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different from the clinical symptoms of conventional
mitochondrial myopathy. Thus, based on the available
evidence, we believe that patients 1 and 2 can be diagnosed
with mitochondrial predominant axial myopathy.

Axial myopathy may occur secondary to various dis-
eases. However, only five cases of mitochondrial axial
myopathy associated with the prominent involvement of
the extensor muscles of the spine have been previously
reported (Table 2) [8, 11, 28, 30, 32]. All these cases
presented with abnormal trunk flexion that developed
during walking and disappeared when the patient was in a
supine position. In the cases described here, only patient 2
presented with camptocormia. These common symptoms,
including late-onset, mildly elevated serum CK levels,
ragged-red fibers, and the partial deficiency in COX
activities, were observed in patient 1 and also in the above
mentioned cases. However, biochemical analysis was per-
formed in only one case that showed deficiencies in
complexes I and III [32]. No case has been previously
reported that describes a family history of similar symp-
toms. In addition, no genetic cause of any mitochondrial
axial myopathy has been previously reported.

This study is unable to conclusively prove or disprove
the pathogenicity of the m.602C>T mutation. However,
three reasons that support the pathogenicity of this mutation
are apparent. First, the heteroplasmic m.602C>T point
mutation disrupts a conserved Watson—Crick cytosine—
guanine (C-G) base pairing within the D-stem of the
mitochondrial tRNAP® gene, which would most likely
affect the stability of the secondary structure of mitochon-
drial tRNA (Fig. 5b). Almost 94% of mitochondrial tRNA
pathogenic mutations occur in this stem structure, and the
disruption of Watson—Crick C-G base pairing is a signifi-
cantly more common feature of pathogenic mutations than
neutral variants [23]. Second, after performing a sequence
homology search using CLUSTALW (http:/clustalw.
ddbj.nig.ac.jp/top-j.html), it was determined that this base
pairing is largely conserved in other species as C-G
or adenine—thymine base pairings (Fig. 5c¢). Third, the

mutation is heteroplasmic and present in the affected skel-
etal muscles but not in the peripheral blood lymphocytes.
Almost all pathogenic mitochondrial tRNA mutations in
clinically affected tissues have a high proportion of het-
eroplasmy compared with unaffected tissues [23].

However, the decreased activities of complexes I and IV
that were observed during the biochemical examination
cannot be completely explained by the disruption in
mitochondrial protein synthesis that could have been
caused by the mitochondrial tRNA mutation. In addition,
data obtained from the single muscle fiber analyses were
limited due to the small sample size, and therefore, are not
sufficient to prove the pathogenicity of the m.602C>T
mutation.

Any additional evidence of the pathogenicity of the
cybrid cells was not obtained. Therefore, 10 points (out of a
maximum score of 20 points) was applied to the scoring
criteria of the mitochondrial tRNA mutations listed in
MITOMAP, which indicated that the m.602C>T mutation
is possibly pathogenic [23].

The mechanism of late-onset axial myopathy induced by
mitochondrial dysfunction is unclear. Nine pathogenic
mutations in the mitochondrial tRNAF™ gene have been
previously described in various diseases (Fig. 5b), includ-
ing a late-onset neuromuscular disease but not axial
myopathy [7, 9, 12, 14, 17, 18, 22, 25, 34, 35]. A probable
etiological mechanism for the presentation of such a
myopathy in the elderly is the accumulation of mitochon-
drial tRNA pathogenic mutations that affect aging tissues
[9]. If it is possible to get any information on the patho-
logical status of the primarily affected muscles, this would
perhaps be as informative as the differential involvement of
the biceps and paraspinal muscles. Unfortunately, these
data could not be obtained due to the remarkable fatty
degeneration of the paraspinal muscles.

The patients described in this report are characterized by
the combination of axial myopathy and CNS involvement.
One report about a parkinsonian patient with mitochondrial
axial myopathy suggested that mitochondrial dysfunction

Table 2 Clinical characteristics of patients with paraspinal muscle atrophy from mitochondrial myopathy

Age/sex [Ref.] Onset age Family history CK (Iumn) RRF COX deficiency mtDNA mutation Neurological deficit
73/F [patient 1] 63 + 290 + + 602C>T Cerebellar ataxia
84/F [patient 2] 60 + 474 NE NE NE Encephalopathy
65/M [32] 59 - 245 + + NR -

65/M [30] 62 NR NR + + NR Parkinsonism

78/M [11] 78 NR 501 + + NR -

64/M [28] NR NR Elevated + + NR -

55/M [8] NR NR Normal + + NR -

M male, F female, CK creatine kinase, RRF ragged-red fiber, NR not reported, NE not evaluated, COX cytochrome ¢ oxidase, mtDNA

mitochondrial DNA, Ref reference
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may lead to both axial myopathy and parkinsonism [30]. In
the patients described here, CNS involvement was similar
to that observed in myoclonus epilepsy with ragged-red
fiber (MERRF) due to the accompanying cerebellar atro-
phy and epilepsy. In fact, MERRF has been previously
reported to be associated with pathogenic mutations of the
mitochondrial tRNA™™ gene [22].

Finally, mitochondrial dysfunction might be implicated
in the development of Hashimoto thyroiditis in patients 1
and 2 and in the fourth son of patient 2; the relationship
between mitochondrial diseases and Hashimoto thyroiditis
has been previously described [3, 20, 26, 27].

In summary, this is the first report about familial mito-
chondrial disease with late-onset predominant axial
myopathy and encephalopathy, which were confirmed by
clinical and histological findings. This case expands the
phenotypic spectrum of mitochondrial diseases. Future
studies on the novel mitochondrial tRNAT™ 602C>T
mutation may contribute to the understanding of late-onset
predominant axial myopathy and encephalopathy.
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Abstract

To characterize the morphological progression of neuropathy asso-
ciated with immunoglobulin M~monoclonal gammopathy of undeter-
mined significance with anti-myelin-associated glycoprotein antibody,
we assessed histopathologic features of sural nerve specimens from
__ 15 patients, emphasizing widely spaced myelin (WSM), demyelin-

" ation, and tomaculous changes. The frequency of WSM correlated
with that of demyelination and tomaculous appearance in teased-fiber
preparations. In longitudinal sections at nodes of Ranvier and para-
nodal regions, the spaces between terniinal myelin loops, particularly
those adjacent to the node of Ranvier, were widened, indicating an
early change before demyelination, and there was concomitant swell-
ing of tenminal myelin loops. Some conspicuously swollen terminal
myelin loops were detached from the paranodal axolemma, thereby
widening the nodes of Ranvier. Tomacula coexisted frequently with
redundant myelin loops and WSM, particularly in the outermost layer
of myelin sheaths, suggesting that loosening of the outer layers con-
tributes to their formation. By immunofluorescence microscopy,
immunoglobulin M and myelin-associated glycoprotein were colo-
calized in paranodal regions and Schmidt-Lanterman incisures. Con-
focal analysis revealed colocalization of immunoglobulin M and
complement product C3d corresponding to the area of WSM. Thus,
morphological changes in terminal myelin loops, formation of WSM
at paranodes, and subsequent dissociation from paranodal axolemma
(which may be assaciated with activation of the complement pathway)
likely contribute to demyelination in this condition. Loosening of
compact myelin seems to contribute to tomacula formation.

Key Words: Anti-MAG antibody, IsM monoclonal gammopathy of
undetermined significance, Neuropathy, Widely spaced myelin.

INTRODUCTION
Polyneuropathy associated with immunoglobulin M
(IgM) monoclonal gammopathy of undetermined significance
(MGUS) with anti-myelin-associated glycoprotein (MAG) anti-
body is characterized by late age of onset, slow progression, and
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sensory-motor symptoms, particularly sensory ataxia caused
by predominant impairment of large myelinated nerve fibers
(1-6). In a recent study, anti-MAG antibody was found in ap-
proximately 70% of patients with neuropathy-associated IgM
monoclonal gammopathy (7). Much of the MAG molecule is
exposed on the membrane surface and would, therefore, be an

__.accessible antigen. A pathogenetic role for anti-MAG antibody in.

this neuropathy has been indicated in several studies (8-14).

Pathological studies of IgM-MGUS anti-MAG neuro-
pathy have demonstrated the presence of IgM antibody de-
posits at sites of MAG localization with loss of myelinated
fibers, and teased-fiber preparations have demonstrated seg-
menta] demyelination, tomaculous appearance, and axonal de-
generation (3, 8, 15-20). Ultrastructural studies have shown
that widely spaced myelin (WSM), in which the distance be-
tween intraperiod lines is increased, is a nearly specific find-
ing in this condition (11, 21-25). However, it is still unclear
whether WSM is caused by the deposition of IgM antibody and
how WSM relates to the onset of demyelination or tomacula.
Furthermore, the morphological changes that occur during de-
myelination in this neuropathy, particularly where demyelin-
ation begins, what the earliest change is, and how demyelination
may affect axonal structure are not known.

This study demonstrated morphological features of demy-
elination that are unique to IgM-MGUS anti-MAG neuropathy,
focusing in particular on the correlation between WSM and
the process of myelin alterations, including demyelination and
tornaculous formation.

MATERIALS AND METHODS

Patients

Fifteen patients with anti-MAG neuropathy who were
referred to the Department of Neurology of Nagoya Uni-
versity Hospital and who underwent sural nerve biopsy from
1996 to 2008 were investigated. We excluded patients who had
evidence of a hematologic malignancy (multiple myeloma,
Waldenstrom macroglobulinemia, lymphoma, or amyloidosis)
or other diseases that may have contributed to their neurop-
athy. Determination of MAG autoantibody titer was performed
by ELISA using purified human MAG antigen (Athena Diag-
nostics, Worcester, MA). Confirmation of all positive MAG
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ELISA tests was performed by Western blot analysis (15, 26).
All patients underwent a full neurological evaluation, routine
blood and urine studies, cranial magnetic resonance imaging
or computed tomography, and nerve conduction studies. The
clinical features and laboratory data are summarized in Table 1.

Pathological Assessment of Sural Nerve
Biopsy Specimens

Sural nerve biopsy was performed before the initiation
of treatment in all patients, as previously described (27-29).
Specimens were divided into 2 portions. The first was fixed
in 2.5% glutaraldehyde in 0.125 mol/L cacodylate buffer
(pH 7.4) and embedded in epoxy resin. for morphometric and
ultrastructural studies. The density of myelinated fibers was
assessed in toluidine blue-stained semithin sections using a
computer-assisted image analyzer (Luzex FS; Nikon, Tokyo,
Japan). The densities of small and large myelinated fibers were
calculated as previously described (27, 28). The remainder of
the glutaraldehyde-fixed sample was processed for the teased-
fiber study, in which at least 200 single fibers were isolated
and analyzed as described (27, 30). The second portion of each
specimen was fixed in 10% formalin and embedded in paraf-
fin. Sections were cut by routine- methods and stained with
hematoxylin and eosin, Congo red, the Klitver-Barrera method,
and the Masson trichrome method.

For electron microscopy (EM), epoxy resin—embedded
specimens were cut into 70-nm ultrathin transverse and longi-
tudinal sections. Ultrathin sections were contrasted by staining
with uranyl acetate and lead citrate. Sections were viewed with
a transmission electron microscope (H-7100; Hitachi). To assess
the density of unmyelinated fibers, random EM photographs
were taken at a magnification of 4,000x to cover the area of
the ultrathin sections, as previously described (27, 28, 31).
Fibers with WSM and structures of paranodal regions and
Schmidt-Lanterman incisures in longitudinal sections were
confirmed in more highly magnified photographs.

TABLE 1. Patient Characteristics
Apge at examination, years
Age at onset, years

68.4 £ 7.4 (59-83)
65.8 7.1 (56-82)

Sex (male/female), no. 12/3

Amount of IgM, mg/dL 697 + 440 (244-1,794)
Light-chain kappa/lambda 1372

CSF protein 136 + 108 (55-381)

Nerve conduction study (mean)
MCV, my/s; DL, ms; CMAP, mV

Median nerve 39.2,9.1,6.1(57.6,34,10.7)

Tibial nerve 29.0, 12.5, 2.2 (46.9, 4.5, 10.9)
SCV, m/s; SNAP, nV

Median nerve 29.4,3.6(57.8,23.5)

Sural nerve 37.0,0.75(51.0,11.5)

Values are expressed as the number of patients, mean, or mean + SD with the
indicated ranges. Control values were obtained from 171 noimal subjects and based on
previously published reports.

CMAP, compound muscle action potential; CSF, cerebrospinal fluid; DL, distat
latency; MCV, motor nerve conduction velocity: SCV, sensory nerve conduction
velocity; SNAP, sensory nerve action potential.
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Because the endoneurial area is often enlarged in patients
with anti-MAG neuropathy, we evaluated the total number of
sural nerve fibers as well as their densities (32). The total en-
doneurial area was assessed using an image analyzer (Luzex
FS) when complete transverse sections of the sural nerve were
obtained. To determine the total population per sural nerve
cross section, the density was multiplied by the total endo-
neurial area from which the subperineurial space was sub-
tracted. We obtained complete transverse sections of the sural
nerve in 10 of the 15 patients and analyzed the total population
per cross section in these patients,

Control samples were obtained from 5 age-matched
patients who had no neurological diseases (4 men and 1
wornan; age range, 66-76 years; mean * SD, 72.4 £ 4.2 years).
Specimens were processed in the same mamner as for the
patients with anti-MAG neuropathy.

Widely Spaced Myelin

Widely spaced myelin is defined as an increase in the
distance separating the intraperiod line. The criteria for WSM
are one or more wraps of myelin with a regularly separated
intraperiod line and an intact major dense line occurring at the
outer or inner aspect of the myelin sheath or throughout its
thickness, Uncompacted myelin, which separates major dense
lines with or without separation of the intraperiod line, was
excluded (33). At least 300 fibers were assessed to determine
the frequency of WSM in the myelinated fibers.

Assessment of Neurofilaments

To evaluate the axonal cytoskeleton of myelinated fibers,
we measured the number of neurofilaments across the axon in
longitudinal sections. Using EM photographs at a magnifica-
tion of 50,000, neurofilaments were counted in 1-pm widths
that vertically intersected the axon. To verify the regional dif-
ferences in neurofilament density, we assessed the intemode,
juxtaparanode, and paranode. At least 10 axons in each of these
3 regions were examined to calculate the mean number of neu-
rofilaments in every case.

Immunostaining

Serial 7-jum-thick transverse and longitudinal cryostat
sections from fresh-frozen tissue of nerve biopsy samples were
incubated with the following antibodies: goat affinity-purified
antibody to human IgM (5Fc p) (1:1000; ICN/Cappel, Aurora,
OH), rabbit polyclonal anti-MAG antibody (1:100; Santa Cruz
Biotechnology, Santa Cruz, CA), rabbit polyclenal antibody to
complement product C3d (1:400; Abcam, Cambridge, MA), or
mouse anti~C5b-9 antibody (anti-terminal complement com-
plex [anti-TCC], 1:200; Dako, Carpinteria, CA), followed by
Alexa Fluor donkey anti-goat 1gG (H + L, 1:1000), Alexa
Fluor goat anti-rabbit IgG (H + L, 1:1000), or Alexa Fluor
goat anti-mouse IgG (H + L, 1:1000). The stained sections
were examined and photographed with a confocal laser scan-
ning microscope (. radiance BIORAD, Nikon, Tokyo, Japan).

Statistical Analyses

Quantitative patient data (mean * SD) were compared with
control values. Statistical analyses were performed using the
Mann-Whitney U test, Pearson correlation coefficient analysis,
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FIGURE 1. Sural nerve specimens from patients with anti-myelin-associated glycoprotein neuropathy. (A) Transverse section shows
large myelinated fibers that are markedly reduced in number compared with small myelinated fibers; some fibers show axonal
atrophy and focal myelin thickening (arrows). (B) Teased-fiber preparation shows segmental demyelination with tomaculous ap-
pearances (arrowheads) in both intermodal and paranodal regions and axonal degeneration. Fibers undergoing degeneration and
remyelination are evident in the lowest section. (C) Electron micrograph of a transverse section. Unmyelinated nerve fibers are well
preserved. There is a fiber with tomaculous appearance and axonal atrophy (arrow), axonal degeneration (white-filled arrow), and
widely spaced myelin (arrowhead). Scale bars = (A) 20 um; (€) 5 um.

© 2010 American Association of Neuropathologists, Inc. 1145
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and Spearman regression analysis, as appropriate. Values of
p < 0.05 were considered significant.

RESULTS
Light Microscopy

In semithin cross sections, myelinated fibers in IgM-
MGUS anti-MAG neuropathy biopsies were decreased versus
controls. Myelin sheaths often seemed inappropriately thick
for the size of the axon (Fig. 1A). The total myelinated fiber
densities were reduced by varying degrees (1,422-5,703 fibers/
mm?), especially in large myelinated nerve fibers (39% of the
control mean of large fibers and 61% of the control mean of
small fibers) (Table 2). In teased-fiber preparations, segmental
demyelination/remyelination, tomaculous appearance, and ax-
onal degeneration coexisted (Fig. 1B). The frequency of seg-
mental demyelination/remyelination in the teased-fiber study
was high (26.8% * 9.9%), and axcnal degeneration was also
frequently seen (7.5% + 4.1%) (Table 2). Tomacula, defined as
myelin thickenings of more than 50% of the fiber diameter
(34), and myelin irregularity were conspicuous. The frequency
of fibers with tomacula was high in all patients (Table 2).
Vasculitis, inflammation, and amyloid deposition in the.endo-
neurium were not detected.

Electron Microscopy

Transverse Sections
There were many demyelinating axons and remyelin-
ating fibers with very thin myelin sheaths. Widely spaced

TABLE 2. Pathological Features in Patients With
Anti-Myelin-Associated Glycoprotein Neuropathy

Anti-MAG
Neuropathy Control
n =15) @=5)
Mean £ SD Mean = SD p*
Myelinated fiber density, no./mm?
Total 3,601 + 1,109 7,175 £1,227  <0.005
Large 846 + 468 2,426 + 468 <0.005
Small 2,755 + 860 4,749 + 872 <0.01
Total no. of myelinated fibers, no./nerve :
Total 4,122 £1,615 7,481 £1,359  <0.005
Large 947 £ 541 2,422 £460  <0.005
Small 3,175+ 1,218  5,059+1,038 <0.05

Unmyelinated fiber 26,077 £2,507 30,468 + 3,472 NS

density, no./mm’
Total no. of unmyelinated
fibers, no./nerve

Teased-fiber preparation, % of fibers with

29,915 +4.379 31,647 3,109 NS

Segmental demyelination/ 26.8+99 124 +48 <0.01
remyelination

Axonal degeneration 73145 37+1.8 <0.05

Tomaculous appearance 159+ 198 0 —

Control values (mean + SD) are based on previously published reports.
*Determined using the Mann-Whitney U test.
MAG, myelin-associated glycoprotein; NS, not significant.
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myelin and tomaculous appearance with axonal atrophy were
also frequent (Fig. 1C). Widely spaced myelin was observed
in all patients and was preferentially located in the outer layers
of the myelin sheath (Fig. 2A), whereas in some fibers, WSM
involved the entire thickness of the myelin. Tomaculous ap-
pearance with redundant myelin loops and WSM frequently
coexisted (Fig. 2B). Although the typical appearance of WSM
consisted of several consecutive layers of separated intraperiod
lines, separation of only the outermost layer with otherwise
normal-appearing myelin was also found (Figs. 2C, D). There
were redundant myelin loops with tomaculous appearance
consisting of infolding (Fig. 2E) and outfolding (Fig. 2G).
When the separation of only the outermost layer was consid-
ered, almost all redundant myelin loops were associated with
WSM. Almost all fibers with tomaculous appearance also had
WSM of only the outermost or a few outer layers (Figs. 2F, H).

The frequency of WSM in myelinated fibers varied
from case to case (2.6%-46.8%, 12.5% + 14.1%; Table 3) and
was positively correlated with the frequency of demyelination
and tomacula in the teased-fiber study (p < 0.01, » = 0.46 and
p < 0.01, r = 0.52, respectively) and negatively correlated
with the total myelinated fiber density (p < 0.01, » = —0.43)
(Fig. 3). However, there was no correlation between the fre-

" quency of WSM and axonal “degenefation in teased-fiber

preparations.

In contrast to myelinated fibers, the unmyelinated fiber
density was well preserved (Fig. 1C; Table 2). On the entire
transverse section of the sural nerve, the number of unmye-
linated fibers was almost the same as the normal control value
(Table 2). Ballooning of axons, accumulation of specific
organelles, and other morphological abnormalities suggesting
damage to unmyelinated axons were not apparent in any case.

Longitudinal Sections

As in the transverse sections, WSM was found prefer-
entially in the outer layers of the myelin sheath. In paranodal
regions, spaces between terminal myelin loops, especially
those adjacent to the node of Ranvier, were widened compared
with normal myelinated fibers (Figs. 4A, B). This widening of
the spaces between terminal myelin loops seemed to continue
to juxtaparanodal regions (Fig. 4B). Progression of these mor-
phological changes, especially adjacent to the node of Ranvier,
seemed to lead to WSM in paranodal regions (Fig. 4C). Con-
comitant with this finding, some of the terminal myelin loops,
especially those adjacent to the node of Ranvier, were swollen
(Fig. 4D). Some swollen terminal myelin loops were detached
from the paranodal axolemma and were in juxtaparanodal
regions; these loops seemed to be retracted from the paranodal
regions (Figs. 5A, B). This seemed to progress to widening of
the node of Ranvier (i.e. demyelination) (Figs. 6A, B). Para-
nodal WSM, swelling of terminal myelin loops, and detach-
ment between the terminal myelin loops and the paranodal
axolemma were found in many cases (Table 3), and their fre-
quencies seemed to correlate with the frequency of WSM in
transverse sections (p < 0.01, p < 0.05, and p < 0.05, respec-
tively). The frequency of WSM in the transverse sections also
positively correlated with anti-MAG titers (p < 0.01) (Fig. 7).
The degrees of pathological abnormalities in longitudinal sec-
tions (i.e. paranodal WSM, swelling of terminal myelin loops,
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FIGURE 2. Electron micrographs of a transverse section. (A) Widely spaced myelin (WSM) in some outer lamellae of the myelin sheath.
(B) Redundant myelin loops and WSM (arrowheads) in the outer layers. (C) Fibers with WSM in the outermost layer of the myelin
sheath. (D) High-power micrograph of the boxed area in (€) shows WSM in the outermost layer in continuity with the outer mesaxon
(arrowheads). (E, G) Redundant myelin loops with myelin infolding (E) and outfolding (G); these features likely correspond to the
tomacula seen in teased-fiber preparations. (F, H) High-power micrographs of the boxed areas in (E) and (G), respectively, show
WSM in the outermost or some outer layers (arrows). Scale bars = (A-E) 1 um; (F) 0.1 um; (G) 1 pm; (H) 0.1 pm.
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TABLE 3. Pathological and Serological Data in Patients With Anti-Myelin-Associated Glycoprotein Neuropathy

MAG Antigen Analysis Cross Sections Leongitudinal Sections

Serum Total Detachment
Case  IgM, Western MF Density, No. UMF, Frequency Swelling Paranodal Between TML SLIWith Tomacula
No. mg/dL ELISA Titer  Blot no./mm? no/nerve of WSM, % of TML  WSM and PA WSM  With WSM
1 379 51,200 + 2,978 28,463 9.2 ++ + ++ ++ +++
2 1,794 102,400 + 1,422 — 253 +H+ +H 4++ - T
3 447 1,600 + 5,528 28,087 28 + + 0 + +
4 524 1,600 + 5,030 34,000 26 + + 0 + +
5 1,090 51,200 + 3,504 32,029 4.7 ++ ++ + + +
6 1,125 3,200 + 5,426 25,091 34 + + 0 + +
7 244 6,400 + 2,124 — 46.8 ++ ++ + + +++
8 ND 1,600 + 4,306 21,886 3.0 + + 0 + +
9 312 1,600 + 4,162 35,656 3.2 + + + ++ +
10 253 1,600 + 5,703 34,183 2.7 + + 0 + +
11 653 1,600 + 3,198 — 10.9 + + + + +
12 576 12,800 + 2,213 27,997 19.1 + + ++ +++ +
i3 437 6,400 + 3,614 — 13.5 ++ + + + ++
14 1,030 409,600 + 3,465 31,775 38.5 +H+ +++ ++ +++ ++
15 890 6,400 + 3,443 — 37 + + 0 + +

Lesions in nerve fibers in longitdinal sections were graded: +++ = many typical lesions; ++ = moderate number of typical lesions; + = few typical lesions; 0 = no lesions.
MAG, myelin-associated glycoprotein; MF, myelinated fiber; ND, not determined; PA, p dal axol SLI, Schmidt-Lar incisure; TML, teyminal myelin loops;
UMF, unmyelinated fiber; WSM, widely spaced myelin. .. PO L
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FIGURE 3. Correlations between the frequency of widely spaced myelin (WSM) and teased-fiber appearances. {A-D) Bold lines
represent regression lines. The frequencies of demyelination (A), tomacula (B), and decreases in total myelinated fibers (D) show
a positive correlation with WSM. There is no correlation between axonal degeneration and the frequency of WSM (C). NS, not
significant.
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FIGURE 4. Electron micrographs of longitudinal sections in the paranodal region of nerve biopsy specimens from a normal control
(A) and from patients with anti-myelin-associated glycoprotein neuropathy (B-D). (B) There is widening of spaces between
terminal myelin loops (arrows) that continues to the juxtaparanodal region and widely spaced myelin (WSM) in the outermost
lamellae (arrowhead). (C) As in (B), there is widening of spaces between terminal myelin loops (arrows); some outer terminal
myelin loops are slightly swollen, and there is WSM in some outer layers (arrowheads). (D) High-power detail of terminal myelin
loops adjacent to the node of Ranvier. Spaces between terminal myelin loops are widened, and outer terminal myelin loops seem

swollen (arrowheads). Scale bars = (A-C) 0.5 pm; (D) 0.1 pm.
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FIGURE 5. Longitudinal section from another node from a case of anti-myelin-associated glycoprotein neuropathy. (A) Electron
micrograph shows detachment between outer terminal myelin loops and paranodal axolemma. Widely spaced myelin (WSM) is in
continuity from the paranodal region. (B) Detail of the boxed area in (A) shows that outer terminal myelin loops with WSM retract

from the paranodal region. Scale bars = (A) 0.5 um; (B) 0.1 pm.
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FIGURE 6. Longitudinal section from a case of anti-myelin-associated glycoprotein neuropathy. (A) Electron micrograph shows
extensive demyelination. (B) Detail of the boxed area in (A) shows 2 terminal myelin loops that are dissociated from the paranodal

axolemma (arrows). Scale bars = (A) 1 um; (B) 0.5 um.
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FIGURE 7. Correlation between anti-myelin-associated glyco-
protein (MAG) titers and frequency of widely spaced myelin
(WSM) in transverse sections. The frequency of WSM in trans-
verse sections is positively correlated with anti-MAG titers
(p <0.01, Spearman rank correlation analysis).

and tomacula with WSM) were also correlated with anti-MAG
titers (p < 0.05, p < 0.005, and p < 0.05, respectively). On the
other hand, serum IgM levels did not correlate with either anti-
MAG titers or pathological indices (Table 3). In addition to
the association of paranodal terminal myelin loops with WSM,
Schmidt-Lanterman incisures with WSM were also frequently
observed (Figs. 8A, B; Table 3), but demyelination was not
observed in these areas.

Tomacula were observed in both paranodal and inter-
nodal regions on longitudinal sections in all cases (Figs. 9A, B;
Table 3). As in the transverse sections, almost all fibers with
tomacula had WSM, especially in the outer layers of the myelin
sheath (Figs. 9C, D). Large tomacula with complex redundant
myelin loops in juxtaparanodal regions were also associated
with widening of the node of Ranvier (i.e. demyelination).

Neurofilament densities in the axons in longitudinal sec-
tions were significantly greater in neuropathy versus normal
control biopsies (number of filaments per micrometer, 13.9 +
3.2 vs 9.8 £ 3.4 for paranode, p < 0.01; 12.7+2.2vs 9.0 £ 1.9
for juxtaparanode, p < 0.05; 10.2 £ 1.5 vs 7.5 + 1.4 for inter-
node, p < 0.05) (Fig..10A). The increase in neurofilament den-
sity was most prominent in paranodal regions (Figs. 10A—C).

& o3 Su &

‘,- o, G s e

FIGURE 8. Electron micrographs of longitudinal sections of Schmidt-Lanterman incisures in specimens from a normal control (A)

and anti-myelin-associated glycoprotein neuropathy (B). Widely spaced myelin is in continuity with Schmidt-Lanterman incisures.

Scale bars = 0.5 um.
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FIGURE 9. Electron micrograph of a longitudinal section at the paranodal and internodal regions showing tomaculous appearances.

(A, B) Tomacula are observed in both paranodal (A) and intermodal regions (B). (C, D) High-power details of the boxed areas in (A)
and (B) show widely spaced myelin in the outermost or some outer layers (arrowheads). Scale bars = (A, B) 1 pm; (C, D) 0.5 pm.

Immunofluorescence Staining

Indirect immunofluorescence was performed on cross
sections and longitudinal sections in all cases. In cross sections,
the MAG staining pattern was ringlike, corresponding to the
periaxonal membrane, or double-line rings, corresponding to
both the periaxonal membrane and Schmidt-Lanterman inci-
sures. The IgM antibody deposits were present on both large
and small myelinated nerve fibers (Fig. 11A). They appeared
as either a thin line at the periphery of myelinated fibers or
rings in the inner layer of the myelin sheath, corresponding to
Schmidt-Lanterman incisures. In longitudinal sections, IgM de-
posits were continuous along the outermost layer of the myelin
sheath and were concentrated at both paranodal regions and
Schmidt-Lanterman incisures (Fig. 11B). These areas were con-
sistent with those that showed WSM. No IgM deposit was seen
on the periaxonal membrane on longitudinal sections. Immuno-
globulin M and MAG were colocalized in paranodal regions and
Schmidt-Lanterman incisures. Confocal microscopic analysis
revealed colocalization of IgM and C3d (Figs. 11C-E), although
C5b-9 (anti-TCC) was not observed on the myelin sheath.

1152

DISCUSSION

Characteristic morphological changes in anti-MAG neu-
ropathy include WSM, demyelination, axonal atrophy, and to-
maculous appearance of myelinated fibers (15, 19, 20, 22, 23),
and were found in all cases in our series. The pathogenic role
of anti-MAG antibodies in this neuropathy has been inves-
tigated with passive immunization or systemic transfusion of
anti-MAG IgM antibody into animals and was shown to cause
WSM and myelin destruction (11, 35, 36). Immunoelectron
microscopy demonstrated the selective presence of monoclo-
nal IgM at the sites of myelin widening in patients with IgM
monoclonal anti-MAG neuropathy (24). Thus, WSM is con-
sidered to be caused by direct binding of IgM to the myelin
membrane, leading to abnormal myelin spacing (21, 37). How-
ever, it is still unclear how WSM develops morphologically and
how its development correlates with the other characteristic
findings in anti-MAG neuropathy. In this study, we demon-
strated (@) a positive correlation between the frequency of
WSM and demyelination and tomacula and the degree of
reduction of myelinated fibers, (b) close association of WSM
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with anti-myelin-associated glycoprotein (MAG) neuropathy versus normal controls. (B, C) Electron micrographs of longitudinal

sections of the paranodal region. The neurofilaments
normal control (B). Scale bars = (B, €) 0.2 pm.

with redundant myelin loops with tomaculous appearance, (c)
widening of the spaces between terminal myelin loops accom-
panied by their swelling as an early morphological change be-
fore demyelination, (4) the highest neurofilament density at
paranodal regions, and () coincidence of areas with WSM and
IgM deposition.

Our EM studies of longitudinal sections demonstrated
that WSM developed in relation to the node of Ranvier, the
outer layer of the myelin sheath, and Schinidt-Lanterman in-
cisures. Immunofiuorescence studies demonstrated positive
staining of anti-IgM antibody in these areas. Previous studies
have also reported that MAG is located on noncompact mye-
lin such as paranodal loops and Schmidt-Lanterman incisures
(38-40). The MAG plays arole in adhesion between Schwann
cell membranes in paranodal regions and Schmidt-Lanterman

© 2010 American Association of Neuropathologists, Inc.

(arrowheads) in anti-MAG neuropathy (C) are denser than those in the

incisures; thus, dysfunction of the adhesive properties of
MAG may lead to the unique morphological changes seen at
those sites (41). In this context, the widening of the spaces
between terminal myelin loops we observed may be one of the
earliest changes that occur at the paranodal region. This wid-
ening may cause formation of WSM at paranodal regions and
eventually lead to impairment of adhesion between myelin ter-
minals and paranodal axolemma. Detachment of swollen ter-
minal myelin loops from the paranodal axolemma may occur
when widening occurs in the space between terminal myelin
loops, and these morphological changes may be associated
with demyelination at the node of Ranvier (Figs. 12A-E).
The detachment may be further accelerated by loosening of
myelin sheaths caused by WSM in the outer layer of the myelin
sheath. Detachment of outer layers may enhance the retraction
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FIGURE 11. Immunofluorescence with anti-lgMiantibody (green) on cross sections (A) and longitudinal sections (B) in anti-

myelin-associated glycoprotein neuropathy. Immune reaction with the anti-igM antibody is concentrated both in paranodal
regions (arrows) and Schmidt-Lanterman incisures (arrowheads). Immunoglobulin M is also seen along the outermost layer of the
myelin sheath. (C-E) Confocal microscopy reveals colocalization (yellow) in the merged image (E) of IgM (green) (€) and C3d

(red) (D). Scale bars = (A, B) 10 um; (C-E) 3 um.

of terminal myelin loops and lead to the widening of the node
of Ranvier and subsequent demyelination. These observations
were strongly supported by our immunohistochemical study and
the correlation between the frequency of WSM and demyelin-
ation in teased fibers (Fig. 3). Furthermore, serum anti-MAG
antibody titers were clearly correlated with the frequency of
WSM in transverse sections and early pathological changes at
the node of Ranvier. Together, our observations strongly suggest
that anti-MAG antibodies induce WSM, other myelin changes,
and subsequent demyelination and tomaculous formation,

In teased fibers and by EM, almost all tomacula with re-
dundant myelin loops were accompanied by WSM. Because
tomacula were found in both paranodal and internodal regions,
loosening of myelin sheaths caused by WSM in the outer layer
of the myelin sheath may be important in the formation of
tomacula.

We confirmed the coexistence of both IgM and the com-
plement component C3d, in paranodal regions and Schmidt-
Lanterman incisures, as previously reported (42—-45). Previous
studies have suggested that the complement pathway, includ-
ing the TCC, is the effector of myelin changes in neuropathy
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associated with IgM monoclonal gammopathy (43) and ex-
perimental autoimmune neuritis (46). However, another study
suggested that TCC may not be required for the breakdown of
myelin components, or that the mechanism of IgM penetration
into myelinated fibers through destruction of the basement
membrane may not be mediated by TCC (45). We did not ob-
serve the TCC on myelin sheaths and, because of the slow
progression in anti-MAG neuropathy that evolves during many
years, the role of the complement pathway in anti-MAG neu-
ropathy may be different from that in acute inflammatory de-
myelinating neuropathies in which TCC actively participates.
Although active involvement of the complement pathway in
the pathogenesis of anti-MAG neuropathy is still unclear, our
finding that deposits of IgM and C3d were colocalized in the
paranodal region suggests that the IgM antibody might injure
myelin through activation of the complement pathway. Further
investigation, including immunoelectron microscopy, may clar-
ify the relationship between myelin alterations and the involve-
ment of the complement pathway (24, 25, 47, 48).

In addition to paranodal loops and Schmidt-Lanterman
incisures, MAG 1is also located on periaxonal membranes
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FIGURE 12. Schematic representation of the progression of demyelination in anti-myelin-associated glycoprotein neuropathy. (A)
Relationship between myelin terminals and paranodal axolemma in longitudinal sections of normal myelinated fibers. (B) Wid-
ening of spaces between myelin terminals. (C) Progression of the widening of spaces between terminal myelin loops with con-
spicuous swelling constitutes widely spaced myelin (WSM). (D) Some of these terminal myelin loops with conspicuous swelling are
detached from the paranodal axolemma (E). Detachment may be further accelerated by the loosening of myelin sheaths caused by
WSM, leading to widening of the node of Ranvier.
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(38-40). The MAG in the periaxonal membrane plays a role
in axon-Schwann cell signaling; the axon caliber of myelin-
ated fibers in MAG-deficient mice is reduced because of de-
creased neurofilament phosphorylation (49-52). Consequently,
dysfunction of MAG on the periaxonal side leads to an in-
crease in neurofilament density and axonal atrophy, resulting
in myelin collapse. However, we did not observe immuno-
staining for IgM or C3d in the periaxonal membrane, although
MAG was located at that site. This finding might be caused by
inaccessibility of the IgM antibody to the periaxonal mem-
brane. We found that the nenrofilament density was signifi-
cantly increased in paranodes, juxtaparanodes, and internodes
in anti-MAG neuropathy, with the highest density in the para-
node, This suggests that axonal damage may be most severe
in this region, and that axonal damage is initiated in para-
nodal regions where the initial stages of demyelination occur.
Therefore, demyelination caused by detachment of terminal
myelin loops from paranodal axolemma may be the primary
cause of axonal atrophy and subsequent axonal damage in this
neuropathy. Although the presence of MAG in unmyelinated
fibers was not assessed, the preservation of unmyelinated fi-
bers (in contrast to myelinated fibers) supports the view that
demyelination is the primary cause of axonal damage in this
neuropathy.

In swunmary, we demonstrated the close relationship
between WSM and demyelination and tomacula. We suggest
that the pathology occurring in myelin terminals in paranodal
regions, which may be caused by activation of the complement
pathway, results in extensive demyelination and subsequent
axonal damage in anti-MAG neuropathy.
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ABSTRACT: We report a patient with anti-myelin-associated
glycoprotein (MAG) neuropathy, predominantly exhibiting severe
motor symptoms, accompanied by extensive muscle atrophy
mimicking Charcot-Marie—Tooth disease. Nerve conduction
studies revealed mild retardation of motor conduction velocities
and significant prolongation of distal latency. Sural nerve biopsy
revealed widely spaced myelin and positive staining of myelin-
ated fibers with an IgM antibody. Predominant motor symptoms
with muscle atrophy can be one of the clinical manifestations of
anti-MAG neuropathy.

Muscle Nerve 42: 433-435, 2010

Myclin-associated glycoprotein (MAG) is a minor
component of the myelin membrane that plays an
important role in axon-Schwann-cell interaction.!”®
More than 50% of patients with neuropathy-associ-
ated IgM monoclonal gammopathy possess antibod-
ies against MAG.*

Neuropathy associated with IgM monoclonal
gammopathy of undetermined significance (MGUS)
with an antibody against MAG represents a distinc-
tive clinical syndrome characterized by male pre-
dominance, late age of onset, slow progression, pre-
dominantly sensory symptoms, and, in particular, the
pronounced loss of deep sensation with sensory
ataxia.*® Conversely, predominant motor impair-
ment has been reported only on occasion.”°
Herein, we report a patient with anti-MAG neuropa-
thy presenting with predominantly motor symptoms
and extensive muscle atrophy of the lower limbs,
mimicking Charcot-Marie-Tooth (CMT) disease.

CASE REPORT

A 62-year-old man was admitted with distal muscle
weakness of the lower limbs, which was accompa-
nied by marked muscle atrophy. He did not have a
notable individual or family history, and there were
no growth problems during his infancy. Muscle
weakness of the bilateral toes began approximately

Abbreviations: CIDP, chronic inflammatory demyelinating polyneurop-
athy; CMT, Charcot-Marie-Tooth; Mg, intravenous immunoglobulin; MAG,
myelin-associated glycoprotein; MGUS, monoclonal gammopathy of unde-
termined significance; MRI, magnetic resonance imaging; SGPG, sulfoglu-
curonyl paragloboside; WSM, widely spaced myelin

Key words: MGUS, MA, peripheral neuropathy, weakness, muscle atrophy
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5 years prior to our clinical evaluation, along with
slow progression in the bilateral lower limbs. Muscle
atrophy of the lower limbs gradually became con-
spicuous. In addition, mild paresthesia in the distal
portion of the lower limbs developed over the last 2
years. On admission, neurological examination
revealed bilateral severe muscle weakness and
extensive muscle atrophy, predominantly in the dis-
tal portion of the legs (Fig. 1A). Manual muscle test-
ing, recorded in the lower legs, was level 1. Neither
muscle weakness nor muscle atrophy was observed
in the upper extremities. Touch, pain, vibratory,
and joint sensations of all extremities were mildly
reduced in a glove-and-stocking distribution Pseu-
doathetosis was not observed in the hand. A Rom-
berg sign could not be determined because the
patient could not remain standing unaided. There
were no abnormalities in the cranial nerves and au-
tonomic nervous system. Deep tendon reflexes were
absent on both sides of the legs and arms.

In routine laboratory examinations, we found
that the serum IgM level was significantly elevated
to 890 mg/dl (normal 35-220 mg/dl), and IgM-
kappa-type M-protein was identified by serum
immune electrophoresis. Western blotting con-
firmed positive serum anti-MAG IgM antibody. In
addition, sulfoglucuronyl paragloboside (SGPG)
IgM antibody titer was also significantly elevated,
based on the results of an enzyme-linked immuno-
sorbent assay. In contrast, serum IgM and IgG anti-
bodies to GMI1, GM2, GM3, GDIla, GD1b, GD3,
GT1b, GQ1b, GAl, Gal-c were all negative.11 Analy-
sis of cerebrospinal fluid showed that protein con-
tent was increased significantly at 380 mg/dl (nor-
mal range 15-45 mg/dl), whereas cell count was
normal. The ratio of plasma cells in the bone mar-
row was less than 5%, and no lymphoplasmacytoid
elements were evident.

Motor nerve conduction studies in the median
and ulnar nerve revealed mild retardation of 42
m/s and 43 m/s, respectively. Significant prolonga-
tions of distal latency in the median and ulnar
nerve were highly conspicuous, at 13.2 ms and 5.7
ms, respectively. Compound muscle action poten-
tial amplitudes in the median and ulnar nerve were
4.4 mV and 5.8 mV, respectively. Motor and sensory
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FIGURE 1. (A) The patient's lower extremities. Bilateral lower legs are visibly atrophic. (B) Muscle computed tomography of the lower
extremities. Muscle atrophy predominant in the lower legs (lower panel) is evident. (C) Transverse section of a sural nerve biopsy
stained with toluidine blue. Fibers with redundant myelin loops are observed (arrows). (D) Teased fibers show tomacula (arrows) and
segmental demyelination (arrowheads). (E) Electron micrographs of the transverse section. Widely spaced myelin is observed in some
outer lamellae of the myelin sheath. (F) Immunofluorescence study of cross-sections. The immune reaction with IgM antibody is posi-
tive on the myelin sheath. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

imaging (MRI) suggesting spinal disorders was
not seen in the spinal cord and the cauda equina
was not enhanced with gadolinium. Computed

nerve conduction studies in the lower limbs and
sensory nerve conduction studies in the upper
limbs were not elicited at all. Magnetic resonance
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