle stripes (unpaired ¢ test, P< 0.01). This may suggest that a
mutation of PIKACHURIN in humans leads not to an obvious clinical
manifestation of eye disease but rather to impairment of spatial
resolution in vision.

Functional interaction between pikachurin and dystroglycan

Our observations suggest the possibility of a functional interaction
between pikachurin and dystroglycan (Supplementary Fig. 6 online).
We observed a reduction in the amplitude and delayed implicit time of

. the ERG b-wave (Fig. 5a—f) in the Pikachurin~'~ mouse. Both in

human and mouse, mutations of dystrophin, an intracellular compo-
nent of the DGC, are known to cause an abnormality in the ERG
b-wave. In humans, many individuals with DMD and BMD with
mutations in dystrophin show abnormal dark-adapted ERG
b-waves!7?%, Studies of individuals with DMD deletions have shown
that the location of the deleted sequence can affect the ERG pheno-
type?”. Mutations in the central or 3’ region of the gene are associated
with severe reductions of amplitude and prolongation of the implicit
time in the b-wave, whereas mutations limited to the 5’ end of the gene
appear to be associated with milder abnormalities and, in some cases,
normal ERGs?. In mice, disruption of dystrophin (mdx®*? and
mdx®") causes prolongation of the implicit time of the b-wavel®.
Our results suggest that functional disruption of the interaction
between dystroglycan and pikachurin in the retina may produce
abnormal dark-adapted ERG b-waves in individuals with DMD and
BMD. In addition, lack of glycosylation of a-dystroglycan in glycosyl-
transferase-deficient mice (Large™? and Large’™) also shows an ERG
phenotype that is similar to that of Pikachurin null mice®®. The
similarity of unique abnormalities of ERGs observed in the Pikachurin
null, mdx2, mdx™4, Large™® and Large’™ mutants strongly suggest
that there is a functional interaction between pikachurin and DGC
components in the retinal ribbon synapses.

We also found a direct interaction of pikachurin with o-dystro-
glycan, an extracellular component of the DGC (Fig. 6). It has been
reported that o-dystroglycan binds to laminins and perlecan in a
glycosylation-dependent manner®®. The inhibitory effect of IIH6 and
divalent cation—dependent binding suggest that pikachurin binds to
a-dystroglycan by a mechanism that is similar to other known ligands,
such as laminins and perlecan. Supporting this idea, pikachurin
colocalizes with B-dystroglycan in photoreceptor synaptic terminals
(Fig. 6a—<).

On the basis of these data, pikachurin probably functionally interacts
with DGC components to form proper synaptic connections between
photoreceptors and bipolar cells in the retinal ribbon synapses.

Molecular mechanism of pikachurin in synapse formation
In NM]Js, formation of the proper synaptic structure is regulated by
several dystroglycan ligands, such as agrin, laminins and perlecan.

These ligands interact with dystroglycan, localizing to the postsynaptic
surface of NM]J, and induce the differentiation and maturation of
postsynaptic structures through the clustering of appropriate post-
synaptic components (Supplementary Fig. 6)**. In contrast to the
postsynaptic localization of dystroglycan in NMJs, dystroglycan in the
ribbon synapse localizes to the presynaptic membrane of photoreceptor
synaptic terminals around the bipolar cell dendritic processes'>™14. To
the best of our knowledge, pikachurin is the first dystroglycan ligand
that has been found to interact with the presynaptic dystroglycan
(Supplementary Fig. 6). How does pikachurin control invagination by
the bipolar dendritic tips of the photoreceptor presynaptic terminals?
On the basis of our data and previous findings, we hypothesize two
scenarios. The first scenario is that pikachurin is involved in forming
the proper structure of photoreceptor terminals for invagination by the
tips of bipolar dendrites. The interaction of pikachurin with dystro-
glycan on the surface of the presynapse may cause a structural change of
the photoreceptor presynaptic terminals, forming the proper connec-
tion with the postsynaptic terminals of bipolar dendrites. This scenario
leads to the hypothesis that fine structural conformation of the axon
terminus is crucial for the initial specific and precise synaptic apposi-
tion of a dendrite to the axon terminus. After this, adhesive molecules
function supportively for the successive development and maintenance
of synaptic connections,

The second scenario is that pikachurin is an attractant that induces
the bipolar dendritic tips into proximity with the photoreceptor ribbon
synapse through interaction with an unknown factor (represented as a
factor, X; Supplementary Fig. 6) on the postsynaptic terminals of
bipolar cell dendrites. Pikachurin released from photoreceptor synapses
may induce structural changes in bipolar dendritic tips, such as the
clustering of postsynaptic components, via an interaction with the
unknown factor expressed in the tips of the bipolar cell dendrites. This
may result in the attraction and insertion of the bipolar dendritic tips to
the invagination of photoreceptor synaptic terminals.

In this study, we demonstrated that a previously unknown dystro-
glycan-interacting protein, pikachurin, is important for the formation
of the ribbon synapse, a specialized synaptic structure in the CNS.
Dystroglycan is known to be expressed not only in muscular cells but
also in various CNS neurons*'. Our findings provide clues as to the
mechanisms of dystroglycan and ECM molecules in the formation of
fine CNS synaptic structures.

METHODS

Generation of Pikachurin mutant mouse. We obtained Pikachurin genomic
clones from a screen of the 129/SvEv mouse genomic DNA library (Stratagene).
We subcloned an 8.4-kb Swal-Scal fragment and an 8.1-kb EcoRV-Kpnl
fragment from the Pikachurin genomic clones into a modified pPNT vector®2,
and transfected the linearized targeting construct intc TC1 embryonic stem cell
line*2, The culture, electroporation and selection of TC1 were carried out as
previously described®?. Embryonic stem cells that were heterozygous for the
targeted gene disruption were microinjected into C57BL/6 blastocysts to obtain
chimeric mice.

We carried out immunohistochemistry, northem blot analysis, RT-PCR
analysis, in situ hybridization, electron microscopy, ERG recordings, VEP
recording, OKR analysis and pull down binding assays as described in the
Supplementary Methods online.

Note: Supplementary information is available on the Nature Neuroscience website.
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Hypoglycosylation and reduced laminin-binding activity of a-dystroglycan are common characteristics of
dystroglycanopathy, which is a group of congenital and limb-girdle muscular dystrophies. Fukuyama-type
congenital muscular dystrophy (FCMD), caused by a mutation in the fukutin gene, is a severe form of dystro-
glycanopathy. A retrotransposal insertion in fukutin is seen in almost all cases of FCMD. To better under-
stand the ‘molecular pathogenesis of dystroglycanopathies and to explore therapeutic strategies, we
generated knock-in mice carrying the retrotransposal insertion in the mouse fukutin ortholog. Knock-in
mice exhibited hypoglycosylated a-dystroglycan; however, no signs of muscular dystrophy were observed.
More sensitive methods detected minor levels of intact a-dystroglycan, and solid-phase assays determined
laminin binding levels to be ~50% of normal. In contrast, intact a-dystroglycan is undetectable in the dys-
trophic Large™¢ mouse, and laminin-binding activity is markedly reduced. These data indicate that a small
amount of intact a-dystroglycan is sufficient to maintain muscle cell integrity in knock-in mice, suggesting
that the treatment of dystroglycanopathies might not require the full recovery of glycosylation. To examine
whether glycosylation defects can be restored in vivo, we performed mouse gene transfer experiments.
Transfer of fukutin into knock-in mice restored glycosylation of a-dystroglycan. In addition, transfer of
LARGE produced laminin-binding forms of a-dystroglycan in both knock-in mice and the POMGnT1
mutant mouse, which is another model of dystroglycanopathy. Overall, these data suggest that even

*To whom correspondence should be addressed at: Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School
of Medicine, 2-2-B9, Yamadaoka, Suita 565-0871, Japan. Tel: +81 668793381; Fax: 481 668793389; Email: toda@clgene.med.osaka-u.ac.jp
TThe authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/
licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is
properly cited.



622 Human Molecular Genetics, 2009, Vol. 18, No. 4

partial restoration of «-dystroglycan glycosylation and laminin-binding activity by replacing or augmenting
glycosylation-related genes might effectively deter dystroglycanopathy progression and thus provide thera-

peutic benefits.

INTRODUCTION

Dystroglycanopathy is a group of congenital and limb-girdle
muscular dystrophies that includes Walker—Warburg syn-
drome (WWS), muscle-eye-brain (MEB) disease, Fukuyama-
type congenital muscular dystrophy (FCMD), congenital
muscular dystrophy 1C/D (1,2) and limb-girdle muscular
dystrophy (LGMD) 2I/K/M/N (3-6). Hypoglycosylation of
a-dystroglycan is a hallmark of these disorders. So far, six
genes (POMTI, POMT2, POMGnTI, fukutin, FKRP and
LARGE) have been implicated in dystroglycanopathies and
all are thought to be involved in glycosylation of
a-dystroglycan. POMGnT1 and the POMT1/2 complexes are
known to have glycosyltransferase activities that place
O-mannosyl sugar chains on a-dystroglycan (7,8). The exact
functions of fukutin, FKRP and LARGE are still unknown.

a-Dystroglycan (a-DG) is a receptor for laminin in the
basement membrane and is anchored on the plasma membrane
through non-covalent interaction with a transmembrane-type
B-DG (9). a- and B-DGs are encoded by a single mRNA
that is cleaved into two subunits during post-translational
maturation. O-glycosylation of a-DG is required for ligand-
binding activity. Although the exact binding epitope for
ligand is still unknown, one unique O-mannosyl glycan
[NeuSAc(a2—3)Gal(B1-4)GlcNAc(B1-2)Man-Ser/Thr] (10)
appears to be involved in ligand binding among extensive
and heterogenous groups of O-linked sugar chains. B-DG
interacts with dystrophin, which in turn binds to actin fila-
ments. The DG complex spans the plasma membrane, con-
necting the basement membrane to the actin cytoskeleton
and presumably conferring mechanical stability to muscle
cells during muscle contraction. ’

In Japan, FCMD is the most common congenital muscular
dystrophy and, following Duchenne muscular dystrophy, is the
second most common childhood muscular dystrophy. An auto-
somal recessive disorder, FCMD is characterized by severe
muscular dystrophy, abnormal neuronal migration associated
with mental retardation and epilepsy and, frequently, eye
abnormalities (11). A recent study revealed aberrant neuromus-
cular junction formation and delayed muscle terminal matu-
ration in FCMD, suggesting that a maturational delay of
muscle fibers underlies the etiology of FCMD (12). Through
positional cloning we identified fukutin, the gene responsible
for FCMD (13). The predominant mutation in FCMD was ident-
ified asa 3 kb SINE-VNTR-A/u (SVA) retrotransposon insertion
into the 3'-UTR of fukutin. In Japan, 70—80% of FCMD patients
are homozygous for this retrotransposal insertion. Compound
heterozygosity, exhibiting both a retrotransposonal mutation
and a point mutation, is sometimes seen and generally exhibits
more severe pathologies (13—15). Only a few cases with non-
founder mutations (homozygous for point mutations) have
been reported outside of Japan (5,16—19).

MERB disease is a severe autosomal recessive disease, similar
to FCMD, characterized by congenital muscular dystrophy,

ocular abnormalities and brain malformation. The gene respon-
sible for MEB is POMGnT1, which encodes protein O-linked
mannose 1,2-N-acetylglucosaminyltransferase 1 (7). In both
FCMD and MEB disease, a-DG glycosylation and laminin-
binding activity are severely disrupted (20). The Large™¢
mouse, a spontaneous mutant, has been used as a model for
dystroglycanopathy. As is the case with human dystroglycano-
pathies, a-DG in Large™ mice is hypoglycosylated and
shows reduced ligand-binding activity (20,21). Positional
cloning in this model identified a disease-causing mutation in
the Large gene (22), which encodes a protein with a transmem-
brane domain-followed by a coiled-coil domain and two DxD-
containing putative catalytic domains (23). LARGE mutations
are also seen in human dystroglycanopathy (24). Although the
exact function of the LARGE protein is not fully understood,
it has been shown to produce hyperglycosylated o-DG in
culture cells and mice (25,26). In addition, physical interaction
between LARGE and «-DG is an essential step in acquiring
ligand-binding activities of a-DG (25). Therefore, it is believed
that LARGE plays a post-translational role in modulating both
a-DG glycosylation and its functional expression.

To further investigate molecular pathogenesis and to
explore therapeutic strategies for dystroglycanopathy, we gen-
erated several model mice for FCMD. We first generated mice
with a targeted fukutin disruption, but this model showed
embryonic lethality (27). We also generated chimeric fukutin
mice by injecting homozygous targeted (fikutin~'~) ES
cells into blastocysts (28). Mice with high chimerism
showed dystrophic skeletal muscle; however, the variability
of chimerism among individuals, and with growth, limits
this experimental approach. Therefore, we generated a trans-
genic knock-in mouse model carrying the retrotransposal
insertion in fukutin. Our data revealed that even a small
amount of intact o-DG is sufficient to maintain skeletal
muscle function, and suggest that increasing the expression
of glycosylation-related genes, which could be accomplished
through various approaches, can be a therapeutic strategy for
preventing or slowing progression of a broad range of dystro-
glycanopathies.

RESULTS
Generation of model mice for FCMD

To generate a transgenic knock-in mouse carrying the retro-
transposal insertion, we replaced mouse fukutin exon 10
with a FCMD patient’s exon 10, engineered to contain the ret-
rotransposal insertion using a site-directed DNA integration
technique. Exon 10 encodes amino acids from Tyr-392 to
the C-terminal end and the 3'-UTR. We also generated
another transgene containing a normal human exon 10. The
terms Hn (human normal; Fig. 1A, no. 6) and Hp (human
patient; Fig. 1A, no. 7) refer to transgenes containing the
normal human exon 10 and the patient’s exon 10, respectively.
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Figure 1. Generation of FCMD model mice that carry the retrotransposal insertion in the mouse fukutin gene. (A) Schematic representation of the targeting
vector. Details are described in the Materials and Methods section. Human fikutin exon10 is shown in green, and the retrotransposon is shown in red. (B)
Southern blot analysis of mouse genomic DNA. Insertion of the human exon10 with the retrotransposon yields new 3.1 kb BamHI/Bgl IT and 5.6 kb fragments
that hybridize, respectively, with the 5 and 3 probes shown in (A). (C) RT—PCR analysis. fukutin transcripts were amplified using RT-PCR. A B-actin internal

control is shown (bottom panel).

Recombination was confirmed using Southern blot analysis of
genomic DNA from ES cells (data not shown). Targeted ES
cell clones were injected into blastocysts to obtain chimeric
mice. Germline transmission of the knock-in allele was estab-
lished via Southern blot analysis of mouse genomic DNA
(Fig. 1B). Germline-competent heterozygous mice were in
turn mated to generate homozygous mutants (Hn/Hn and
Hp/Hp) (Fig. 2A, nos 3 and 4). RT-PCR showed a dramatic
reduction of fukutin mRNA transcript levels in Hp/Hp mice
(Fig. 1C). Through quantitative PCR, we determined that
Hp/Hp mice express fukutin transcript at 5—10% of normal
levels (data not shown). We consider Hp/Hp mice to be
" models for most FCMD cases that are homozygous for the ret-
rotransposal insertion. Human patients who are compound het-
erozygous for the insertion and a nonsense fukutin mutation
generally show more severe pathology than those who are
homozygous for the insertion (14). Therefore, we crossed

Hp/Hp mice with transgenic mice carrying a neo cassette dis-
ruption of one fukutin allele (fukutin™ ™) (27) to create a com-
pound heterozygous line. The Hp/+ mice in this line represent
retrotransposon carriers (Fig. 2A, no. 5) and the Hp/— mice
represent compound heterozygotes (Fig. 2A, no. 6).

FCMD model mice exhibit hypoglycosylation of a-DG

To characterize the biochemical properties of o-DG in the
knock-in mice, we prepared skeletal muscle samples enriched

. for a-DG with wheat germ agglutinin (WGA) beads, which is

able to bind nearly all the DG in the muscle sample (20,29).
These preparations were analyzed using western blot analysis
with goat polyclonal antibodies against a-DG core protein
(AP-074G-C) and the monoclonal antibody IIH6. IITH6
recognizes glycosylated epitopes on a-DG, and hypoglycosy-
lation results in the absence of epitopes for the antibody (20).
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Figure 2. FCMD models exhibit hypoglycosylation and laminin-binding activity.
(A) Schematic representation of the control and mutant fikutin genes in model
mice. 1, wild-type mice (+/+); 2, mice carrying a neo-disrupted fukutin allele
(+/=); 3, mice homozygous for the Hn allele (Hn/Hn); 4, mice homozygous
for the Hp allele (Hp/Hp); 5, mice with a Hp allele and an intact mouse fukutin
allele (Hp/+); and 6, mice with a Hp allele and a neo-disrupted allele (Hp/—).
Exons are indicated with filled boxes. Portions derived from human fukutin
exon 10 are shown in orange and green (3’-UTR). The retrotransposal insertion
is shown in red. (B—F) Biochemical characterization of FCMD model mice.
WGA beads were added to solubilized skeletal muscle samples to enrich DG
from each model mouse. FCMD models are shown in red (Hp/Hp and Hp/—).
WGA preparations were analyzed by western blot using antibodies against core
protein (B) and glycosylated a-DG (C). The western blot for -DG shows com-
parable amounts of DG proteins ineach lane (D). Overexposure of blots analyzing
core protein and glycosylated «-DG detected the presence ofintact «-DG proteins
in Hp/— mice (E). The portions of normal-sized and hypoglycosylated a-DGs are
indicated at the right side of the blots. A laminin overlay assay was performed
using samples from Hp/— mice and the litter control Hp/+ mice (F).

Western blot analysis of a-DG core protein revealed the pre-
sence of ~150 kDa a-DG proteins in the control group (+/+,
+/—, Hn/Hn and Hp/+ mice) (Fig. 2B, lanes 1-3 and 5). A
slight reduction in molecular weight was observed in Hp/Hp

mice (Fig. 2B, lane 4, upper band). In Hp/— mice, we observed
a much-reduced intensity of the ~150 kDa bands (Fig. 2B, lane
6). In addition, lower molecular weight (~90 kDa) bands were
detected in Hp/Hp and Hp/— mice (Fig. 2B, lanes 4 and 6).
Western blotting with ITH6 detected ~150 kDa bands in the
control groups (+/+, +/—, Ho/Hn and Hp/+) (Fig. 2C, lanes
1-3 and 5). IIH6 reactivity at ~150 kDa in Hp/Hp and Hp/—
mice was reduced relative to controls (Fig. 2C, lanes 4 and 6).
a-DG proteins with reduced molecular weight (~90kDa)
were not recognized by ITH6, indicating that they are hypoglyco-
sylated. Western blot analysis of B-DG confirmed comparable
levels of DG proteins among the samples (Fig. 2D). Hp/—
mice consistently contained more hypoglycosylated «-DG
than Hp/Hp mice; therefore, we used Hp/— mice as models
for FCMD and their Hp/+ littermates as controls. Longer
exposure of blots from Hp/— mice detected an a-DG species
recognized by ITH6 with the molecular weight of ~150 kDa
(Fig. 2E), suggesting that a small amount of intact a-DG also
is present. Analysis of laminin-binding activity in Hp/— mice
and Hp/+ littermates using a laminin overlay assay (Fig. 2F)
showed reduced laminin-binding activity in Hp/ — mice.

A small amount of intact a-DG prevents muscular
dystrophy

We examined hematoxylin and eosin (H&E) stained sections
of the quadriceps, gastrocnemius, tibialis anterior, soleus,
iliopsoas and diaphragm muscles in Hp/+ and Hp/— mice.
H&E staining revealed no clear difference between Hp/+
and Hp/— mice. Histopathological features of muscular dys-
trophy, such as centrally located nuclei, tissue fibrosis and
fatty infiltration were not observed in 10-week-old FCMD
models Hp/— (Fig. 3A) and Hp/Hp mice (data not shown).
Although FCMD onset in humans occurs at or near birth, we
also examined older mice to determine whether onset in
Hp/— mice was delayed. Even in older mice (>1 year old),
we observed no signs of muscular dystrophy (Fig. 3B).
There was no obvious change in the expression level of
laminin o2 chain, which is the major ligand of a-DG in the
skeletal muscle (Supplementary Material, Fig. S1).

Both hypoglycosylated and ITH6-positive intact «-DG
proteins were detected in Hp/Hp and Hp/— mouse brains
(Supplementary Material, Fig. S2). As is the case with skeletal
muscle, Hp/— mice contained more hypoglycosylated a-DG.
Apparent brain histological abnormality was hardly detected
in Hp/— mice; only a few mice showed a very small ectopic
cluster of neurons migrating into the marginal zone. We also
analyzed a-DG in heart, liver, and lung from Hp/— mice,
and found that the levels of hypoglycosylation and laminin-
binding activity vary between the tissues (less affected in
heart and liver) (Supplementary Material, Figs S2 and S3).

To analyze potential weakness in muscle cell membrane
integrity, which may not be detectable in housed mice by H&E
staining, Hp/— mice were subjected to treadmill exercise
followed by the measurement of Evans blue dye (EBD) incorpor-
ation into muscle fibers. EBD is a membrane-impermeant
molecule that binds to serum albumin and is physically restricted
from fibers unless the skeletal muscle membrane is damaged
(30). Even after exercising to exhaustion, Hp/— mice showed
no EBD uptake in muscle cells (data not shown).
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Figure 3. FCMD mice do not develop a muscular dystrophy phenotype.
Various skeletal muscle tissues from Hp/— and littermate control Hp/+
mice at 10 weeks (A) and >1 year (B) of age were analyzed by H&E staining.
No features of muscular dystrophy or other variation from controls were
observed in Hp/— mice.

Reduction of laminin-binding activity due to hypoglycosy-
lation of a-DG is thought to be the main cause of dystroglyca-
nopathy. Therefore, we hypothesized that the minimal levels
of intact a-DG species observed in Hp/— mice are sufficient
to maintain linkage to laminin and prevent disease pro-
gression. To test this hypothesis, we compared the laminin-
binding activity in Hp/— mice with that in Large™ (myd/
myd) mice, which represent another dystroglycanopathy
model with a muscular dystrophy phenotype (21). H&E analy-
sis confirmed signs of muscular dystrophy (centrally located
nuclei and fiber size variation) in myd/myd mice, but not in
Hp/— mice (Fig. 4A and B). In contrast with Hp/— mice,
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Figure 4. Laminin-binding activity is maintained in Hp/— mice but barely

"detected in Large™Y mice. H&E staining of quadriceps tissue from Hp/—

(A) and Large™® (myd/myd) (B) mice are shown. WGA preparations from
the Hp/— (C) and the myd/myd (D) skeletal muscle were also analyzed by
western blot using an antibody against a-DG core protein. Laminin-binding
activity in Hp/— (E) and myd/myd (F) mice were measured using solid-phase
binding assays and compared to the littermate controls (Hp/+ and myd/+).
Open squares (gray line) in panel E indicate laminin-binding activity in wild-
type mice.

western blot analysis of a-DG core protein in myd/myd
mice revealed no intact size (~150kDa) of a-DG species
(Fig. 4C and D), indicating that almost all a-DG is hypoglyco-
sylated in myd/myd mice. The laminin-binding activity of
a-DG in Hp/— and myd/myd mice was measured using a
quantitative solid-phase laminin-binding assay and compared
with litter controls (Hp/4+ and myd/+ mice, respectively)
(Fig. 4E and F). Laminin-binding activity was ~50% of
normal in Hp/— mice but less than 5% of normal in myd/
myd mice. The solid-phase binding analysis shows no
obvious difference between wild-type and Hp/+. These data
demonstrate that levels of glycosylation (indicated by ITH6
immunoreactivity and the presence of ~150 kDa «-DG) influ-
ence laminin-binding activity and indicate that only a small
amount of [TH6-reactive a-DG is required to maintain skeletal
muscle function.

Fukutin gene transfer restores glycosylation of a-DG in
knock-in mice

Our data strongly suggest that even partial restoration of a-DG
glycosylation is effective in reducing disease severity in
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Figure 5. Fukutin gene transfer rescues the glycosylation abnormality in
Hp/— mice. Hp/+ or Hp/— pups were injected with adenovirus encoding
wild-type human fukutin in one leg (+) and with saline in the contralateral
leg (—). Calf muscle was analyzed using westem blot with antibodies
against core a-DG protein (A) and glycosylated «-DG (B) and using a
laminin overlay assay (C). Transfer of fukutin produced increases in a-DG
molecular weight, ITH6 reactivity and laminin binding activity in Hp/— mice.

dystroglycanopathy. To examine whether glycosylation defects
can be recovered in vivo, a recombinant fukutin adenovirus was
injected into the hind limb muscle of 3-day-old Hp/— and litter
control Hp/+ mice. Following 4 weeks of injections, a-DG
enriched samples were prepared using WGA beads and ana-
lyzed for glycosylation and laminin-binding activity. Western
blot analysis with anti-a-DG core protein antibodies revealed
that fukutin gene transfer into Hp/— mice reduced hypoglyco-
sylated a-DG (~90 kDa) and increased levels of the normal-
sized a-DG species (~150kDa) (Fig. 5A, lanes 3 and 4).
[IH6 reactivity and laminin-binding activity also increased fol-
lowing fukutin gene transfer into Hp/— mice (Fig. 5B and C,
lanes 3 and 4). No obvious changes were observed in Hp/+4
mice after the gene transfer (Fig. 5C, lanes 1 and 2). These
results demonstrate that fukutin gene transfer can correct
biochemical abnormalities of a-DG in fukutin-deficient skeletal
muscle, and support that fukutin protein is involved in glycosy-
lation of a-DG. :

Large gene transfer produces laminin-binding forms of
a-DG in dystroglycanopathy models

Hypoglycosylation leading to dystroglycanopathies is caused
by mutations in six known genes (fukutin, POMGnTI,
POMTI1, POMT2, FKRP and LARGE) and other, unidentified
genes. In an effort to bypass the need for identification of
disease-causing genes in developing therapies (e.g. gene trans-
fer), we further explored a unique feature of LARGE. LARGE
has been demonstrated to induce a-DG hyperglycosylation,
which is detected by ITH6 as a broad band detected at 150—
300kDa via SDS gel electrophoresis. This band shows
increased ligand-binding activity in samples from genetically
distinct diseases showing defective a-DG glycosylation
(FCMD, MEB and WWS) (26).

We examined whether adenoviral LARGE gene transfer
into Hp/— skeletal muscle induces hyperglycosylation and
increases laminin-binding activity of a-DG. Immunofluores-
cence analysis of untreated control muscles revealed weaker
ITH6 reactivity in Hp/— than in Hp/+ (Fig. 6A, —LARGE).
Muscle sections subjected to gene transfer showed increased
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Figure 6. LARGE gene transfer produces functionally glycosylated a-DG in
Hp/— mice. Hp/+ or Hp/— pups were injected with an adenovirus encoding
LARGE in one leg (+) and with saline in the contralateral leg (—). Calf
muscle was analyzed using ITH6 immunofluorescence (A). GFP fluorescence
represents muscle fibers successfully transduced by the adenoviral vectors.
WGA preparations were analyzed using western blots with antibodies
against glycosylated a-DG (B), a-DG core protein (C) and using a laminin
overlay assay (D). The western blot for B-DG shows comparable amounts
of DG proteins in each lane. Images with longer-exposures better indicate
the presence of hyperglycosylated a-DG (arrowheads). These results show
that the transfer of LARGE increases IIH6 reactivity and laminin-binding
activity in Hp/— mice.
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o-DG glycosylation in transduced areas, as indicated by
eGFP expression in both Hp/— and Hp/+ mice (Fig. 6A,
+LARGE). We also examined adenovirus-injected and non-
injected contralateral leg muscles using western blot analysis
with antibodies against a-DG core protein and ITH6. These
experiments showed that the LARGE gene transfer increased
ITH6 reactivity at ~150 kDa in the Hp/— muscle and pro-
duced a broad band with a molecular weight of 150—
250kDa in both Hp/— and Hp/+ muscles (Fig. 6B).
Anti-a-DG core protein antibodies poorly recognized a
higher molecular weight a-DG species (Fig. 6C), which is
consistent with previous reports (26). Following the LARGE
gene transfer, levels of hypoglycosylated o-DG species
decreased (Fig. 6C, lanes 3 and 4). These data indicate that
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Figure 7. LARGE gene transfer produces functionally glycosylated a-DG in
MEB disease model mice. POMGnT17/*, POMGnT1*'~ or POMGnT1™/~
pups were injected with adenovirus encoding LARGE in one leg (+LARGE)
and with saline in the contralateral leg (— LARGE). Calf muscle was analyzed
using ITH6 immunofluorescence (A). ‘GFP fluorescence represents muscle
fibers successfully transduced by the adenoviral vectors. WGA preparations
were analyzed using western blots with antibodies against glycosylated
o-DG (B) and a-DG core protein (C) and using a laminin overlay assay
(D). These results show that transfer of LARGE increases IIH6 reactivity
and laminin-binding activity in POMGnT1™/~ mice, the model for MEB
disease.

LARGE-induced glycosylation occurs on hypoglycosylated
a-DG species. The IIH6-positive broad-molecular-weight
band was able to bind laminin in both Hp/— and Hp/+ skel-
etal muscle samples (Fig. 6D, lanes 2 and 4). These data
indicate that LARGE can increase laminin-binding forms of
a-DG in fukutin-deficient skeletal muscle.

We further investigated whether LARGE gene transfer
induced hyperglycosylation and produced laminin-binding
forms of a-DG species in another dystroglycanopathy
model, the POMGnTI-disrupted mouse (POMGnTl—/_)
(Miyagoe-Suzuki ef al., manuscript in preparation). Western
blot analysis using a-DG core protein antibodies showed a
reduction of «-DG molecular weight to 60-90kDa in
POMGnT1™/~ mice (Fig. 7C, lane 4). Little ITH6 reactivity
was detected via immunofluorescence (Fig. 7A) and western
blot (Fig. 7B, lane 4) analysis. These data indicate hypoglyco-
sylation of @-DG in POMGnT1™'~ mice. Accordingly,
laminin-binding activity was significantly reduced in

POMGnT1 ™/~ mice compared with POMGnT1"~ or

POMGnTI1+* littermates (Fig. 7D, lanes 2, 4 and 6). The
minor laminin binding protein (~80-100 kDa, lane 4) detected
only in POMGnTI '~ is unidentified; however, similar
laminin binding was also observed in POMGnT]-deficient
MEB patients (20). A solid-phase binding assay also showed
minor levels of laminin-binding activity in POMGnT1~/~
(Supplementary Material, Fig. S4). For all genotypes, adeno-
viral LARGE gene transfer increased ITH6 reactivity in trans-
duced areas indicated by eGFP expression (Fig. 7A, +/+,
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+/—, and —/—). Western blot analysis using ITH6 showed
that LARGE gene transfer also induced hyperglycosylation
of a-DG in all genotypes, as indicated by broad bands with
molecular weights from 150 to >250 kDa (Fig. 7B). After
the gene transfer, the POMGnT1 ™~ skeletal muscle showed
only hyperglycosylated ITH6-positive species, while the
POMGnT1"* and the POMGnT1"~ muscles showed both
hyperglycosylated and the original 150 kDa IIH6-positive
species. Overlay assays showed that the laminin-binding
epitope was produced on hyperglycosylated a-DG (Fig. 7D).
These data support the idea that LARGE is an effective
target for increasing or restoring laminin-binding activity of
a-DG in dystroglycanopathy.

DISCUSSION

We have used several approaches to generate FCMD model
animals. Fukutin-null mice result in embryonic lethality
(27). Fukutin-chimera mice derived from ES cells targeted
for both fukutin alleles (28) develop muscular dystrophy, but
are inappropriate therapeutic study models because (i) they
show wide variation in disease severity, and (ii) muscle cell
fusion events during growth and regeneration can_alter the
population of fukutin-null cells. Therefore, we decided to
introduce the disease-causing retrotransposon into the mouse
fukutin gene to mimic the most prevalent form of human
FCMD. In these knock-in Hp/Hp and Hp/ — mice, we detected
hypoglycosylated a-DG, as is seen in FCMD patients (20,31),
so we consider them to be novel models for FCMD.

Spontaneous Large™? and Large"™ mice (21,32) and
genetically engineered POMGnT1-deficient mice (33) have
been rteported as dystroglycanopathy models. Because these
models mimic null mutations such as nonsense and frameshift
mutations, they do not necessarily represent human diseases
caused by missense mutations. Our knock-in mice with the ret-
rotransposal fukutin insertion are the first dystroglycanopathy
model that carries a human disease-causing mutation. Such
models are needed to explain the molecular pathogenesis of
diseases, to determine the function of responsible genes and
to screen drugs that correct specific defects (34).

Although these mice genetically and biochemically rep-
resent features of fukutin-deficient muscular dystrophies,
histological analysis has revealed no signs of muscular
dystrophy. In typical cases of FCMD, normal-sized a-DG
with ITH6-reactivity is barely detected, and laminin-binding
activity is dramatically reduced (20). Comparing Hp/— mice
with Large™? mice led us to reason that the remaining
intact a-DG and laminin-binding activity in Hp/— mice
might be sufficient to prevent disease progression. In the
future, it would be important to elucidate the threshold level
of glycosylation required to avoid a phenotype by using a
model system that can control glycosylation levels in vivo.
In Hp/— mice, residual laminin-binding is detected from
DG species with slightly lower molecular weight
(<150kDa) (Fig. 2F), whereas this is not the case for
human patients even with retained laminin binding (35). The
difference suggests that mice may have additional laminin-
binding epitopes, which are less susceptible to fukutin
defects. Alternatively, other factors may compensate for
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reduced laminin-binding to a-DG. For example, it has been
suggested that integrin o7, another laminin receptor in
skeletal muscle, may account for the difference in clinical
severity between mice and humans with dystrophin- or the
DGC-defects (36,37). Clarifying the factors involved would
be nécessary for a better understanding of pathomechanism,
which could promote identification of novel therapeutic
targets. .

Also important is the finding that even a small amount
of IIH6-immunoreactivity of a-DG is sufficient to maintain
skeletal muscle function. This concept is supported by
milder cases of human patients with fukutin mutations (35).
Murakami et al. have described reduced but detectable
IIH6-reactivity and intact a-DG in patients who are compound
heterozygous for the fukutin retrotransposon insertion and a
missense mutation (R179T or Q358P). These individuals
showed minimal dystrophic features and normal intelligence.
Laminin-binding activity is also retained in all cases. These
findings provide further evidence that the disease severity of
fukutin-deficient muscular dystrophy is related to the ratio of
normal glycosylation to hypoglycosylation.

Such correlation has been observed in other dystroglycano-
pathies. LGMD2I patients at the severe end of the clinical
spectrum tend to show the greatest reduction in a-DG glyco-
sylation, while those at the milder end tend to have relatively
well-preserved o-DG glycosylation (38). Most known
missense mutations in POMGnT! disrupt POMGnT enzyme
activity, causing hypoglycosylation of &-DG and a severe con-
genital muscular dystrophy phenotype (39,40). Clement et al.
(6) have reported a patient with a milder LGMD phenotype
who carries a novel homozygous missense mutation in
POMGnTI. Studies of this patient’s fibroblasts showed an
altered kinetic profile but intact enzyme activity, explaining
the relatively mild phenotype. Furthermore, a recent systema-
tic and large-scale study of genotype—phenotype correlation in
dystroglycanopathy revealed a wide spectrum of clinical
severity in specific disease-causing genes (18). A broad corre-
lation between the amount of depleted glycosylated epitope
and phenotypic severity was described, though not systemati-
cally quantified. A more recent study reported a few cases with
less correlation between clinical course and a-DG immunola-
beling (41). We propose that, in addition to immunolabeling,
combination of western blotting and laminin binding assays
will be necessary for further advances in both clinical and
basic biomedical research.

The present study strongly suggests that full recovery of
a-DG glycosylation is not always necessary; partial restor-
ation of a-DG glycosylation might be enough to prevent or
slow disease progression. The simplest way to restore o-DG
glycosylation in dystroglycanopathies would be by replacing
a defective gene with the normal version. In many cases,
though, the disease-causing gene is not known. A recent
study revealed that most patients with a dystroglycanopathy
harbor mutations in novel genes (18). To increase amounts
of glycosylated a-DG with laminin-binding activity regardless
of the responsible gene, we took advantage of the observation
that overexpression of LARGE can produce hyperglycosytated
a-DG with increased laminin-binding activity in cells from
genetically distinct dystroglycanopathies (26). LARGE-
induced hyperglycosylation of a-DG has also been observed

in both CHO glycosylation mutants showing defective transfer
of sialic acid, galactose or fucose to glycoconjugates and in a
mutant that is unable to synthesize O-mannose glycan (42).
Such a ‘super-effect’ of LARGE on a-DG glycosylation has
been observed in vitro, but no in vivo study has been reported
except in Large™* mice (26). Gene transfer of LARGE into
Largemyd mice essentially replaces the defective gene with
the normal version of the gene. Our results provide the
first in vivo evidence that LARGE gene transfer can bypass
the glycosylation defects of «-DG in models other than the
Large™ mice. These results support the idea that glycothera-
ptes aimed at modulating LARGE may be a therapeutic
option for many «-DG glycosylation-deficient muscular
dystrophies.

Overall, our biochemical, histological and gene transfer
experiments using novel model mice with disease-causing
mutations support the efficacy of glycotherapy in dystroglyca-
nopathies. The models developed here will be powerful in
understanding the pathomechanism of FCMD and other
related diseases.

MATERIALS AND METHODS
Generation of model mice

A targeting vector containing the retrotransposal insertion of
human FCMD patients was generated using a site-directed
DNA integration technique (43). Briefly,” lox71 and
TK-loxP-neo pA fragments (44) were inserted 5 and 3’ to
exon 10 of mouse fukutin (Fig. 1A, no. 2). To excise a
floxed part of exon 10 (Fig. 1A, no. 3 Aexonl0), Cre was
expressed in mouse embryonic stem (ES) cells. Meanwhile,
lox66 and TK-loxP fragments were inserted 5 and 3’ to
exon 10 of human fukutin, with or without a retrotransposal
insertion (Fig. 1A, nos 4 and 5). Each construct was
co-transfected with a Cre-expressing vector into ES cells
that constitutively express the Aexonl0 construct, to obtain
recombinant knock-in alleles (Fig. 1A, nos 6 and 7). The trans-
genic alleles containing normal human exon 10 and mutant
exon 10 were named Hn (representing ‘human normal’) and
Hp (representing ‘human patient’), respectively. Targeted ES
cell clones were injected into blastocysts, and germline-
competent heterozygous mice were in tum mated to generate
homozygous mutants.

Genotyping of each transgene was performed using PCR
with the following primers: FCMDKIF1, GAAACTCTGC-
CATGACACCTC: HNC440R, ACCAGCTTAAATGCCCA-
GAAG: Wild R2, GAAGCCAACTGTGTACCACAC. The
FCMDKIF1 and HNC440R, and FCMDKIF1 and Wild R2
primer pairs yielded bands of ~800 bp (knock-in allele} and
~1100 bp (wild-type allele), respectively. Genotyping of a
Sfukutin allele disruption by a neo replacement (fukutin null)
was described previously (45). The primers for fiskutin RT—
PCR are AGGGAATGGGCTGGTAGACT and GTGCCATT
TTGGGACAAGTT.

C57BL/6 mice were obtained from Japan SLC, Inc., and
Large™? mice were obtained from The Jackson Laboratory.
-Mice were maintained in accordance with the animal care
guidelines of Otsuka Pharmaceutical Co. Ltd. and Osaka
University.



Antibodies

Antibodies used in western blots and immunoftuorescence were
as follows: mouse monoclonal antibody 8D5 against B-DG
(Novacastra); mouse monoclonal antibody IIH6 against a-DG
(Upstate); and polyclonal anti-laminin (Sigma). We generated
goat polyclonal antibodies against a-DG core protein using
GST fusion proteins containing the N- or C-terminal domains
of mouse o-DG. Antisera (074G) were affinity-purified using
an a-DG-Fe fusion protein expressed in HEK293 cells. The pur-
ified antibody was named AP-074G-C.

Dystroglycan preparation and western blotting

DG was enriched from solubilized skeletal muscle as pre--

viously described (20,29). Briefly, 100 mg of muscle was solu-
bilized in 1 ml of Tris-buffered saline (TBS) containing 1%
Triton X-100 and protease inhibitors (Funakoshi). The solubil-
ized fraction was incubated with 30 ul of WGA—agarose
beads (Vector Labs) at 4°C for 16 h. Beads were washed
three times in 1 ml TBS containing 0.1% Triton X-100 and
protease inhibitors. The beads were then either directly
boiled for 5 min in SDS—polyacrylamide gel electrophoresis
(PAGE) loading buffer (western blot and laminin overlay) or
eluted with 300 pl TBS containing 0.1% Triton X-100, pro-
tease inhibitors and 300 mm N-acetylglucosamine (solid-phase
binding assay). Proteins were separated using 7.5% or 10%
SDS—PAGE. Gels were transferred to polyvinylidene fluoride
(PVDF) membrane (Millipore, Bedford, MA, USA). Blots
were probed with DG antibodies and then developed with
horseradish peroxidase (HRP)-enhanced chemiluminescence
(Supersignal West Pico, Pierce; or ECL Plus, GE Healthcare).

Immunofluorescence and histological analysis

Cryosections (7 jum) were prepared and analyzed using immuno-
fluorescence or H&E staining. Sections were stained for 2 min in
hematoxylin, 1 min in eosin and then dehydrated with ethanol and
xylenes. For immunofluorescence staining with ITH6, sections
were treated with cold ethanol/acetone (1:1) for 1 min, blocked
with 5% goat serum in MOM Mouse Ig Blocking Reagent
(Vector Laboratories) at room temperature for 1h and then
incubated with primary antibodies diluted in MOM Diluent
(Vector Laboratories) overnight at 4°C. The slides were washed
with PBS and incubated with Alexa Fluor 488-conjugated anti-
mouse IgM antibody (Molecular Probes) at room temperature
for 30 min. For GFP detection, sections were fixed with 4%
paraformaldehyde in PBS for 10 min, washed with PBS three
times and then mounted. Permount® (Fisher Scientific) and
TISSU MOUNT® (Shiraimatsu Kikai) were used for H&E
staining and immunofluorescence, respectively. Sections were
observed under fluorescence microscopy (Leica DMR, Leica
Microsystems). For EBD uptake, mice were exercised on a
treadmill (MK-680S, Muromachi Kikai) as described (34).

Laminin-binding assay

Laminin-binding activity was examined as previously reported
(20) with slight modifications. Laminin overlay assays were
performed on PVDF membranes using mouse Engelbreth—
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Holm—Swarm (EHS) laminin (Sigma). Briefly, PVDF mem-
branes were blocked in laminin-binding buffer (LBB: 10 mM
triethanolamine, 140 mm NaCl, 1 mmM MgCl,, 1 mum CaCl,, pH
7.6) containing 5% non-fat dry milk followed by incubation
with 7.5 nM laminin at 4°C for 12 h in LBB with 3% BSA.
Membranes were washed and incubated with anti-laminin
(Sigma) at 4°C for 3 h followed by anti-rabbit [gG—HRP at
room temperature for 45 min. Blots were developed by
enhanced chemiluminescence (Supersignal West Pico, Pierce).

For the solid-phase binding assay, WGA eluates were
diluted 1:50 in TBS and coated on polystyrene ELISA micro-
plates (Costar) for 16 h at 4°C. Plates were washed in LBB and
blocked for 2 h in 3% BSA in LBB. Mouse EHS laminin was
diluted in LBB and applied for 1 h. Wells were washed with
3% BSA in LBB, incubated for 1 h with 1:10,000 anti-laminin
(Sigma) followed by anti-rabbit HRP. Plates were developed
with o-phenylenediamine dihydrochloride and H,O,, then
reactions were stopped with 2 N H,SO, and values obtained
on a microplate reader. The data were fit to the equation
A=B_,,x/(Kq+x), where K, is the dissociation constant, 4 is
absorbance and B,y is maximal binding.

Adenoviral gene transfer

The complete open reading frame of mouse fukutin was cloned
into the EcoRI site of the pKSCX-EGFP vector (46). The
pKSCX-EGFP vector contains IRES-EGFP so that both. the
fukutin and GFP genes are expressed bicistronically under
the CAG promoter. This expression cassette was digested
with Swal, and then its blunt-ended fragment was ligated
into the adenoviral cosmid vector. The recombinant adenoviral
vector encoding fukutin was generated using the method of
Tashiro et al. (46).

Generation of the recombinant adenoviral vector encoding
LARGE has been previously described (26). Amplified adeno-
viruses were purified using VIVAPURE ADENOPACK 100
(VIVASCIENCE).

In vivo gene transfer was performed with Hp/— and control
littermate Hp/+ pups, age 2—4 d. Adenoviruses were ingjected
percutaneously into the calf and hamstring with 1 x 10°-1 x
10° particles in 10 ul of saline solution. Mock injections used
saline solution only. Four weeks after injection, experimental
and control contralateral leg muscles were subjected to immu-
nofluorescence and biochemical analysis.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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Fukuyama-type congenital muscular dystrophy (FCMD) is an
autosomal recessive disorder, characterized by severe muscular
dystrophy associated with brain malformation. FCMD is the
second most common form of muscular dystrophy and one of the
most common autosomal recessive diseases among the Japanese
population; however, no typical FCMD cases have been reported
in any other population. In this study, we report on the first
identification of a Chinese FCMD patient; our findings are
supported by clinical, histological, and magnetic resonance
imaging (MRI) evidence, as well as fukutin gene mutational
analyses. The patient presented with neonatal hypotonia,
seizures, and delayed motor and speech development. Additional
testing revealed cerebral and cerebellar gyrus abnormalities
with white matter signal intensity changes, elevated serum
creatine kinase (CK) levels, and dystrophic skeletal muscle with
o-dystroglycan hypoglycosylation, and normal B-dystroglycan
and merosin expression. Genetic analysis of the fukutin gene
showed one copy with a Japanese founder 3-kilobase (kb) retro-
transposal insertion in the 3'-non-coding region and the other
copy with a known ¢.139C>T mutation. This is the first FCMD
case reported in the Chinese population and the first case in
which the 3-kb insertion has been found outside of the Japanese
population. This report emphasizes the importance of consider-
ing the fukutin founder mutation for diagnostic purposes outside
of Japan. © 2009 Wiley-Liss, Inc.

Key words: 3-kb retrotransposal insertion; FCMD; Chinese

INTRODUCTION

Fukuyama-type congenital muscular dystrophy (FCMD; OMIM
253800) is an autosomal recessive disorder, characterized by severe
muscular dystrophy associated with brain malformation. It is
the second most common form of muscular dystrophy and one of
the most common autosomal recessive diseases among the Japanese
population. Clinical features vary, but typically include generalized

© 2009 Wiley-Liss, Inc.
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hypotonia and weaknessin early infancy, followed by marked muscle
atrophy, multiple joint contractures, and psychomotor develop-
mental delay in childhood. Classically, the highest achievable motor
function in patients is sliding while sitting on the buttocks. Intellec-
tual, cognitive, and communicative functions are severely delayed.

The course is slowly progressive and inexorable. The average age at |

death is 16 years, and no effective treatment currently exists
[Fukuyama et al., 1981]. The gene responsible for FCMD, fukutin,
was identified at 9931 by linkage analysis and positional cloning
[Toda et al., 1993; Kobayashi et al., 1998a, 2001]. FCMD is the first
known human disease caused by an ancient retrotransposal integra-
tion [Kobayashi et al., 1998a]. Most Japanese FCMD patients have a
3-kb retrotransposal insertion (founder) mutation in the 3’-non-
coding region of fukutin. Loss-of-function fukutin point mutations
have also been identified, but no FCMD patients have been reported
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with non-founder (point) mutations in both alleles [Kondo-Iida
et al,, 1999]. Until now, no FCMD patients who carry the 3-kb
insertion have been identified among non-Japanese people [Silan
et al., 2003; Fukuyama, 2008]. Here, we describe a Chinese FCMD
patient possessing a c¢.139C>T fukutin gene point mutation in one
allele and the founder 3-kb retrotransposal fukutin gene insertion in
the other.

CLINICAL REPORT

The male patient, who was 5 years 9 months of age, had displayed
motor abnormalities (floppy infant) since birth. He was born at
full-term, delivered by Cesarean to a healthy G,P; young mother.
His parents were non-consanguineous Chinese and had no family
history of neuromuscular disease. His father and mother were born
in Henan Province and Shanxi Province, respectively. The patient’s
CK levels were 11,600 TU/L when he was 1 year old and had
decreased to 648 IU/L at 5 years 9 months of age. He achieved
head control when 2 years old and sat unsupported at 4 years old,
but was unable to slide on his buttocks. He developed both knee and
anklejoint contractures after the first year. Progressive contractures
over both knees and elbow joints were present. He could speak very
few words. Physical examination, the patient displayed brilliant
eyes, round cheeks, and a myopathic face (Fig. 1). He had eye
closure weakness, a high arched palate, and generalized muscle
weakness, including weak neck muscles. Fundus examination was

FIG. 1. Propositus diagnosed with FCMD. Note the typical myopathic
face, brilliant eyes, round cheeks, and macroglossia with open
mouth. Printed with written permission from the patient and his
parents. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

normal. Prominent muscle atrophy was present, especially over the
shoulder and pelvic girdle muscles. Calf muscles were hypertro-
phied and deep tendon reflexes were absent. Febrile convulsion
occurred once, at the age of 5 years 6 months. An electromyogram
revealed myopathic changes, but an electrocardiogram was normal.
A brain magnetic resonance imaging (MRI) showed sporadlc
periventricular hyperintensity areas on a T2-weighted image,
frontal lobe micropolygyria, cerebellar cysts, and cerebellar and
brain stem hypoplasia (Fig. 2). The patient’s IQ (Wechsler Pre-
school and Primary Scale of Intelligence-Revised) was 52.

MATERIALS AND METHODS
Immunohistochemistry

Muscle biopsy specimens, obtained after parental informed con-
sent, were frozen and stored in liquid nitrogen-cooled isopentane.
Using commercially available monoclonal antibodies, o-dystro-
glycan (ITH6; Upstate Biotech, Lake Placid, NY), B-dystroglycan
(8D5; Novocastra, Newcastle upon Tyne, UK) and merosin
(mAb1922; Chemicon International, Temecula, CA) expression
patterns were analyzed on 8-um-thick cryosections.

Sequence Analysis and PCR

Peripheral blood genomic DNA from the patient and his parents
was phenol—chloroform extracted and precipitated with isopropa-
nol. Primers were designed from the fukutin genomic sequence to
amplify each exon and surrounding intronic sequences (primer
sequences available upon request). After detecting only one muta-
tion by direct DNA sequencing, we performed a previously reported
three primer-PCR method [Watanabe et al., 2005]. Additionally,
we designed a primer pair to detect genomic sequence downstream
of the 3-kb insertion (forward, position ins2795-2814, 5'-ATT-
AAGGGCGGTGCAAGATG-3'; reverse, position c. 4469—4488, 5'-
GAGAGAAGGAGGCAAACTGG-3'). Cydling conditions were
identical to those of the three primer-PCR method. PCR products
were analyzed by electrophoresis on 2% agarose gels. Study
protocols were approved by the Ethical Committee of Peking
University.

Haplotype Analysis

The patient and his parents were genotyped with polymorphic
microsatellite markers cen-D95306-D952105-(FCMD)-D9S2170-
D952171-D952107-D9S172-tel, as described previously [Kobayashi

et al,, 1998b].

RESULTS

Hematyoxylin and eosin (H&E) staining of muscle biopsies
showed few muscle fibers and indicated a terminal dystrophic
stage. Dystrophic features were evident, including fiber size
variability, fibrosis, and fat replacement (Fig. 3). Immunohisto-
chemical analysis showed greatly reduced c.-dystroglycan staining
but normal sarcolemmal B-dystroglycan and merosin immunos-
taining (Fig. 3). We screened all fukutin exons and flanking introns
in the patient and his parents by polymerase chain reaction (PCR)
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FIG. 2. A—C:Brain MRI showed sporadic periventricular hyperintensity in a T2-weighted image, frontal lobe polymicrogyria; (D) cerebellar, brain stem
hypoplasia, and (E) cerebellar cyst. :

FIG. 3. Hematyoxylin and eosin staining of skeletal muscle showed dystrophic changes, including fiber size variability, fibrosis, and fat replacement
(a). Serial sections were immunostained with (b) anti-a-dystroglycan, (c) B-dystroglycan, and (d) merosin antlbndles [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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direct sequencing. We detected a paternally derived heterozygous
C-to-T transition at base 139 in exon 3 of the fukutin gene, resulting
in premature termination (c. 139C>T, p. R47X; Fig. 4A);
this mutation has been previously described [Kobayashi et al,
1998a). We next looked for additional mutations in the second
allele. We used a modified rapid PCR-based diagnostic method
[Watanabe et al., 2005] to indirectly confirm the presence of the
3-kb retrotransposal fukutin gene insertion. We used three
primers (LAT7ura, LAT7-2, and ins385—359) in one reaction
mixture to detect the normal and insertion alleles simultaneously,
and two other primers to detect flanking genomic sequences.
As expected, our results indicated that the patient had the
Japanese founder insertion. His mother was heterozygous for this
mutation (Fig. 4B). The family was then genotyped using poly-
morphic microsatellite markers cen-D95306-D952105-(FCMD)-
D9S2170-D952171-D952107-D9S172-tel, as described previously
[Kobayashi et al., 1998b]. The patient had the same two haplotypes
as Japanese patients; the paternally derived mutation had the 130-
201-157-183 haplotype and maternally derived mutation had the
138-192-147-183 haplotype [Kondo-lida et al., 1999]. Therefore,
the maternal chromosome containing the retrotransposon

was concordant with the founder haplotype represented as 138- .

192-147-183.
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DISCUSSION

The propositus was clinically diagnosed with congenital muscular
dystrophy based on neonatal hypotonia, muscle weakness, joint
contractures, high serum CK levels, and electromyogram abnor-
malities. Histopathology showed muscle wasting, fibrosis, and
evidence of o-dystroglycanopathy. Brain and eye involvement
suggested a congenital muscular dystrophy syndrome with central
nervous system dysplasia and ocular anomaly, all of which are
consistent with FCMD, muscle—eye—brain disease (MEB) and
Walker—Warburg syndrome (WWS). WWS patients have hydro-
cephalus and severe retinal and cerebellar malformations and
typically die earlier than FCMD or MEB patients [Beltrdn-Valero
de Bernabé et al., 2002]. We excluded WWS for diagnosis because
our patient’s clinical manifestations were milder than is typical for
WWS. Although FCMD is only relatively common among Japanese
people and there have been no reports describing Chinese FCMD
patients [Jong et al., 2000], after observing the patient’s mild eye
involvement, we decided to examine the fukutin gene.

FCMD is the second most common form of childhood muscular
dystrophy and one of the most common autosomal recessive dis-
orders in Japan. Specifically, 1 in 188 people carry the founder
insertion [Watanabe etal., 2005] and most Japanese FCMD cases are
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FIG. 4. Mutational analysis of the fukutin gene. Our patient was heterozygous for (A) a previously described c.139C>T point mutation and (B) a
founder 3-kbretrotransposal insertion in the 3’ UTR. B: PCR pedigree of the patient’s family, bearing the founder 3-kb retrotransposal insertion allele.
Lanes 1 (propositus) and 2 (his mother) showed 375 and 157 bp PCR products (upper) and a 382 bp PCR product (lower). The 375 and 382 bp bands
arose from the founder insertion. Lanes 3 (father) and 4 (normal control) showed only the non-insertion 157-bp PCR product (upper). [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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the result of founder mutations. The strikingly high FCMD preva-
lence among Japanese people appears to result from the initial
founder effect, which expanded in relative isolation. Most Japanese
FCMD-bearing chromosomes arose from a single ancestral
- Japanese founder approximately 2,000-2,500 years ago [Toda
et al, 1996; Kobayashi et al, 1998b]. Compound heterozygous
Japanese FCMD cases are rarer. In contrast to its relatively common
occurrence in the Japanese population, the 3-kb retrotransposal
insertion has never been reported in a Chinese individual. Moreover,
a large northeast Asian population study found that the founder
mutation was not detected in 766 mainland Chinese individuals,
demonstrating the rarity of this mutation in non-Japanese ethnic
groups. Instead, FCMD and related clinical syndromes (e.g., WWS$
and MEB) typically result from bi-allelic coding region point
mutations. Non-Japanese individuals who are homozygous for
truncating mutations in fukutin were reported to show more severe,
WWS-like phenotypes. In contrast, patients with compound het-
erozygous truncating mutations near the 3' terminus of the fukutin
coding region seemed to display milder phenotypes [Beltrin-Valero
de Bernabé et al., 2003; Silan et al., 2003; Godfrey etal., 2007; Manzini
et al., 2008].

Kondo-Tida et al. {1999] found a higher frequency of severe
phenotypes, including WWS-like manifestations such as hydro-
cephalus and microphthalmia, among compound heterozygous
propositi than among founder insertion homozygotes. In their
study, clinical FCMD was classified into three groups, according to
the patients’ maximum motor abilities: (a) typical—patients sat
unassisted or slid on the buttocks (levels 2—4); (b) mild—patients
could stand or walk with or without support (levels 5-8); and
(c) severe—patients were only able to sit with support or had no
head control (levels 0-1). Qur patient displays a typical FCMD
phenotype, according to Kondo-lida’s classification system.

Chromosomes carrying the founder insertion in the fukutin
3’ UTR may produce subnormal mature fukutin levels and generate
a relatively milder FCMD phenotype. Non-founder coding region
mutations lead to major structural changes in the fukutin
protein; thus, they are likely to produce more severe effects. The
most common point mutation reported among Japanese is c.
139C>T/p. R47X. Compound heterozygous Japanese patients car-
rying this mutation and the founder insertion showed severe FCMD
phenotypes, including significant hydrocephalus [Kondo-Iida et al.,
1999]. Our patient possesses the same fukutin mutations previously
described in these Japanese case studies, and we can definitively
diagnose our case as FCMD. However, his clinical phenotype is
milder than what has been described in Japanese patients carrying
identical compound heterozygous mutations. We posit that this
difference could be due to considerable variable expressivity or
phenotypic heterogeneity. The normal function of the fukutin gene
remains unknown. We have previously demonstrated that fukutin
forms a complex with O-linked mannose $1,2-N-acetylglucosami-
nyltransferase 1 (POMGnT1) and may modulate its enzymatic
activity [Xiong et al., 2006]. The loss-of-function mutations in the
gene encoding POMGnT!1 cause MEB [Yoshida et al., 2001]. It is
possible that our patient has slightly higher POMGnT1 enzymatic
activity than Japanese patients with the same mutations.

We further performed a haplotype analysis of the family and
found thatboth of the chromosomes of the propositus had the same

haplotypes as Japanese patients, the maternal chromosome con-
taining the retrotransposon was concordant with the founder
haplotype represented as 138-192-147-183, indicating that both
mutant alleles were derived from the same founder as Japanese
patients. We presume there may be more FCMD patients and
founder mutation carriers in China. This suggests that segments of
the Chinese and Japanese populations may have a recent common
ancestor. Here, we describe the first fukutin founder mutation in a
Chinese individual with no known Japanese ancestry. Using a rapid
diagnostic method, we identified the first founder insertion outside
of Japan. Our procedure is more rapid and convenient than
previously reported methods [Kato et al., 2004]. In addition to
the immediate diagnostic implications for the family, our findings
emphasize the importance of considering the fukutin founder
mutation for diagnostic purposes outside Japan.
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Post-translational Maturation of Dystroglycan Is Necessary
for Pikachurin Binding and Ribbon Synaptic Localization™
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Pikachurin, the most recently identified ligand of dystrogly-
can, plays a crucial role in the formation of the photoreceptor
ribbon synapse. It is known that glycosylation of dystroglycan is
necessary for its ligand binding activity, and hypoglycosylation is
associated with a group of muscular dystrophies that often involve
eye abnormalities. Because little is known about the interaction
between pikachurin and dystroglycan and its impact on molecular
pathogenesis, here we characterize the interaction using deletion
constructs and mouse models of muscular dystrophies with glyco-
sylation defects (Large™® and POMGnTI-deficient mice). Pika-
churin-dystroglycan binding is calcium-dependent and relatively
less sensitive to inhibition by heparin and high NaCl concentration,
as compared with other dystroglycan ligand proteins. Using dele-
tion constructs of the laminin globular domains in the pikachurin
C terminus, we show that a certain steric structure formed by the
second and the third laminin globular domains is necessary for the
pikachurin-dystroglycan interaction. Binding assays using dystro-
glycan deletion constructs and tissue samples from Large-deficient
(Large™) mice show that Large-dependent modification of dys-
troglycan is necessary for pikachurin binding. In addition, the
ability of pikachurin to bind to dystroglycan prepared from
POMGnTI-deficient mice is severely reduced, suggesting that
modification of the GlcNAc-$1,2-branch on O-mannose is also
necessary for the interaction. Immunofluorescence analysis
reveals a disruption of pikachurin localization in the photore-
ceptor ribbon synapse of these model animals. Together, our
data demonstrate that post-translational modification on
O-mannose, which is mediated by Large and POMGnT], is
essential for pikachurin binding and proper localization, and
suggest that their disruption underlies the molecular pathogen-
esis of eye abnormalities in a group of muscular dystrophies.
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Dystroglycan (DG),? a cell surface receptor for several extra-
cellular matrix proteins, plays important roles in various tissues
(1-7). DG consists of an extracellular, heavily glycosylated o
subunit (a-DG) and a transmembrane 8 subunit (8-DG). a-DG
and 3-DG are encoded by a single gene and post-translationally
cleaved to generate the two subunits. a-DG is a receptor for
extracellular proteins such as laminin-111, laminin-211, agrin,
perlecan, and neurexin. 8-DG binds to a-DG in the extracellu-
lar space, anchoring a-DG at the cell surface. Inside the cell,
B-DG binds to dystrophin, which in turn is linked to the actin -
cytoskeleton. Thus, a/B-DG functions as a molecular axis, con-
necting the extracellular matrix with the cytoskeleton across
the plasma membrane.

D@ ligand proteins commonly contain laminin globular (LG)
domains, which mediate binding to a-DG. O-Mannosylation of
a-DG is required for its interaction with ligands; however, the
precise ligand-binding sites and epitope are not known. A
unique O-mannosyl tetrasaccharide (Neu5Ac-a2,3-Gal-f1,
4-GlcNAc-f1,2-Man) was first identified on peripheral nerve
a-DG (8). The initial Man transfer to Ser/Thr residues on the
a-DG peptide backbone is catalyzed by the POMT1-POMT?2
complex (9). Both POMT1 and POMT2 were originally identi-
fied as responsible genes in Walker-Warburg syndrome (10,
11). POMGnT1, a causative gene for muscle-eye-brain disease,
encodes a glycosyltransferase that transfers GlcNAc to O-Man
on a-DG (12). Because mutations in these enzymes cause
abnormal glycosylation of a-DG and reduce its ligand binding
activity, it is recognized that the GlcNAc-B1,2-branch on
O-Man is essential to a-DG function as a matrix receptor.

Additional proteins, including fukutin, FKRP, and LARGE,
are also involved in synthesizing the glycans on a-DG that are
required for ligand binding activity. Recently, a GalNAc-B1,
3-GlcNAc-81,4-branch and a phosphodiester-linked modifica-
tion on O-Man were identified (13). a-DG from cells with
mutations in fukutin or Large shows defective post-phosphoryl
modification on O-Man, suggesting that this phosphoryl
branch serves a laminin-binding moiety. fukutin was originally
identified as the responsible gene for Fukuyama-type congeni-
tal muscular dystrophy (14), and the fukutin homologue FKRP
was identified through sequence homology (15). Mutation of

2 The abbreviations used are: DG, dystroglycan; ERG, electroretinogram; LG,
laminin globular.

ACEVEN

VOLUME 285 +NUMBER 41-OCTOBER 8,2010



