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Remark. S. Kono also obtains a similar result in the case of complex C,mn-represen-

tations.

For details of the proof, see [34] and [35]. The idea is to decompose (V, W) into
primitive pairs (V;, W;).

Definition. A pair of representations (V, W) is called primitive if V and W cannot
be decomposed into V = Vi & Vo, W = W, & W, such that (V;, W;), V; # 0, W; # 0,
satisfies (Cv,w,), @ = 1, 2.

Then, by constructing a G-isovariant map f; : V; — W;, we have a G-isovariant
map f=&;f;: V- W.

Example 4.5. The following are examples of primitive pairs of C,-representations,
and there exist isovariant maps between the representations. Suppose that p, ¢, r are

pairwise coprime integers greater than 1.
(1) (Ug,U;) when (k,n) = (I,n) = 1.
(2) (Uh,U, ® U,) when pq divides n.
(3) (U, ®U,, Uy @ U,,) when p?q divides n.
4) UyU,® U, U@ Uy @ Uy @ Uy) when pgr divides n.

In the cases (1)-(3), one can define a Cy-isovariant map concretely; however, in
case (4), equivariant obstruction theory is used. We illustrate it in Section 5.
On the other hand, there exists a group not having the complete IB-property.

Theorem 4.6 ([35]). Let D,, be the dihedral group of order 2n (n > 3). Every D,
(n # 3,4,6) does not have the complete IB-property.

The dihedral group D,, has the following presentation:
D, = {a,bla™ =b* = 1,bab™" = a™1).

One has the normal cyclic subgroup C,, = (a™™) of D,, for every divisor m of n, and
there are n/m dihedral subgroups (a™™,b), (a™™ b%),..., (a™™ a™/™1b) containing

Cpn as a subgroup of index 2. If n/m is odd, then these are all conjugate in D,,. As
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a representative of their conjugacy class, we take D,, = (a™™,b). If n/m is even,
then there are two conjugacy classes. As representatives, we take D,,, = (a™/™, b) and
D = (/™ ab).

Let T, = C, 1 < k < n/2, be the D,-representation on which D,, acts by a-z = £*z2,
bz =72,z € S, where £ = exp(2mv/—1/n). These T}, are all (nonisomorphic) 2-
dimensional irreducible representations over R [45]. It follows that Ker T = Ciyp).

and

Iso Tj, = {D,, (a™®™ atb), (a™*™) |0 <t <n —1}.
Note also that

2ift H < Clrn
dim T/ = ¢ 1 if H is conjugate to D) or Dl ny

0 otherwise.

Proof of Theorem 4.6. Let k be an integer prime to n with 1 < k < n/2. Consider
a pair (T, Ty) of representations of D,. It is easily seen that (77, Tj) satisfies
conditions (Cry 1,) and (I, 7). We show that there is no D,-isovariant map from
T, to T,. Suppose that there is a D,-isovariant map from 77 to T} for some k;
then, by normalization, one has a D,-isovariant map f : ST} — STj. Note that
ST = ST = {exp(nty/—1/n) |0 <t <n—1}. Takexz = 1 and y = exp(mv/—1/n),
then the isotropy subgroup at x in ST; is (b), and also the isotropy subgroup at y
in ST is (ab). Since ST,ib) = {£1} C C, it follows that f(1) = £1. Composing, if
necessary, the antipodal map z — —z on STy with f, we may assume f(1) = 1. Let
A be the shorter arc joining z with y in STj. Since evéry point of the interior of A
has trivial isotropy subgroup, it follows that f(A\ {z,y}) is contained in ST\ ST ;
hence f(y) must be y or . However the isotropy subgroup at y (resp. 7) in ST} is
equal to (a"b) (resp. (a7"b)), where r is a positive integer with kr = 1 mod n, but it
is not equal to (ab}, since k #Z +1 mod n. This contradicts the isovariance of f. Thus

the proof is complete. a
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5 The existence of isovariant maps from a rational
homology sphere with pseudofree S'-action to a
linear S'-sphere

Let G = S' (€ C). Let T; (= C) be the irreducible representation of S defined by
g-2z=g*z. Let M be a rational homology sphere with pseudofree S'-action.

Definition (Montgomery-Yang [28]). An S'-action on M is pseudofree if
(1) the action is effective, and

(2) the singular set M1 := [, st M H is not empty and consists of finitely many

exceptional orbits.

Here an orbit G(z) is called exceptional if G(z) = S*/D, (1 # D < S*) [6].

Remark. Other meanings for the term “pseudofree action” appear in the literature.

Example 5.1. Let V = T,6T,®T,. Then the S'-action on SV is pseudofree. Indeed

it is clearly effective, and

SV =ST, [[ ST, [ ST,
=xiies | Eivien | Eles

Remark. There are many “exotic” pseudofree S'-actions on high-dimensional homo-
topy spheres [28], [42].

Then the following isovariant Borsuk-Ulam type result can be verified.

Theorem 5.2 ([33]). Let M be a rational homology sphere with pseudofree S*-action
and SW a linear S'-sphere. There is an S*-isovariant map f : M — SW if and only

if
(I): Iso M C Iso SW,

(PF1): dim M — 1 < dim SW — dim SW# when H is a nontrivial subgroup which is

contained in some D € Iso M,
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(PF2): dim M + 1 < dim SW — dim SWH when H is a nontrivial subgroup which is

not contained in any D € Iso M.
We give some examples. Let p, g, r be pairwise coprime integers greater than 1.
Example 5.3. There is no S'-isovariant map
f:S(T,eT,0T,) — STy ® Ty ® Trp).

Proof. Condition (PF1) is not fulfilled. O

Remark. There is an S'-equivariant map
[:8(L,eT,®T,) — S(Tpg® Tor ® Trp)-
Example 5.4. There is an S'-isovariant map
[:8(T,eT,®T.) — S(Th & Ty ® Ty & T,yp).
Proof. One can see that Iso M = {1, C,, C,, C;} and
Iso SW = {1,C,, Cy, Cy, Cpy, Cyr, Crp }.

Hence it is easily seen that (PF1) and (PF2) are fulfilled and Iso M C Iso SW. By

the theorem above, there is an S*-isovariant map. O

From this, we obtain an isovariant map in the case of Example 4.5(4).
Corollary 5.5. There is an Cpqr-isovariant map
f:SUpU;@U;) = S(UL & Upg @ Uy @ Upy).

Proof. By restricting f in Example 5.4 to the Cp4-action, one has the desired map.
O
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5.1 Proof of Theorem 5.2 (outline)

We shall give an outline of the proof of Theorem 5.2. Full details can be found in
[33]. Set SWiee := SW \ SW>!. Note that S acts freely on SWhee. Let N; be
an S'-tubular neighborhood of each exceptional orbit in M. By the slice theorem,
Nj is identified with S* xp, DU; (1 <4 < r), where D; is the isotropy group of the
exceptional orbit and U; is the slice D;-representation. Set X := M \ (], int V;).
Note that S* acts freely on X.

The “only if” part is proved by the (isovariant) Borsuk-Ulam theorem. Indeed for
(PF1), take a point x € M with G, = D and a D-invariant closed neighborhood B of
x which is D-diffeomorphic to some unit disk DV. Hence we obtain an H-isovariant
map fisv : SV — SW by restriction. Applying the isovariant Borsuk-Ulam theorem
to f, we obtain (PF1).

We next show (PF2). Since f is isovariant, one sees that f maps M into SW \
SWH. Since SW \ SWH is S'-homotopy equivalent to S(WH"), one obtains an
Slmap g : M — S(WH™). By Corollary 2.3, condition (PF2) follows.

To show the converse, we use the equivariant obstruction theory. We recall the

following result.
Lemma 5.6. There is an S'-isovariant map f; : Ny — SW.

Proof. Let N; = N =g S' xp DV C M, where D is the isotropy group of the
exceptional orbit and V is the slice representation. Similarly take a closed S*-tubular
neighborhood N’ of an exceptional orbit with isotropy group D, and set N’ =g
St xp DV’ ¢ SW. By (PF1), one sees that dim SV + 1 < dim SV’ — dim SV'>!.
Since D acts freely on SV, there is a D-map g : SV — SV'\ SV>! C SW by
Corollary 2.8, which leads to a D-isovariant map g : SV — SW. Taking a cone,
we have a D-isovariant map § : DV — DV’, and hence an S'-isovariant map f =

S'xpg: N — N CSW. O

Set f; = fi|@Ni : ON; — SWiee, and f := [, fi : 0X — SWhee. If f is extended
to an S'-map F' : X — SWhee, by gluing the maps, we obtain an S'-isovariant map

FU(I[f): M — sw.
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Thus we need to investigate the extendability of an S'-map f : 0X — SWiee t0
F : X — SWgee. Equivariant obstruction theory [10] answers this question. A

standard computation shows
Lemma 5.7 ([33], [38]). Set d = dim SW — dim SW>*.
(1) SWhee is (d — 2)-connected and (d — 1)-simple.
(2) a1 (SWhee) = Hi1(SWhee)) = @ real, where
A= {H € Iso SW|dim SW# = dim SW>*}
and the generators are represented by S(WH™), H e A.

By noticing that dim M — 1 < d by (PF1) and (PF2), the obstruction og:(f) to

the existence of an S*-map F : X — SWe. lies in the equivariant cohomology group
HE(X,0X; a1 (SWheo)) = HH(X /S, 0X/S"; Ta-1(SWiee)).-
If dim M — 1 < d (i.e., dim X/S* < d), then one sees that
H(X/S",0X/S"; 7o 1(SWiee)) = 0

by dimensional reasons. Hence the obstruction vanishes and there exists an extension
F: X — SWhee.
We hereafter assume that dim M — 1 =d (i.e., dim X/S* = d). The computation

of the obstruction is executed by the multidegree.

Definition. Let N = S! xp, DU € M, 1 # D € IsoM. Assume that dim M —
1 =dimU = d. Let f : ON — SWhee be an S'-map, and consider the D-map
f = flsv : SU — SWiee. Then the multidegree of f is defined by

mDeg f := f,([SU]) € ®yesZ,
under the natural identification Hy_1(SWhee) With @ ge4Z.

The obstruction og:(f) is described by the multidegree as follows.
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Proposition 5.8 ([33]). Let Fy : X — SWhgee be a fized S*-map; this map always
exists, however, it is not necessary to extend it to an isovariant map on M. Set
f07i - F(]I@Ni. Then

r

051(f) = Y _(mDeg f; — mDeg fo;)/|Dil,

i=1
under the natural identification Hy_1(SWiee) with ®geaZ.

Remark. Tt follows from the equivariant Hopf type result [33] that
mDeg f; — mDeg fo; € ®rcalDi|Z.
In addition, the following extendability result is known.

Proposition 5.9 ([33]). Let N = S' xp DV be as before and f : ON — SWeee be
an S'-map. Set mDeg f = (du(f)).

(1) f: ON — SWhee is extendable to an S*-isovariant map f : N — SW if and
only if dg(f) =0 for any H € A with H £ D.

(2) For any extendable f and for any (am) € Pmea|D|Z satisfying ag = 0 for
H ¢ A with H £ D, there exists an S*-map f' : ON — SWhee such that f' is
extendable to an S'-isovariant map f’ : N — SW and mDeg f' = mDeg f +

(am).

Using these propositions, one can see that there are S'-isovariant maps f; : dN; —
SW such that [, fi extends both on X and on [], N; as isovariant maps. Thus an

isovariant map from M to SW is constructed.
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Abstract

Let k be a positive integer greater than 1 and C; be the cyclic group of
order k. Let X be an arcwise connected free Cj -space and Y be a
Hausdorff free Cj, -space. If there exists a positive integer n such that
H(X;Z{kZ)=0 for 1<q<n and H,u (Y/Cy; Z[kZ)=0, then
there is no continuous Ci -map from X'to Y.

We also prove a definable version of this topological version in an
o-minimal expansion of A = (R, +, -, <, ...) of a real closed field R.

1. Intreduction

Let k be a positive integer greater than 1 and Cj, be the cyclic group of order k.
Let S” be the n-dimensional unit sphere of the (n + 1)-dimensional Euclidean space

R™! with the antipodal C, -action. From the viewpoint of transformation groups,

the classical Borsuk-Ulam theorem states that if there exists a continuous C; -map

from S” to S§™, then n < m. There are several equivalent statements of it and
many related generalizations (e.g., [2], [13], [14], [15], [17]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by
several authors. For example, Walker [21], Pergher et al. [18]. They prove non-
existence of continuous C, -maps between free C, -spaces under certain homological
conditions on the free C,-spaces. Essentially they use the Smith-Gysin exact
sequence in their proof. If & is a positive integer greater than 1, then several Cy-
versions of the classical Borsuk-Ulam theorem are discussed in Kobayashi [11] and
Hemmii et al. [7].

In this paper, we use the Smith homology (c.f. {10]) which is a useful simple
tool to study Cj -versions of the classical Borsuk-Ulam theorem in the topological

setting and the definable setting. The Smith exact sequence which is expressed by
using the Smith homology is a generalization of the Smith-Gysin exact sequence. By
using this, we can give a simple proof of a C;, -version of the classical Borsuk-Ulam
theorem. In this paper, we prove the following generalized Borsuk-Ulam theorem
which is a generalization of [21], [18], [11] and [7].
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Theorem 1.1. Let X be an arcwise connected free Cy -space and Y be a
Hausdorff free Cj-space. If there exists a positive integer n such that
H,(X; Z/kZ)=0 for 1< q<n and H,,(Y/Cy; Z/kZ) =0, then there is no

continuous Cy, -map from X to Y. Here this homology means the singular homology.

The following remark shows that we cannot take £ =1 and & = <« in Theorem
1.1.

Remark 1.2. (1) Let n € N and Y be a one-point set. Then the constant map

from R" to Y is a continuous map and R” and Y satisfy the conditions on Theorem
1.1

(2) Let » e N. Then R" has the free Z -action defined by Z x R" — R”,
(g, x15 - X, ) > (g + %1, X3, ..., X,, ). Therefore, R” and R satisfy the assumptions
on Theorem 1.1 and the map f:R"” — R defined by f(x, ..., x,)=x is a
continuous Z -map.

Let & be a prime. For a topological space ¥, let D= {(y,.., ;)€

Yx--xY|y ==y} be the diagonal and write ¥* = ¥ x---x ¥ ~ D admitting
the free Cj -action defined by g(», ¥, < ¥&) = (2, Y35 s Y&» 1), where g

generates C.

Theorem 1.3. Let k be a prime and X be an arcwise connected free Cy -space.
If there exists a positive integer n such that H,(X; Z{kZ)=0 for 1< g <n andY
is a Hausdorff space with H, (Y*[Cy; ZJkZ) = 0, then every continuous map
f:X =Y has a C-coincidence point, that is, a point x such that f(x)=
Flgx) = = f(g*'x), where g is a generator of Cy.

We can consider the definable versions of Theorem 1.1 and Theorem 1.3 in an
o-minimal expansion N = (R, +, -, <, ...) of a real closed field R.

Many results in the semialgebraic geometry hold in the o-minimal setting and
there exist uncountably many o-minimal expansions of the standard structure of the
field R of real numbers ([19]). See also [4], [6], [12] for examples and constructions
of o-minimal structures. General references on them are [3], {51, [20]. In this paper,
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“definable” means “definable with parameters in N ”, every definable object is
considered in A/ and each definable map is continuous unless otherwise stated.

Let S” denote the n-dimensional unit sphere of R™IfR= Ry, then s
is neither arcwise connected nor connected. Thus we cannot apply [21], [18], [11],

[7] and Theorem 1.1 even if X = §2"*! and ¥ = §2"*!,

The singular definable homology is introduced in [22]. Using the singular
definable homology, we have the following theorem which is a definable version of
Theorem 1.1.

Theorem 1.4. Let X be a definably connected definable set with a free definable
Cy -action. If there exists a positive integer n such that H,(X; Z[kZ)=0 for

1<qg<n and Y is a definable set with a free definable C, -action such that

H,(Y/Cy ;s ZJKZ) = O, then there is no definable Cj, -map from X to Y. Here this
homology means the singular definable homology.

Note that a definably connected definable set is not necessarily connected and a
definable set is definably connected if and only if definably arcwise connected. Here
a definable set X is definably arcwise connected if for every two points x, y € X,

there exists a definable map f from the closed unit interval [0, 1] r of R to X such that
x= f(0) and y = f(1).
In the definable setting, we have the following simple sufficient condition on ¥

which implies H,,1(Y/Cy ; Z{kZ) = 0.

If Y is a definable set with a definable C, -action, then by Corollary 10.2.18 in
[3], Y/C, is a definable set and the orbit map 7 : ¥ — Y/C; is definable. If dim ¥
< n, then by Corollary 4.1.6 in [3], dimY/C, < n. Thus if dimY < », then
Hy, 1 (Y/Cy s ZIRZ) = 0.

Corollary 1.5. (1) Suppose that k >3 and that C;, acts on §*"*! and §2"*!
definably and freely. If there exists a definable Cy-map f : S*™*! — §*"*!, then
m<n.

(2) If S™ and S" have free definable C, -actions and there exists a definable

Cy-map f:8" — 8", then m < n.
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Corollary 1.5 is a generalization of Theorem 1.1 [16].
Using Theorem 1.4, we have the following theorem.

Theorem 1.6. Let k be a prime and X be a definably connected definable set
with a free definable C -action. Assume that there exists a positive integer n such

that Hy(X; Z{kZ)=0 for 1< g < n. If Y is a definable set with H,,|(Y* [Cy; Z[KZ)
=0, then every definable map f : X — Y has a Cy -coincidence point, that is, a

point x such that f(x) = f(gx) = - = f(g*'x), where g is a generator of Cy.

2. Proof of Theorem 1.1 and Theorem 1.3

We first prove Theorem 1.1.

Let Z/kZ [C,] denote the group ring of C), over Z/kZ. Forany q € N U {0},
the g-dimensional chain group C,(X; Z/kZ) has the standard Cy -action. Then this

action induces Z/kZ [Cy ] -action on C,(X; Z/kZ).

Let g be a generator of Cp, 0 =1+ g+ + gk"', and B =1-g. Then by
definition af =Bo =0, for every g, aC,(X; Z/kZ) and BC,(X; Z/kZ) are
Z[KL[Ci]-submodules of C,(X; Z/kZ) and 00 =0a, PO =0, where 0 is
the boundary operator of {C,(X;Z/kZ)}. Therefore, {aC,(X;Z[kZ)} and
{BC,(X; Z/kZ)} are subchain complexes of {C,(X; Z/kZ)}.

Proposition 2.1. For every g, the following two sequences are exact:
0 > aC,(X; Z/KE)> C,(X; 2/kZ) 5 BC,(X; B/KE) > o,

0 — BC,(X; Z/kZ)i)Cq(X; Z/kZ)a-—)va(X; Z/kZ) — 0,

where i, j denote the inclusions and o. (resp. B) stands for the multiplication of o
(resp. B).
Proof. Since Bei=0,a0 j=0,Imi < Kerf, Imj < Kera.

Let s = Zj Zf;;njigicj € KerB, where g is a generator of C;. If /= /'
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and 0<i<k-1, then g'c; #0op. Since Bs=0, for any j, z:,‘;;njigi(l -g)o;

=0. Thus for every j, Zf:(n ji =1 j(,-_l))gic; +(njo = njg-1))o; = 0. Hence for
eachj, njo = nj = =np_j. Weset n; = njo(=nj =--=ny_;). Then we have

s =zjnj(1+g+---+gk“l)cj = azjnjcj € Imi. Therefore, Kerf = Imi.

k-1 .
Let s= Z}, Zizonﬁgtcj € Kero. Since os= Zj (njo + - +njk-ry)

(1 + e+ gk-l)()'j = 0, njo LR o nj(k._l) =90.

Thus s = Zj("jo(l —-g)+(njo+n;)gll-g)+(njo +ny + n)g*(l-g)
+eet(njg +nj +--~+nj(k_2))gk—2(l-g))cj € Im j. Therefore, Kera =Im . O
Let HJ (X, Z{kZ) (resp.H, g(X ; Zf¥Z)) denote the homology group induced

from the chain complex {aC,(X; Z/kZ)} (resp. {BC,(X; Z/kZ)}). We call these
homology groups the Smith homology groups.

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact:

= HE(X; ZJKE)S H,(X; Z/REYS HB(X; B> HE (X; Z/KT) ~ -

= B ZRE)SS H o (X; 2RSS HE(X; 2/ HE (X Z/kZ) .

In particular, if k = 2, then o. = Band

fe (.29 e
cee - H;‘(X; Z/ZZ);HQ(X; Z/ZZ)—) H;‘(X; Z/2Z)—->H;‘_1(X; Z/ZZ) — e
is exact.

Let p: E — X be a continuous map. We say that p has the homotopy lifting
property if for any compact space Z, each homotopy 4#:Z x[0,1] = X and a
continuous map F :Z — E such that po F(z) = h(z, 0), for all z € Z, there
exists a homotopy H : Z x[0, 1] = E such that po H = h and H(z, 0) = F(z),

forall z € Z, where [0, 1] denotes the closed unit interval of R.
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Proposition 2.3. Let X be an arcwise connected Hausdorff free C; -space. Then
the orbit map n : X — X[C, has the homotopy lifting property.
Proposition 2.4. If Y is an arcwise connected Hausdorff free C; -space, then
Jor every q, HZ (Y, ZfkZ) = H,(Y[Cy, Z[KZ).
Proof. We first show that the map a : C(¥; Z/kZ) — C(Y; Z{kZ) and the map
n, . C(Y; Z[kZ) — C(Y[/Cy ; Z{KZ) induced from the orbit map n:Y — Y/Cy

have the same kernel. Let o be a singular s-simplex of Y. We need only to consider
elements of C(C;0), since C(Y) = Qglea(s)/c; C(Cro), where A(s) is the set of

singular s-simplexes of Y and A(s)/C;, is its orbit set under the induced action.

Since a(z ng' c) = (z n; )a(c), a(z ng' c) =0 if and only if Zn,- =0,
and similarly =, (z nigi c) = (z n; )n og =0 if and only if Zn,« = 0; therefore,
both kernels coincide,

We next show that m, is surjective; namely, there is a lift T: A" - ¥ of
1:A° - Y/Cy, where A® denotes the affine span of (s + 1)-points which are

affine independent. Since A° is contractible, there is a homotopy H':A° x[0,1]

— A% such that H'(-, 0) = Cqp and H'(=, 1) = id s> Where ¢, denotes the constant

map whose value is ey € A°. Then the composition H =10 H' is a homotopy
from the constant map cy(,,) to t. Let yp be a point of ¥ such that n(yp) = t(eg),
and ¢), : A" - Y the constant map whose value is y,. Since H(-, 0)=moc,,
it follows from Proposition 2.3 that there exists a lift A : A° x[0,1] > ¥ of H such

that H(-, 0) = c,,. Then ¥ := (-, 1) isalift of © = H(, 1).

Since w, is surjective, aC(Y; Z/kZ) and C(Y/C,; Z/kZ) are isomorphic as

chain complexes. Accordingly their homology groups are also isomorphic. O

Proof of Theorem 1.1. Assume that there exists a continuous Cp-map f: X
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— Y under the conditions of Theorem 1.1. Since X is arcwise connected, f(X)} is
acrwise connected. Hence f(X) is contained in an arcwise connected component of

Y. Therefore it is sufficient to prove the case where Y is arcwise connected.

We first prove the case where & = 2. Since f is a continuous C, -map,

afy = fyo.

For simplicity, we abbreviate the coefficient Z/2Z in the singular homology.

By Theorem 2.2, we have a commutative diagram

- HL,(X) B HNX) S HJX) B OHX) B OHO,(X) — ...
fel el fol fel fel
8Y i a¥ aYy
— ,‘.’,,.,(Y) = HS(Y) = H,(Y) > H,‘,’(Y) = HZS (Y) — ...
- HZX) 5 om0 B HpO) B OHIO) B Ho(X) B HE(X) — 0
Jel . fol . Sl . ol . fol . ol Sl
~ HMY) 5 H(®Y) B HY) %5 HR(Y) 5 Ho(v) B HE(Y) — o

with exact rows.

By definition, (iX), =0 and (if )y = 0. Thus (a), : Ho(X) - HE(X)
and (af Yo : Ho(Y) > H{(Y) are isomorphisms. By assumption, Ho(X) = Z/2Z.
Hence Hy(X)= H{(X)=x Z{2Z. Similarly, Hy(Y)= H§(Y) = Z/2Z. Since
(f+)o : Ho(X) = Hy(Y) is an isomorphism and (o Yoo () =)0 (OL;Y)O,
(fi*)g : HY(X) > H§(Y) is an isomorphism. Since (iX), =0, we have
(8 ), = Ker (i )y = H$(X). Thus we see that (87 ), o (£), = (f:), = (6%), :
H{Y(X)— H§(Y) is a non-zero homomorphism. Hence (£7), : H{* (X) > H*(Y)
is a non-zero homomorphism. Using the assumptions on X, we see that (8% )q :
HZ(X) = Hg_1(X) is an isomorphism for each 1< ¢ < n. Using this fact and
by induction, we can prove that (f%) g H X)) H 2‘ (¥) is a non-zero

homomorphism foreach 0 < g < n.
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By Proposition 2.4, Hy. (Y)= H,,(Y/C,). Thus Hy,(¥)=0. Hence

(), : H3(Y) - H,(¥) is injective and (i), o(f:2), : HX(X) - H,(Y) isa
non-zero homomorphism.

On the other hand, since H,(X) =0, (if)n o(fi), = (), o (i )y = 0. This

contradiction proves the theorem in this case.

Next, we prove the case where & > 2. For simplicity, we abbreviate the
coefficient Z/kZ in the singular homology. By Theorem 2.2, we have two
commutative diagrams

- HIX) S H() B o) BOHL(X) — ...
fel Ly J R
- HY) 5 H.) B oHEY) % He,(Y) - ...

&
1%

1%

-~ HX) 5 om0 B EO B om0 S mx) B HEX) - o
R 21 N T % £ I
- HY) 5 my) B HAY) B oHY) B H(Y) B HEY) - o

and

~ ) % om) B om) B omax) %
fel Ji £l fel

. P af o
— HZ.(Y) = HE(Y) & H.(Y) B H3(Y)

K3

HE_(x) — .
721

1%

HE_(Y) — ...

~ B B om0 % HR) B OEEX) B HX) % OH(X) — o
2l £l fel I £l fel 5l

Y

4 i d ' 4 Y
-~ H(Y) & m) S HY) B HAY) B Ho(Y) = HSY) —~ 0O

with exact rows.

We easily see that (i Jo =0 and (4 Jo = 0. Thus (7 Yo : Ho(X) > Hg (X)
and (BY Yo : Ho(Y) = Hg(Y) are isomorphisms. Since (f.), : Ho(X) = Ho(Y)
is an isomorphism, (/P Jo Hg (X))~ Hg (Y) is an isomorphism. Similarly, we see
that (f)g : H3 (X) — HG(Y) is an isomorphism from the second diagram. Since
H|(X)=0 and (if()0 =0, (a;")1 : HP(X) —> H§(X) is an isomorphism.
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