Remark. S. Kôno also obtains a similar result in the case of complex  $C_{p^mq^n}$ -representations.

For details of the proof, see [34] and [35]. The idea is to decompose (V, W) into primitive pairs  $(V_i, W_i)$ .

**Definition.** A pair of representations (V, W) is called *primitive* if V and W cannot be decomposed into  $V = V_1 \oplus V_2$ ,  $W = W_1 \oplus W_2$  such that  $(V_i, W_i)$ ,  $V_i \neq 0$ , satisfies  $(C_{V_i,W_i})$ , i = 1, 2.

Then, by constructing a G-isovariant map  $f_i: V_i \to W_i$ , we have a G-isovariant map  $f = \bigoplus_i f_i: V \to W$ .

**Example 4.5.** The following are examples of primitive pairs of  $C_n$ -representations, and there exist isovariant maps between the representations. Suppose that p, q, r are pairwise coprime integers greater than 1.

- (1)  $(U_k, U_l)$  when (k, n) = (l, n) = 1.
- (2)  $(U_1, U_p \oplus U_q)$  when pq divides n.
- (3)  $(U_p \oplus U_q, \ U_{p^2} \oplus U_{pq})$  when  $p^2q$  divides n.
- (4)  $(U_p \oplus U_q \oplus U_r, \ U_1 \oplus U_{pq} \oplus U_{qr} \oplus U_{pr})$  when pqr divides n.

In the cases (1)-(3), one can define a  $C_n$ -isovariant map concretely; however, in case (4), equivariant obstruction theory is used. We illustrate it in Section 5.

On the other hand, there exists a group not having the complete IB-property.

**Theorem 4.6** ([35]). Let  $D_n$  be the dihedral group of order 2n ( $n \geq 3$ ). Every  $D_n$  ( $n \neq 3, 4, 6$ ) does not have the complete IB-property.

The dihedral group  $D_n$  has the following presentation:

$$D_n = \langle a, b | a^n = b^2 = 1, bab^{-1} = a^{-1} \rangle.$$

One has the normal cyclic subgroup  $C_m = \langle a^{n/m} \rangle$  of  $D_n$  for every divisor m of n, and there are n/m dihedral subgroups  $\langle a^{n/m}, b \rangle, \langle a^{n/m}, b^2 \rangle, \ldots, \langle a^{n/m}, a^{n/m-1}b \rangle$  containing  $C_m$  as a subgroup of index 2. If n/m is odd, then these are all conjugate in  $D_n$ . As

a representative of their conjugacy class, we take  $D_m = \langle a^{n/m}, b \rangle$ . If n/m is even, then there are two conjugacy classes. As representatives, we take  $D_m = \langle a^{n/m}, b \rangle$  and  $D'_m = \langle a^{n/m}, ab \rangle$ .

Let  $T_k = \mathbb{C}$ ,  $1 \le k < n/2$ , be the  $D_n$ -representation on which  $D_n$  acts by  $a \cdot z = \xi^k z$ ,  $b \cdot z = \overline{z}$ ,  $z \in S_k$ , where  $\xi = \exp(2\pi\sqrt{-1}/n)$ . These  $T_k$  are all (nonisomorphic) 2-dimensional irreducible representations over  $\mathbb{R}$  [45]. It follows that Ker  $T_k = C_{(k,n)}$ . and

Iso 
$$T_k = \{D_n, \langle a^{n/(k,n)}, a^t b \rangle, \langle a^{n/(k,n)} \rangle \mid 0 \le t \le n-1\}.$$

Note also that

$$\dim T_k^H = \begin{cases} 2 \text{ if } H \leq C_{(k,n)} \\ 1 \text{ if } H \text{ is conjugate to } D_{(k,n)} \text{ or } D'_{(k,n)} \\ 0 \text{ otherwise.} \end{cases}$$

Proof of Theorem 4.6. Let k be an integer prime to n with 1 < k < n/2. Consider a pair  $(T_1, T_k)$  of representations of  $D_n$ . It is easily seen that  $(T_1, T_k)$  satisfies conditions  $(C_{T_1,T_k})$  and  $(I_{T_1,T_k})$ . We show that there is no  $D_n$ -isovariant map from  $T_1$  to  $T_k$ . Suppose that there is a  $D_n$ -isovariant map from  $T_1$  to  $T_k$  for some k; then, by normalization, one has a  $D_n$ -isovariant map  $f: ST_1 \to ST_k$ . Note that  $ST_1^{>1} = ST_k^{>1} = \{\exp(\pi t \sqrt{-1}/n) \mid 0 \le t \le n-1\}.$  Take x = 1 and  $y = \exp(\pi \sqrt{-1}/n)$ , then the isotropy subgroup at x in  $ST_1$  is  $\langle b \rangle$ , and also the isotropy subgroup at y in  $ST_1$  is  $\langle ab \rangle$ . Since  $ST_k^{\langle b \rangle} = \{\pm 1\} \subset \mathbb{C}$ , it follows that  $f(1) = \pm 1$ . Composing, if necessary, the antipodal map  $z \mapsto -z$  on  $ST_k$  with f, we may assume f(1) = 1. Let A be the shorter arc joining x with y in  $ST_1$ . Since every point of the interior of A has trivial isotropy subgroup, it follows that  $f(A \setminus \{x,y\})$  is contained in  $ST_k \setminus ST_k^{>1}$ ; hence f(y) must be y or  $\overline{y}$ . However the isotropy subgroup at y (resp.  $\overline{y}$ ) in  $ST_k$  is equal to  $\langle a^r b \rangle$  (resp.  $\langle a^{-r} b \rangle$ ), where r is a positive integer with  $kr \equiv 1 \mod n$ , but it is not equal to  $\langle ab \rangle$ , since  $k \not\equiv \pm 1 \mod n$ . This contradicts the isovariance of f. Thus the proof is complete. 

# 5 The existence of isovariant maps from a rational homology sphere with pseudofree $S^1$ -action to a linear $S^1$ -sphere

Let  $G = S^1$  ( $\subset \mathbb{C}$ ). Let  $T_i$  ( $= \mathbb{C}$ ) be the irreducible representation of  $S^1$  defined by  $g \cdot z = g^k z$ . Let M be a rational homology sphere with *pseudofree*  $S^1$ -action.

**Definition** (Montgomery-Yang [28]). An  $S^1$ -action on M is pseudofree if

- (1) the action is effective, and
- (2) the singular set  $M^{>1} := \bigcup_{1 \neq H \leq S^1} M^H$  is not empty and consists of finitely many exceptional orbits.

Here an orbit G(x) is called exceptional if  $G(x) \cong S^1/D$ ,  $(1 \neq D < S^1)$  [6].

Remark. Other meanings for the term "pseudofree action" appear in the literature.

**Example 5.1.** Let  $V = T_p \oplus T_q \oplus T_r$ . Then the  $S^1$ -action on SV is pseudofree. Indeed it is clearly effective, and

$$SV^{>1} = ST_p \coprod ST_q \coprod ST_r$$
  
$$\cong S^1/C_p \coprod S^1/C_q \coprod S^1/C_r.$$

Remark. There are many "exotic" pseudofree  $S^1$ -actions on high-dimensional homotopy spheres [28], [42].

Then the following isovariant Borsuk-Ulam type result can be verified.

**Theorem 5.2** ([33]). Let M be a rational homology sphere with pseudofree  $S^1$ -action and SW a linear  $S^1$ -sphere. There is an  $S^1$ -isovariant map  $f: M \to SW$  if and only if

- (I): Iso  $M \subset \text{Iso } SW$ ,
- (PF1):  $\dim M 1 \leq \dim SW \dim SW^H$  when H is a nontrivial subgroup which is contained in some  $D \in \text{Iso } M$ ,

(PF2):  $\dim M + 1 \leq \dim SW - \dim SW^H$  when H is a nontrivial subgroup which is not contained in any  $D \in \text{Iso } M$ .

We give some examples. Let p, q, r be pairwise coprime integers greater than 1.

**Example 5.3.** There is no  $S^1$ -isovariant map

$$f: S(T_p \oplus T_q \oplus T_r) \to S(T_{pq} \oplus T_{qr} \oplus T_{rp}).$$

*Proof.* Condition (PF1) is not fulfilled.

Remark. There is an  $S^1$ -equivariant map

$$f: S(T_p \oplus T_q \oplus T_r) \to S(T_{pq} \oplus T_{qr} \oplus T_{rp}).$$

**Example 5.4.** There is an  $S^1$ -isovariant map

$$f: S(T_p \oplus T_q \oplus T_r) \to S(T_1 \oplus T_{pq} \oplus T_{qr} \oplus T_{rp}).$$

*Proof.* One can see that Iso  $M = \{1, C_p, C_q, C_r\}$  and

Iso 
$$SW = \{1, C_p, C_q, C_r, C_{pq}, C_{qr}, C_{rp}\}.$$

Hence it is easily seen that (PF1) and (PF2) are fulfilled and Iso  $M \subset \text{Iso } SW$ . By the theorem above, there is an  $S^1$ -isovariant map.

From this, we obtain an isovariant map in the case of Example 4.5(4).

Corollary 5.5. There is an  $C_{pqr}$ -isovariant map

$$f: S(U_p \oplus U_q \oplus U_r) \to S(U_1 \oplus U_{pq} \oplus U_{qr} \oplus U_{rp}).$$

*Proof.* By restricting f in Example 5.4 to the  $C_{pqr}$ -action, one has the desired map.

### 5.1 Proof of Theorem 5.2 (outline)

We shall give an outline of the proof of Theorem 5.2. Full details can be found in [33]. Set  $SW_{\text{free}} := SW \setminus SW^{>1}$ . Note that  $S^1$  acts freely on  $SW_{\text{free}}$ . Let  $N_i$  be an  $S^1$ -tubular neighborhood of each exceptional orbit in M. By the slice theorem,  $N_i$  is identified with  $S^1 \times_{D_i} DU_i$   $(1 \le i \le r)$ , where  $D_i$  is the isotropy group of the exceptional orbit and  $U_i$  is the slice  $D_i$ -representation. Set  $X := M \setminus (\coprod_i \text{int } N_i)$ . Note that  $S^1$  acts freely on X.

The "only if" part is proved by the (isovariant) Borsuk-Ulam theorem. Indeed for (PF1), take a point  $x \in M$  with  $G_x = D$  and a D-invariant closed neighborhood B of x which is D-diffeomorphic to some unit disk DV. Hence we obtain an H-isovariant map  $f_{|SV}: SV \to SW$  by restriction. Applying the isovariant Borsuk-Ulam theorem to f, we obtain (PF1).

We next show (PF2). Since f is isovariant, one sees that f maps M into  $SW \setminus SW^H$ . Since  $SW \setminus SW^H$  is  $S^1$ -homotopy equivalent to  $S(W^{H^{\perp}})$ , one obtains an  $S^1$ -map  $g: M \to S(W^{H^{\perp}})$ . By Corollary 2.3, condition (PF2) follows.

To show the converse, we use the equivariant obstruction theory. We recall the following result.

**Lemma 5.6.** There is an  $S^1$ -isovariant map  $\tilde{f}_i: N_i \to SW$ .

Proof. Let  $N_i = N \cong_G S^1 \times_D DV \subset M$ , where D is the isotropy group of the exceptional orbit and V is the slice representation. Similarly take a closed  $S^1$ -tubular neighborhood N' of an exceptional orbit with isotropy group D, and set  $N' \cong_G S^1 \times_D DV' \subset SW$ . By (PF1), one sees that  $\dim SV + 1 \leq \dim SV' - \dim SV'^{>1}$ . Since D acts freely on SV, there is a D-map  $g: SV \to SV' \setminus SV^{>1} \subset SW$  by Corollary 2.8, which leads to a D-isovariant map  $g: SV \to SW$ . Taking a cone, we have a D-isovariant map  $\tilde{g}: DV \to DV'$ , and hence an  $S^1$ -isovariant map  $\overline{f} = S^1 \times_D \tilde{g}: N \to N' \subset SW$ .

Set  $f_i := \tilde{f}_i|_{\partial N_i} : \partial N_i \to SW_{\text{free}}$ , and  $f := \coprod_i f_i : \partial X \to SW_{\text{free}}$ . If f is extended to an  $S^1$ -map  $F : X \to SW_{\text{free}}$ , by gluing the maps, we obtain an  $S^1$ -isovariant map

$$F \cup (\coprod_i \tilde{f_i}) : M \to SW.$$

Thus we need to investigate the extendability of an  $S^1$ -map  $f: \partial X \to SW_{\text{free}}$  to  $F: X \to SW_{\text{free}}$ . Equivariant obstruction theory [10] answers this question. A standard computation shows

**Lemma 5.7** ([33], [38]). Set  $d = \dim SW - \dim SW^{>1}$ .

- (1)  $SW_{\text{free}}$  is (d-2)-connected and (d-1)-simple.
- (2)  $\pi_{d-1}(SW_{\text{free}}) \cong H_{d-1}(SW_{\text{free}})) \cong \bigoplus_{H \in \mathcal{A}} \mathbb{Z}$ , where

$$\mathcal{A} := \{ H \in \operatorname{Iso} SW | \dim SW^H = \dim SW^{>1} \}$$

and the generators are represented by  $S(W^{H^{\perp}})$ ,  $H \in \mathcal{A}$ .

By noticing that dim  $M-1 \leq d$  by (PF1) and (PF2), the obstruction  $\mathfrak{o}_{S^1}(f)$  to the existence of an  $S^1$ -map  $F: X \to SW_{\text{free}}$  lies in the equivariant cohomology group

$$\mathfrak{H}^d_{S^1}(X,\partial X;\pi_{d-1}(SW_{\text{free}})) \cong H^d(X/S^1,\partial X/S^1;\pi_{d-1}(SW_{\text{free}})).$$

If dim M-1 < d (i.e., dim  $X/S^1 < d$ ), then one sees that

$$H^*(X/S^1, \partial X/S^1; \pi_{*-1}(SW_{\text{free}})) = 0$$

by dimensional reasons. Hence the obstruction vanishes and there exists an extension  $F: X \to SW_{\text{free}}$ .

We hereafter assume that dim M-1=d (i.e., dim  $X/S^1=d$ ). The computation of the obstruction is executed by the multidegree.

**Definition.** Let  $N = S^1 \times_D DU \subset M$ ,  $1 \neq D \in \text{Iso } M$ . Assume that dim  $M - 1 = \dim U = d$ . Let  $f : \partial N \to SW_{\text{free}}$  be an  $S^1$ -map, and consider the D-map  $\overline{f} = f|_{SU} : SU \to SW_{\text{free}}$ . Then the multidegree of f is defined by

$$\mathrm{mDeg}\, f := \overline{f}_*([SU]) \in \oplus_{H \in \mathcal{A}} \mathbb{Z},$$

under the natural identification  $H_{d-1}(SW_{\text{free}})$  with  $\bigoplus_{H\in\mathcal{A}}\mathbb{Z}$ .

The obstruction  $\mathfrak{o}_{S^1}(f)$  is described by the multidegree as follows.

**Proposition 5.8** ([33]). Let  $F_0: X \to SW_{\text{free}}$  be a fixed  $S^1$ -map; this map always exists, however, it is not necessary to extend it to an isovariant map on M. Set  $f_{0,i} = F_0|_{\partial N_i}$ . Then

$$\mathfrak{o}_{S^1}(f) = \sum_{i=1}^r (\mathrm{mDeg}\, f_i - \mathrm{mDeg}\, f_{0,i})/|D_i|,$$

under the natural identification  $H_{d-1}(SW_{\text{free}})$  with  $\bigoplus_{H \in \mathcal{A}} \mathbb{Z}$ .

Remark. It follows from the equivariant Hopf type result [33] that

$$\operatorname{mDeg} f_i - \operatorname{mDeg} f_{0,i} \in \bigoplus_{H \in \mathcal{A}} |D_i| \mathbb{Z}.$$

In addition, the following extendability result is known.

**Proposition 5.9** ([33]). Let  $N = S^1 \times_D DV$  be as before and  $f : \partial N \to SW_{\text{free}}$  be an  $S^1$ -map. Set mDeg  $f = (d_H(f))$ .

- (1)  $f: \partial N \to SW_{\text{free}}$  is extendable to an  $S^1$ -isovariant map  $\tilde{f}: N \to SW$  if and only if  $d_H(f) = 0$  for any  $H \in \mathcal{A}$  with  $H \nleq D$ .
- (2) For any extendable f and for any  $(a_H) \in \bigoplus_{H \in \mathcal{A}} |D|\mathbb{Z}$  satisfying  $a_H = 0$  for  $H \in \mathcal{A}$  with  $H \not\leq D$ , there exists an  $S^1$ -map  $f' : \partial N \to SW_{\text{free}}$  such that f' is extendable to an  $S^1$ -isovariant map  $\tilde{f}' : N \to SW$  and  $\operatorname{mDeg} f' = \operatorname{mDeg} f + (a_H)$ .

Using these propositions, one can see that there are  $S^1$ -isovariant maps  $f_i : \partial N_i \to SW$  such that  $\coprod_i f_i$  extends both on X and on  $\coprod_i N_i$  as isovariant maps. Thus an isovariant map from M to SW is constructed.

## References

- [1] Bartsch, T., On the existence of Borsuk-Ulam theorems, Topology **31** (1992), 533–543.
- [2] Bröker, T., tom Dieck, T., Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer 1985.

- [3] Biasi, C., de Mattos, D. A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. **37** (2006), 127–137.
- [4] Blagojević, P. V. M., Vrećica, S. T., Živaljević, R. T., Computational topology of equivariant maps from spheres to complements of arrangements, Trans. Amer. Math. Soc. 361 (2009), 1007–1038.
- [5] Borsuk, K., *Drei Sätze über die n-dimensionale Sphäre*, Fund. Math. **20**, 177–190 (1933).
- [6] Bredon, G. E., Introduction to compact transformation groups, Academic Press, 1972.
- [7] Browder, W., Quinn, F., A surgery theory for G-manifolds and stratified sets, Manifolds Tokyo 1973, 27–36, Univ. Tokyo Press, Tokyo, 1975.
- [8] Cartan, H., Eilenberg, S., Homological algebra, Princeton University Press, 1956
- [9] Clapp, M., Borsuk-Ulam theorems for perturbed symmetric problems, Nonlinear Anal. 47 (2001), 3749–3758.
- [10] tom Dieck, T., Transformation Groups, Walter de Gruyter, Berlin, New York, 1987
- [11] Dold, A., Simple proofs of some Borsuk-Ulam results, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), 65–69, Contemp. Math., 19.
- [12] Dula, G., Schultz, R., Diagram cohomology and isovariant homotopy theory, Mem. Am. Math. Soc. **527**, (1994).
- [13] Fadell, E., Husseini, S., An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical System 8 (1988), 73–85.
- [14] Furuta, M., Monopole equation and the 11/8-conjecture, Math. Res. Lett. 8 (2001), 279–291.
- [15] Hara, Y., The degree of equivariant maps, Topology Appl. 148 (2005), 113-121.

- [16] Inoue, A., Borsuk-Ulam type theorems on Stiefel manifolds, Osaka J. Math. 43 (2006), 183-191.
- [17] Jaworowski, J., Maps of Stiefel manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc., II. Ser. **32** (1989), 271-279.
- [18] Kawakubo, K., The theory of transformation groups, Oxford University Press 1991.
- [19] Kobayashi, T., The Borsuk-Ulam theorem for a  $Z_q$ -map from a  $Z_q$ -space to  $S^{2n+1}$ , Proc. Amer. Math. Soc. **97** (1986), 714-716.
- [20] Komiya, K., Equivariant K-theoretic Euler classes and maps of representation spheres, Osaka J. Math. 38 (2001), 239-249.
- [21] Laitinen, E., Unstable homotopy theory of homotopy representations, Lecture Notes in Math. 1217 (1985), 210–248.
- [22] Lovász, L., Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), 319–324.
- [23] Madsen, I., Thomas, C. B., Wall, C. T. C., Topological spherical space form problem. I., Compos. Math. 23 (1971), 101-114.
- [24] Madsen, I., Thomas, C. B., Wall, C. T. C., Topological spherical space form problem. II: Existence of free actions, Topology 15 (1976), 375-382.
- [25] Madsen, I., Thomas, C. B., Wall, C. T. C., Topological spherical space form problem. III: Dimensional bounds and smoothing, Pacific J. Math. 106 (1983), 135–143.
- [26] Marzantowicz, W., Borsuk-Ulam theorem for any compact Lie group, J. Lond. Math. Soc., II. Ser. 49 (1994),195-208.
- [27] Matoušek, J., Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry, Universitext, Springer, 2003.

- [28] Montgomery, D., Yang, C. T., Differentiable pseudo-free circle actions on homotopy seven spheres, Proceedings of the Second Conference on Compact Transformation Groups, Part I, 41–101, Lecture Notes in Math., 298, Springer, Berlin, 1972.
- [29] Nagasaki, I., Linearity of dimension functions for semilinear G-spheres, Proc. Amer. Math. Soc. 130 (2002), 1843-1850.
- [30] Nagasaki, I., On the theory of homotopy representations. A survey., In: Current Trends in Transformation Groups, K-Monographs in Mathematics 7, 65-77, 2002.@
- [31] Nagasaki, I., The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch. Math. 81 (2003), 748–759.
- [32] Nagasaki, I., The Grothendieck group of spheres with semilinear actions for a compact Lie group, Topology Appl. 145 (2004), 241-260.
- [33] Nagasaki, I., Isovariant Borsuk-Ulam results for pseudofree circle actions and their converse, Trans. Amer. Math. Soc. **358** (2006), 743–757.
- [34] Nagasaki, I., The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka. J. Math. 43 (2006), 689–710.
- [35] Nagasaki, I., A note on the existence problem of isovariant maps between representation spaces, Studia Humana et Naturalia 43 (2009), 33–42.
- [36] Nagasaki, I., Kawakami, T., Hara, Y., Ushitaki, F., The Borsuk-Ulam theorem in a real closed field, Far East J. Math. Sci (FJMS) 33 (2009), 113-124.
- [37] Nagasaki, I., Kawakami, T., Hara, Y., Ushitaki, F., The Smith homology and Borsuk-Ulam type theorems, Far East J. Math. Sci (FJMS) 38 (2010), 205-216.
- [38] Nagasaki, I., Ushitaki, F., Isovariant maps from free  $C_n$ -manifolds to representation spheres, Topology Appl. 155 (2008),1066–1076.
- [39] Nagasaki, I., Ushitaki, F., A Hopf type classification theorem for isovariant maps from free G-manifolds to representation spheres, to appear in Acta Math. Sin. (Engl. Ser.).

- [40] Oliver, R., Smooth compact Lie group actions on disks, Math. Z. **149** (1976), 71–96.
- [41] Palais, R. S., Classification of G-spaces, Mem. Amer. Math. Soc. 36 (1960).
- [42] Petrie, T., Pseudoequivalences of G-manifolds, Algebraic and geometric topology, 169–210, Proc. Sympos. Pure Math., XXXII, 1978.
- [43] Pergher, P. L. Q., de Mattos, D., dos Santos, E. L., *The Borsuk-Ulam theorem for general spaces*, Arch. Math. (Basel) **81** (2003), 96–102.
- [44] Schultz, R., Isovariant mappings of degree 1 and the gap hypothesis, Algebr. Geom. Topol. 6 (2006), 739–762.
- [45] Serre, J. P., Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.
- [46] Steinlein, H., Borsuk's antipodal theorem and its generalizations and applications: a survey, Topological methods in nonlinear analysis, 166-235, Montreal, 1985.
- [47] Steinlein, H., Spheres and symmetry: Borsuk's antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993), 15-33.
- [48] Waner, S., A note on the existence of G-maps between spheres, Proc. Amer. Math. Soc. 99 (1987), 179-181.
- [49] Wasserman, A. G., Isovariant maps and the Borsuk-Ulam theorem, Topology Appl. 38 (1991),155–161.
- [50] Weinberger, S., Yan, M., Equivariant periodicity for compact group actions, Adv. Geom. 5 (2005), 363–376.

Received 15 March 2010 and in revised form 12 September 2010.

Ikumitsu Nagasaki
Department of Mathematics,
Kyoto Prefectural University of Medicine,
13 Nishitakatsukasa-cho, Taishogun Kita-ku,
Kyoto 603-8334,
Japan
nagasaki@koto.kpu-m.ac.jp



# THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS

## IKUMITSU NAGASAKI, TOMOHIRO KAWAKAMI, YASUHIRO HARA and FUMIHIRO USHITAKI

Department of Mathematics Kyoto Prefectural University of Medicine 13 Nishi-Takatsukaso-Cho Taishogun Kita-ku, Kyoto 603-8334, Japan e-mail: nagasaki@koto.kpu-m.ac.jp

Department of Mathematics Faculty of Education, Wakayama University Sakaedani, Wakayama 640-8510, Japan e-mail: kawa@center.wakayama-u.ac.jp

Department of Mathematics Graduate School of Science, Osaka University Machikaneyama, 1-1, Toyonaka Osaka 560-0043, Japan e-mail: hara@math.sci.osaka-u.ac.jp

Department of Mathematics
Faculty of Science, Kyoto Sangyo University
Kamigamo, Motoyama
Kita-ku, Kyoto 603-8555, Japan
e-mail: ushitaki@ksuvx0.kyoto-su.ac.jp

2010 Mathematics Subject Classification: 57S10, 57S17, 55M20, 55M35, 03C64.

Keywords and phrases: Borsuk-Ulam theorem, finite groups, continuous  $C_k$ -maps, o-minimal, definable  $C_k$ -maps, real closed fields.

The fourth author is partially supported by Kyoto Sangyo University Research Grants. Received January 27, 2010

#### Abstract

Let k be a positive integer greater than 1 and  $C_k$  be the cyclic group of order k. Let X be an arcwise connected free  $C_k$ -space and Y be a Hausdorff free  $C_k$ -space. If there exists a positive integer n such that  $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$  for  $1 \le q \le n$  and  $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ , then there is no continuous  $C_k$ -map from X to Y.

We also prove a definable version of this topological version in an o-minimal expansion of  $\mathcal{N} = (R, +, \cdot, <, ...)$  of a real closed field R.

#### 1. Introduction

Let k be a positive integer greater than 1 and  $C_k$  be the cyclic group of order k. Let  $\mathbb{S}^n$  be the n-dimensional unit sphere of the (n+1)-dimensional Euclidean space  $\mathbb{R}^{n+1}$  with the antipodal  $C_2$ -action. From the viewpoint of transformation groups, the classical Borsuk-Ulam theorem states that if there exists a continuous  $C_2$ -map from  $\mathbb{S}^n$  to  $\mathbb{S}^m$ , then  $n \leq m$ . There are several equivalent statements of it and many related generalizations (e.g., [2], [13], [14], [15], [17]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by several authors. For example, Walker [21], Pergher et al. [18]. They prove non-existence of continuous  $C_2$ -maps between free  $C_2$ -spaces under certain homological conditions on the free  $C_2$ -spaces. Essentially they use the Smith-Gysin exact sequence in their proof. If k is a positive integer greater than 1, then several  $C_k$ -versions of the classical Borsuk-Ulam theorem are discussed in Kobayashi [11] and Hemmi et al. [7].

In this paper, we use the Smith homology (c.f. [10]) which is a useful simple tool to study  $C_k$ -versions of the classical Borsuk-Ulam theorem in the topological setting and the definable setting. The Smith exact sequence which is expressed by using the Smith homology is a generalization of the Smith-Gysin exact sequence. By using this, we can give a simple proof of a  $C_k$ -version of the classical Borsuk-Ulam theorem. In this paper, we prove the following generalized Borsuk-Ulam theorem which is a generalization of [21], [18], [11] and [7].

#### THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS 207

**Theorem 1.1.** Let X be an arcwise connected free  $C_k$ -space and Y be a Hausdorff free  $C_k$ -space. If there exists a positive integer n such that  $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$  for  $1 \le q \le n$  and  $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ , then there is no continuous  $C_k$ -map from X to Y. Here this homology means the singular homology.

The following remark shows that we cannot take k = 1 and  $k = \infty$  in Theorem 1.1.

**Remark 1.2.** (1) Let  $n \in \mathbb{N}$  and Y be a one-point set. Then the constant map from  $\mathbb{R}^n$  to Y is a continuous map and  $\mathbb{R}^n$  and Y satisfy the conditions on Theorem 1.1.

(2) Let  $n \in \mathbb{N}$ . Then  $\mathbb{R}^n$  has the free  $\mathbb{Z}$  -action defined by  $\mathbb{Z} \times \mathbb{R}^n \to \mathbb{R}^n$ ,  $(g, x_1, ..., x_n) \mapsto (g + x_1, x_2, ..., x_n)$ . Therefore,  $\mathbb{R}^n$  and  $\mathbb{R}$  satisfy the assumptions on Theorem 1.1 and the map  $f : \mathbb{R}^n \to \mathbb{R}$  defined by  $f(x_1, ..., x_n) = x_1$  is a continuous  $\mathbb{Z}$  -map.

Let k be a prime. For a topological space Y, let  $D = \{(y_1, ..., y_k) \in Y \times \cdots \times Y | y_1 = \cdots = y_k\}$  be the diagonal and write  $Y^* = Y \times \cdots \times Y - D$  admitting the free  $C_k$ -action defined by  $g(y_1, y_2, ..., y_k) = (y_2, y_3, ..., y_k, y_1)$ , where g generates  $C_k$ .

**Theorem 1.3.** Let k be a prime and X be an arcwise connected free  $C_k$ -space. If there exists a positive integer n such that  $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$  for  $1 \le q \le n$  and Y is a Hausdorff space with  $H_{n+1}(Y^*/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ , then every continuous map  $f: X \to Y$  has a  $C_k$ -coincidence point, that is, a point x such that  $f(x) = f(gx) = \cdots = f(g^{k-1}x)$ , where g is a generator of  $C_k$ .

We can consider the definable versions of Theorem 1.1 and Theorem 1.3 in an o-minimal expansion  $\mathcal{N}=(R,+,\cdot,<,...)$  of a real closed field R.

Many results in the semialgebraic geometry hold in the o-minimal setting and there exist uncountably many o-minimal expansions of the standard structure of the field  $\mathbb{R}$  of real numbers ([19]). See also [4], [6], [12] for examples and constructions of o-minimal structures. General references on them are [3], [5], [20]. In this paper,

"definable" means "definable with parameters in  $\mathcal{N}$ ", every definable object is considered in  $\mathcal{N}$  and each definable map is continuous unless otherwise stated.

Let  $S^n$  denote the *n*-dimensional unit sphere of  $R^{n+1}$ . If  $R = \mathbb{R}_{alg}$ , then  $S^n$  is neither arcwise connected nor connected. Thus we cannot apply [21], [18], [11], [7] and Theorem 1.1 even if  $X = S^{2n+1}$  and  $Y = S^{2m+1}$ .

The singular definable homology is introduced in [22]. Using the singular definable homology, we have the following theorem which is a definable version of Theorem 1.1.

**Theorem 1.4.** Let X be a definably connected definable set with a free definable  $C_k$ -action. If there exists a positive integer n such that  $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$  for  $1 \le q \le n$  and Y is a definable set with a free definable  $C_k$ -action such that  $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ , then there is no definable  $C_k$ -map from X to Y. Here this homology means the singular definable homology.

Note that a definably connected definable set is not necessarily connected and a definable set is definably connected if and only if definably arcwise connected. Here a definable set X is definably arcwise connected if for every two points  $x, y \in X$ , there exists a definable map f from the closed unit interval  $[0, 1]_R$  of R to X such that x = f(0) and y = f(1).

In the definable setting, we have the following simple sufficient condition on Y which implies  $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ .

If Y is a definable set with a definable  $C_k$ -action, then by Corollary 10.2.18 in [3],  $Y/C_k$  is a definable set and the orbit map  $\pi: Y \to Y/C_k$  is definable. If dim  $Y \le n$ , then by Corollary 4.1.6 in [3], dim  $Y/C_r \le n$ . Thus if dim  $Y \le n$ , then  $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ .

**Corollary 1.5.** (1) Suppose that  $k \ge 3$  and that  $C_k$  acts on  $S^{2m+1}$  and  $S^{2n+1}$  definably and freely. If there exists a definable  $C_k$ -map  $f: S^{2m+1} \to S^{2n+1}$ , then  $m \le n$ 

(2) If  $S^m$  and  $S^n$  have free definable  $C_2$ -actions and there exists a definable  $C_2$ -map  $f: S^m \to S^n$ , then  $m \le n$ .

THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS 209
Corollary 1.5 is a generalization of Theorem 1.1 [16].

Using Theorem 1.4, we have the following theorem.

**Theorem 1.6.** Let k be a prime and X be a definably connected definable set with a free definable  $C_k$ -action. Assume that there exists a positive integer n such that  $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$  for  $1 \le q \le n$ . If Y is a definable set with  $H_{n+1}(Y^*/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$ , then every definable map  $f: X \to Y$  has a  $C_k$ -coincidence point, that is, a point x such that  $f(x) = f(gx) = \cdots = f(g^{k-1}x)$ , where g is a generator of  $C_k$ .

#### 2. Proof of Theorem 1.1 and Theorem 1.3

We first prove Theorem 1.1.

Let  $\mathbb{Z}/k\mathbb{Z}\left[C_k\right]$  denote the group ring of  $C_k$  over  $\mathbb{Z}/k\mathbb{Z}$ . For any  $q\in\mathbb{N}\cup\{0\}$ , the q-dimensional chain group  $C_q(X;\mathbb{Z}/k\mathbb{Z})$  has the standard  $C_k$  -action. Then this action induces  $\mathbb{Z}/k\mathbb{Z}\left[C_k\right]$ -action on  $C_q(X;\mathbb{Z}/k\mathbb{Z})$ .

Let g be a generator of  $C_k$ ,  $\alpha=1+g+\cdots+g^{k-1}$ , and  $\beta=1-g$ . Then by definition  $\alpha\beta=\beta\alpha=0$ , for every q,  $\alpha C_q(X;\mathbb{Z}/k\mathbb{Z})$  and  $\beta C_q(X;\mathbb{Z}/k\mathbb{Z})$  are  $\mathbb{Z}/k\mathbb{Z}[C_k]$ -submodules of  $C_q(X;\mathbb{Z}/k\mathbb{Z})$  and  $\alpha\partial=\partial\alpha$ ,  $\beta\partial=\partial\beta$ , where  $\partial$  is the boundary operator of  $\{C_q(X;\mathbb{Z}/k\mathbb{Z})\}$ . Therefore,  $\{\alpha C_q(X;\mathbb{Z}/k\mathbb{Z})\}$  and  $\{\beta C_q(X;\mathbb{Z}/k\mathbb{Z})\}$  are subchain complexes of  $\{C_q(X;\mathbb{Z}/k\mathbb{Z})\}$ .

**Proposition 2.1.** For every q, the following two sequences are exact:

$$0 \to \alpha C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i} C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\beta} \beta C_q(X; \mathbb{Z}/k\mathbb{Z}) \to 0,$$

$$0 \to \beta C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{j} C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\alpha} \alpha C_q(X; \mathbb{Z}/k\mathbb{Z}) \to 0,$$

where i, j denote the inclusions and  $\alpha$  (resp.  $\beta$ ) stands for the multiplication of  $\alpha$  (resp.  $\beta$ ).

**Proof.** Since  $\beta \circ i = 0$ ,  $\alpha \circ j = 0$ ,  $\operatorname{Im} i \subset \operatorname{Ker} \beta$ ,  $\operatorname{Im} j \subset \operatorname{Ker} \alpha$ .

Let 
$$s = \sum_{j} \sum_{i=0}^{k-1} n_{ji} g^{i} \sigma_{j} \in \text{Ker } \beta$$
, where g is a generator of  $C_{k}$ . If  $l \neq l'$ 

and  $0 \le i \le k-1$ , then  $g^i \sigma_l \ne \sigma_{l'}$ . Since  $\beta s = 0$ , for any j,  $\sum_{i=0}^{k-1} n_{ji} g^i (1-g) \sigma_j$ = 0. Thus for every j,  $\sum_{i=1}^{k-1} (n_{ji} - n_{j(i-1)}) g^i \sigma_i + (n_{j0} - n_{j(k-1)}) \sigma_j = 0$ . Hence for each j,  $n_{j0} = n_{j1} = \cdots = n_{jk-1}$ . We set  $n_j = n_{j0} (= n_{j1} = \cdots = n_{jk-1})$ . Then we have  $s = \sum_i n_j (1+g+\cdots+g^{k-1}) \sigma_j = \alpha \sum_i n_j \sigma_j \in \text{Im } i$ . Therefore,  $\text{Ker } \beta = \text{Im } i$ .

Let 
$$s = \sum_{j} \sum_{i=0}^{k-1} n_{ji} g^{i} \sigma_{j} \in \text{Ker } \alpha$$
. Since  $\alpha s = \sum_{j} (n_{j0} + \dots + n_{j(k-1)})$   
 $(1 + \dots + g^{k-1}) \sigma_{j} = 0, n_{j0} + \dots + n_{j(k-1)} = 0.$ 

Thus 
$$s = \sum_{j} (n_{j0}(1-g) + (n_{j0} + n_{j1})g(1-g) + (n_{j0} + n_{j1} + n_{j2})g^{2}(1-g) + \dots + (n_{j0} + n_{j1} + \dots + n_{j(k-2)})g^{k-2}(1-g))\sigma_{j} \in \text{Im } j.$$
 Therefore,  $\text{Ker } \alpha = \text{Im } j.$ 

Let  $H_q^{\alpha}(X, \mathbb{Z}/k\mathbb{Z})$  (resp.  $H_q^{\beta}(X; \mathbb{Z}/k\mathbb{Z})$ ) denote the homology group induced from the chain complex  $\{\alpha C_q(X; \mathbb{Z}/k\mathbb{Z})\}$  (resp.  $\{\beta C_q(X; \mathbb{Z}/k\mathbb{Z})\}$ ). We call these homology groups the *Smith homology groups*.

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact:

$$\cdots \to H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i_*} H_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\beta_*} H_q^{\beta}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\partial_*} H_{q-1}^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \to \cdots$$

$$\cdots \to H_q^{\beta}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{j_*} H_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\beta_*} H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\delta_*} H_{q-1}^{\beta}(X; \mathbb{Z}/k\mathbb{Z}) \to \cdots$$
In particular, if  $k = 2$ , then  $\alpha = \beta$  and
$$H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i_*} H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\delta_*} H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\delta_*} H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \to \cdots$$

$$\cdots \to H^{\alpha}_q(X; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{i_*} H_q(X; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\alpha_*} H^{\alpha}_q(X; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\delta_*} H^{\alpha}_{q-1}(X; \mathbb{Z}/2\mathbb{Z}) \to \cdots$$
 is exact.

Let  $p: E \to X$  be a continuous map. We say that p has the homotopy lifting property if for any compact space Z, each homotopy  $h: Z \times [0, 1] \to X$  and a continuous map  $F: Z \to E$  such that  $p \circ F(z) = h(z, 0)$ , for all  $z \in Z$ , there exists a homotopy  $H: Z \times [0, 1] \to E$  such that  $p \circ H = h$  and H(z, 0) = F(z), for all  $z \in Z$ , where [0, 1] denotes the closed unit interval of  $\mathbb{R}$ .

#### THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS 211

**Proposition 2.3.** Let X be an arcwise connected Hausdorff free  $C_k$ -space. Then the orbit map  $\pi: X \to X/C_k$  has the homotopy lifting property.

**Proposition 2.4.** If Y is an arcwise connected Hausdorff free  $C_k$ -space, then for every q,  $H_a^{\alpha}(Y, \mathbb{Z}/k\mathbb{Z}) \cong H_a(Y/C_k, \mathbb{Z}/k\mathbb{Z})$ .

**Proof.** We first show that the map  $\alpha: C(Y; \mathbb{Z}/k\mathbb{Z}) \to C(Y; \mathbb{Z}/k\mathbb{Z})$  and the map  $\pi_*: C(Y; \mathbb{Z}/k\mathbb{Z}) \to C(Y/C_k; \mathbb{Z}/k\mathbb{Z})$  induced from the orbit map  $\pi: Y \to Y/C_k$  have the same kernel. Let  $\sigma$  be a singular s-simplex of Y. We need only to consider elements of  $C(C_k\sigma)$ , since  $C(Y) \cong \bigoplus_{[\sigma] \in \Delta(s)/C_k} C(C_k\sigma)$ , where  $\Delta(s)$  is the set of singular s-simplexes of Y and  $\Delta(s)/C_k$  is its orbit set under the induced action.

Since  $\alpha \left(\sum n_i g^i \sigma\right) = \left(\sum n_i\right) \alpha(\sigma)$ ,  $\alpha \left(\sum n_i g^i \sigma\right) = 0$  if and only if  $\sum n_i = 0$ , and similarly  $\pi_* \left(\sum n_i g^i \sigma\right) = \left(\sum n_i\right) \pi \circ \sigma = 0$  if and only if  $\sum n_i = 0$ ; therefore, both kernels coincide.

We next show that  $\pi_*$  is surjective; namely, there is a lift  $\tilde{\tau}:\Delta^s\to Y$  of  $\tau:\Delta^s\to Y/C_k$ , where  $\Delta^s$  denotes the affine span of (s+1)-points which are affine independent. Since  $\Delta^s$  is contractible, there is a homotopy  $H':\Delta^s\times[0,1]\to\Delta^s$  such that  $H'(-,0)=c_{e_0}$  and  $H'(-,1)=id_{\Delta^s}$ , where  $c_{e_0}$  denotes the constant map whose value is  $e_0\in\Delta^s$ . Then the composition  $H=\tau\circ H'$  is a homotopy from the constant map  $c_{\tau(e_0)}$  to  $\tau$ . Let  $y_0$  be a point of Y such that  $\pi(y_0)=\tau(e_0)$ , and  $c_{y_0}:\Delta^s\to Y$  the constant map whose value is  $y_0$ . Since  $H(-,0)=\pi\circ c_{y_0}$ , it follows from Proposition 2.3 that there exists a lift  $\widetilde{H}:\Delta^s\times[0,1]\to Y$  of H such that  $\widetilde{H}(-,0)=c_{y_0}$ . Then  $\widetilde{\tau}:=\widetilde{H}(-,1)$  is a lift of  $\tau=H(-,1)$ .

Since  $\pi_*$  is surjective,  $\alpha C(Y; \mathbb{Z}/k\mathbb{Z})$  and  $C(Y/C_p; \mathbb{Z}/k\mathbb{Z})$  are isomorphic as chain complexes. Accordingly their homology groups are also isomorphic.

**Proof of Theorem 1.1.** Assume that there exists a continuous  $C_k$ -map f: X

 $\rightarrow$  Y under the conditions of Theorem 1.1. Since X is arcwise connected, f(X) is acrwise connected. Hence f(X) is contained in an arcwise connected component of Y. Therefore it is sufficient to prove the case where Y is arcwise connected.

We first prove the case where k=2. Since f is a continuous  $C_2$ -map,  $\alpha f_\#=f_\#\alpha$ .

For simplicity, we abbreviate the coefficient  $\mathbb{Z}/2\mathbb{Z}$  in the singular homology. By Theorem 2.2, we have a commutative diagram

with exact rows.

By definition,  $(i_*^X)_0 = 0$  and  $(i_*^Y)_0 = 0$ . Thus  $(\alpha_*^X)_0 : H_0(X) \to H_0^\alpha(X)$  and  $(\alpha_*^Y)_0 : H_0(Y) \to H_0^\alpha(Y)$  are isomorphisms. By assumption,  $H_0(X) \cong \mathbb{Z}/2\mathbb{Z}$ . Hence  $H_0(X) \cong H_0^\alpha(X) \cong \mathbb{Z}/2\mathbb{Z}$ . Similarly,  $H_0(Y) \cong H_0^\alpha(Y) \cong \mathbb{Z}/2\mathbb{Z}$ . Since  $(f_*)_0 : H_0(X) \to H_0(Y)$  is an isomorphism and  $(\alpha_*^X)_0 \circ (f_*)_0 = (f_*^\alpha)_0 \circ (\alpha_*^X)_0$ ,  $(f_*^\alpha)_0 : H_0^\alpha(X) \to H_0^\alpha(Y)$  is an isomorphism. Since  $(i_*^X)_0 = 0$ , we have  $\operatorname{Im}(\partial_*^X)_1 = \operatorname{Ker}(i_*^X)_0 = H_0^\alpha(X)$ . Thus we see that  $(\partial_*^Y)_1 \circ (f_*^\alpha)_1 = (f_*^\alpha)_0 \circ (\partial_*^X)_1 : H_1^\alpha(X) \to H_0^\alpha(Y)$  is a non-zero homomorphism. Hence  $(f_*^\alpha)_1 : H_1^\alpha(X) \to H_1^\alpha(Y)$  is a non-zero homomorphism. Using the assumptions on X, we see that  $(\partial_*^X)_q : H_q^\alpha(X) \to H_{q-1}^\alpha(X)$  is an isomorphism for each  $1 \le q \le n$ . Using this fact and by induction, we can prove that  $(f_*^\alpha)_q : H_q^\alpha(X) \to H_q^\alpha(Y)$  is a non-zero homomorphism for each  $0 \le q \le n$ .

By Proposition 2.4,  $H_{n+1}^{\alpha}(Y) \cong H_{n+1}(Y/C_p)$ . Thus  $H_{n+1}^{\alpha}(Y) = 0$ . Hence  $(i_*^Y)_n : H_n^{\alpha}(Y) \to H_n(Y)$  is injective and  $(i_*^X)_n \circ (f_*^{\alpha})_n : H_n^{\alpha}(X) \to H_n(Y)$  is a non-zero homomorphism.

On the other hand, since  $H_n(X) = 0$ ,  $(i_*^Y)_n \circ (f_*^\alpha)_n = (f_*)_n \circ (i_*^X)_n = 0$ . This contradiction proves the theorem in this case.

Next, we prove the case where k > 2. For simplicity, we abbreviate the coefficient  $\mathbb{Z}/k\mathbb{Z}$  in the singular homology. By Theorem 2.2, we have two commutative diagrams

with exact rows.

and

We easily see that  $(i_*^X)_0 = 0$  and  $(i_*^Y)_0 = 0$ . Thus  $(\beta_*^X)_0 : H_0(X) \to H_0^\beta(X)$  and  $(\beta_*^Y)_0 : H_0(Y) \to H_0^\beta(Y)$  are isomorphisms. Since  $(f_*)_0 : H_0(X) \to H_0(Y)$  is an isomorphism,  $(f_*^\beta)_0 : H_0^\beta(X) \to H_0^\beta(Y)$  is an isomorphism. Similarly, we see that  $(f_*^\alpha)_0 : H_0^\alpha(X) \to H_0^\alpha(Y)$  is an isomorphism from the second diagram. Since  $H_1(X) = 0$  and  $(i_*^X)_0 = 0$ ,  $(\partial_*^X)_1 : H_1^\beta(X) \to H_0^\alpha(X)$  is an isomorphism.