A Note on the Existence Problem of Isovariant Maps between

Representation Spaces
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Abstract. In this note, we discuss the converse of the isovariant Borsuk-Ulam
theorem. In particular, we show that the converse holds for dihedral groups D3,
Dy and Dg. On the other hand, the converse does not hold for other dihedral
groups Dn, n # 3, 4, 6.

1. Introduction

Let G be a compact Lie group. A G-isovariant map f : X — Y between G-spaces is
defined as a G-equivariant map preserving the isotropy subgroups, i.e, Gy = G () for
all x € X. This notion was introduced by Palais [16] in order to study a classification
problem for orbit maps of G-spaces.

In transformation group theory or equivariant topology, the existence and classifi-
cation problem of G-maps is fundamental and important. Since Borsuk [2] proved the
famous antipodal theorem, Borsuk-Ulam type theorems studied by many researchers,
see for example [1], [4], [5], [6], [7]. These results are thought of as nonexistence re-
sults of G-maps, and have many applications; for example, Furuta [3] shows the 10/8-
theorem in 4-dimensional topology using a Borsuk-Ulam type theorem, and Matousek
[8] illustrates several applications to combinatorics. Further results and applications
on the Borsuk-Ulam theorem can be found in [14], [15].

Wasserman [18] first considered an isovariant version of the Borsuk-Ulam theorem.
After that, Nagasaki [9], [10], [11] and Nagasaki-Ushitaki [13] also studied isovariant
Borsuk-Ulam type theorems. One of Wasserman’s results is the following.

Theorem 1.1 (Isovariant Borsuk-Ulam theorem). Let G be a solvable compact Lie
group and V., W (real) G-representation spaces; namely, G acts linearly on the (finite
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dimensional) real vector spaces V. and W. If there exists a G-isovariant map from V

to W, then the inequality
dimV — dim V¢ < dim W — dim W9
holds. Here V& denotes the G-fized point sets of V.

In other words, if dimV — dim V% > dim W — dim W, the there is no isovariant
map from V to W. In this note, we discuss an existence problem of isovariant maps
between G-representation spaces, which is considered as the converse of the isovariant
Borsuk-Ulam theorem. In [11], we discussed it when G is an finite abelian p-group
or a certain finite cyclic group. In this note, we shall discuss it when G is a certain
dihedral group and show an existence result of isovariant maps under some dimensional

conditions. The main result is Theorem 4.1 in section 4.

2. Basic facts of isovariant maps

In this section, G is a compact Lie group. Notation H < G means that H is a closed
subgroup of G and a subgroup means a closed subgroup.

We recall some basic facts for isovariant maps. Let f : X — Y be a G-map.
Throughout this article, all maps are understood to be continuous. Let H be a subgroup
of GG. By restriction of the G-action to the H-action, an H-map Resyf : Resy X —
ResgY is defined, and by restriction of f to the H-fixed point set X an Ng(H)/H-
map f7: XH — Y¥H is defined, where Ng(H) denotes the normalizer of H in G. Let
H be a normal. subgroup of G. Let X, Y be G/H-spaces and f: X — Y a G/H-
map. Via the projection p : G — G/H, X and Y are regarded as G-spaces, denoted
by Infg suX and Infg suY respectively, and f is regarded as a G-map, denoted by
Infg suf- These are called the inflation of a G/H-space or a G/H-map. We often omit
the symbols Resy and Infg ,u for simplicity if there is no misunderstanding in context.

In [11] we have shown the following.

Lemma 2.1. The following hold.

(1) If f is G-isovariant, then Resy f is H-isovariant for any H < G.

(2) Let H be a normal subgroup. If f is G-isovariant, then f¥ is G/H-isovariant.

(3) Let H be a normal subgroup. If f : X — Y is G/H -isovariant, then Infg/Hf
is G-isovariant.

(4) Iff: X1 — Y1 and g : Xo — Yz are G-isovariant, then fxg : X1 x X — Y1 xY3
18 G-isovariant under the diagonal action.

— 377 —



35

(5) If f: X1 — Y1 and g : Xo — Y3 are G-isovariant, then so is f+g: X1 * Xo —
Y1 %Y, where x means join, in particular, the cone of f, Cf : CX; — CY1, is
G-isovariant.

6) If f: X—>Y and g:Y — Z are G-isovariant, then soisgo f: X — Z.

() If f : X =Y is H-isovariant, then Gxgf: GxgX — GxgY is G-isovariant.

We may assume that a real G-representation V is an orthogonal G-representation
without loss of generality, because every real representation is isomorphic to an or-
thogonal representation [17]. Then, the standard inner product on V is G-invariant,
and so the unit disk and the unit sphere are G-invariant submanifolds, denoted by SV
and DV respectively. Moreover VG denotes the orthogonal complement of V¢ in V,
which is a subrepresentation of V.

The main results in [11] are not affected, but Lemma 2.2 of [11] is unfortunately

missing an assumption. We correct it as follows.

Lemma 2.2. Let V, W be G-representations. For statements (1)—(6) below (1) implies
(2) and statements (2)—(6) are equivalent. Furthermore if Iso SV C Iso SW, then all

statements are equivalent, where Iso SV denotes the set of isotropy subgroups of SV.

(1) There exists a G-isovariant map from SV to SW.
(2) There exists a G-isovariant map from V to W.
(3) There exists a G-isovariant map from S(VGL) to S(WGJ').
(4) There exists a G-isovariant map from VG to WCT.
(5) There exists a G-isovariant map from DV to DW.
(6) There exists a G-isovariant map from D(VGJ') to D(WG'L).
Proof. (1) = (2): Take the open cone of an isovariant map f: SV — SW.

(2) = (4): Let f: V — W be an isovariant map. The inclusion i : VG~ — V
is clearly G-isovariant, and the projection p : W = wet eWE — WS is also G-
isovariant, since G acts trivially on W&. Hence the composite map po f o : Vet
WS is G-isovariant.

(4) = (3): Let f : V€~ — WS be an isovariant map. Since (VE)¢ = (WGH)E =
0, we have £~1(0) = {0}, and hence a G-isovariant map g : S(VE") — S(WSE™) can
be defined by 9(z) = £(z)/||f ()]

(3) = (6): Taking the cone of an isovariant map f : S(VGJ“) — S(WGJ"), we obtain
a G-isovariant map f : D(VE™") — D(WE™).
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(6) = (5): Since any map g : D(V®) — D(W) is G-isovariant, taking product, we

obtain a G-isovariant map
Fxg:D(V)=DVE) x D(VE) = D(W) = D(WE™) x D(WE).

(5) = (2): Let f: DV — DW be a G-isovariant map. Define g : DV — DW by
g(z) = f(x)/2, then g is G-isovariant and maps DV to the interior Int DW of DW.
Hence we obtain a G-isovariant map g pv @ V ¢ Int DV — W ¢ Int DW.

When Iso SV C Iso SW, the implication (3) = (1) is shown as follows. Let f :
S(VE™) — S(WS™) be an isovariant map. If SVG = 0, then SV = S(VE™), and
hence io f : SV — S(WOE™) C SW is isovariant. If SVC # 0, then SWE # 0, since
Iso SV C Iso SW. Take any map g : SV — SWE. The join of f and g gives an
isovariant map from SV to SW. Thus the proof is complete. ' |

3. The existence problem of isovariant maps
In this section, G is a finite group.

Definition. We say that G has the IB-property over R [resp. C]. if the isovariant
Borsuk-Ulam theorem holds for orthogonal [resp. unitary] G-representations; namely,
the inequality dimV — dim V% < dimW — dim W holds for every pair (V,W) of
G-representations such that there is a (continuous) G-isovariant map from V to W.

As being proved below, G has the IB-property over R if and only if G has the
IB-property over C, and therefore we say for simplicity that G has the IB-property.

Proposition 3.1. The following statements are equivalent.

(1) G has the IB-property over R
(2) G has the IB-property over C

Proof. (1) = (2): Suppose that f : V — W is a G-isovariant map between uni-
tary representations. By restriction of the ground field C to R, a G-isovariant map
Resrf : ResgV — ResgW between orthogonal representations is obtained, and hence
the inequality dimV — dim V% < dim W — dim W€ holds.

(2) = (1): Suppose that f : V — W is a G-isovariant map between orthogonal
representations. Taking a direct sum, we obtain an isovariant map fe f: VeV —
WaW. Since V@V has a complex structure, in fact, VeV = VQC for some complex
structure on V & V', we obtain a continuous isovariant map f@ f: VC - W C.
Hence the inequality dimV — dim V¢ < dim W — dim W< holds. O
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By Theorem 1.1, every finite solvable group has the IB-property. Wasserman [1§]
shows that a finite groups satisfying the prime condition (e.g., As, S5 etc.) also have the
IB-property, and Nagasaki [9] says that a weaker version of the isovariant Borsuk-Ulam

theorem holds for an arbitrary compact Lie group.

Remark. The author, however, does not know an example of not having the IB-
property.

Let G be a finite solvable group, and V' and W G-representations. Suppose that there
exists a G-isovariant map from V to W. For any pair of subgroups H <K (H is normal
in K), the restriction of f to the H-fixed point sets yields a K/H-isovariant map
fH :VH — WH, Since K/H is also solvable, the isovariant Borsuk-Ulam theorem
shows that

(Cyw): dimVH —dim VE < dim WH — dim WX for any pair H < K.
Moreover the pair (V, W) must obviously satisfy

(Ivw): IsoV CIso W,

Definition. We say that a finite solvable group G has the complete IB-property over
R [resp. C] if for every pair (V, W) of orthogonal [resp. unitary] G-representations
satisfying conditions (Cvw) and (Iyw), there exists a G-isovariant map from V to
W.

In [11] we show that if G is nilpotent, then (Cyv,w) implies (Iy,w). In the case,
(Iv,w) can be removed from the above definition. Note also that if G has the complete
IB-property over R, then G has the complete IB-property over C; however, the author
does not know whether the converse of this property holds. We have proposed the

following question in [11].

Question. Which finite solvable groups have the complete IB-property over R (or C)?

4. Results and proofs
Concerning the question, we have shown [11] that the following groups have the com-
plete IB-property over R.

(1) abelian p-groups,
(2) Cpmgn, the cyclic group of order p™¢™ (m > 1, n > 1),
(3) Chpgr, the cyclic group of order pgr.
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Here p, q, r are distinct primes.
Remark. S. Kéno also obtained that Cpmg» has the complete IB-property over C.

We give new examples of having the complete IB-property over R and of not having
the complete IB-property over R.

Theorem 4.1. Let D,, denote the dihedral group of order 2n (n > 3).

(1} Ds, D4 and Dg have the complete IB-property over R.
(2) Ewvery D,, (n# 3,4,6) does not have the complete IB-property over R.

Remark. Since Dy & Cs and Dy =2 Cy x Cs, these also have the complete IB-property
over R by the previous result.

Remark. In [12], the author announced that some dihedral groups have the the complete

IB-property over R, but unfortunately it is incorrect.

We first recall the subgroup structure of D,,. Let
D, = {(a,bla™ =b* =1,bab™* =a™*).

There is the normal cyclic subgroup C,, = (a™/™) of D,, for every divisor m of n, and
there are n/m dihedral subgroups (a™™,b), (a™/™,b%), ..., {a™/™ a™ ™ 1b) containing
Cyn as a subgroup of index 2. If n/m (= [D,, : D,,]) is odd, then these are all conjugate
in D,,. We take D,, = (a™™,b) as a representative of their conjugacy class. If n/m is
even, then there are two conjugacy classes whose representatives are D,, = (a”/ ™ b)
and D!, = (a™/™, ab).

We next recall the orthogonal irreducible representations of D,, from [17]. These are
described as follows. Let T = C (= R?), 1 < k < n/2, be the D,-representation on
which D, acts by a-z = &%z, b-z = Z, 2 € Sy, where £ = exp(2my/—1/n). These T}, are
all (nonisomorphic) 2-dimensional irreducible representation. Other irreducible repre-
sentation are 1-dimensional. If n is odd, then there are two 1-dimensional irreducible
representations R4, and Ry _, where R is the trivial representation and R, _ (= R)
is a representation on which the action is given by a-z =2,b- 2 = —z, z € R.

If n is even, in addition to Ry, and R, _, there are more two 1-dimensional irre-
ducible representations R_, and R__. The actions on R_, and R__ are given by
a-x=-x,b-x=2x,and by a-x = —z, b-x = —x, respectively. Note, then, that

Ker Ty = C(in), Ker Ry =Cy, Ker R = D, 0, Ker R__ = D;/z.

— 381 —



39

Note also that
Iso Ty = { Dy, (@™ ™ atb), (a™ *™Y |0 <t <n—1},
Iso Ry = {Dy,Cpn}, Is0 Ry ={Dy,Dypso}, IsoR__ ={Dy, Dy}
We first show (1) of Theorem 4.1 in the case of n = 3, 4.

Proposition 4.2. Suppose n = 3, 4. Given D, -representations V. and W satisfying

condition (Cv,w ), there exists a Dyp-isovariant map from V to W.

Proof. We first consider the case of n = 3. There is only one 2-dimensional irreducible
representation T;. By Lemma 2.2, we may assume that VP» = WP» = 0. Hence we
may put

V=0T ®aR;_
and

W =bT1 bRy _,
where a; and b; are non-negative integers, and a17; denotes the direct sum of a, copies
of Ty. The inequalities (Cy,w ) for pairs (1, C3) and (Cs, Dg) lead to inequalities a; < by
and ag < by. Hence there is a natural inclusion from V to W, which is an isovariant
map.

Next consider the case n = 4. In this case, there is only one 2-dimensional irreducible

representation 7. By a similar argument, we may put
V=a1T1®aR;_ dasR_| PasR__
and
W=b06T19R,_®bR_, & byR__.

The inequalities (Cy,w) for pairs (1,C3), (Cy, Da), (D2, Dy4), and (D5, Dy) lead us to
inequalities a; < b;, i = 1,2,3,4. Hence there is a natural inclusion from V to W,

which is an isovariant map. O
We next discuss the case of n = 6.

Proposition 4.3. Given Dg-representations V' and W satisfying condition (Cy,w),
there exists a Dg-isovariant map from V to W.

Proof. There are two 2-dimensional irreducible representations 77 and 7. By a similar

argument as above, we may put

V=071 ®alr®asR,_BasR_; asR__
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and
W =0T ®bTo D3R, _ & b4R_+ D bsR__.

The following is a table for dimensions of H-fixed point sets of irreducible Dg-represen-

tations.
dim XH 1 Dl Dll Cz Dg Cg D3 Dé 06 D6
T 211 1 0 0 0 0 0 0 0
T 211 1712]1]0]0]0(0}]O0
Ry [1]o]o]1lofl1|lOo|O|1]oO
R_, 111 0 010 1 1 0 0 0
R__ 110 1 0|0 1 0 1 0 0

Considering pairs (Cs, Cs), (Cs, Dg), (D3, Dg) and (D4, Dg), we obtain inequalities
a; S bi for i= 2,3,4,5

from condition (Cv,w). Considering pairs (D1, Ds), (Df,Ds) and (1,C3), we also

obtain inequalities
a1 +aq <by+by, a1+as<bi+bs, ar+ax<b+be

If a7 < by, then there is a natural inclusion from V' to W, which is an isovariant map.
‘We now assume that a; > b;. The above inequalities shows

0<ar—by<by—az, 0<a—by<bi—as, 0<a;—b <bs—as.
Decompose V' and W into
V=V'eV" and W=W oW’
where
V' = (a1 — b1)Th,
V'"=bT, ®asTo ®asRi_ DasR_, SasR__

and
W/ = (bg - CL2)T2 P (b4 — (l4)R,+ (&} (bs — 0.5)]1{4_,

W' = 171 ®axTs ®bsRy_ @ ayR_ GasR__.

Since a3z < bs, there is a natural inclusion from V" to W”. Therefore It suffices to
show the existence of an isovariant map from V’ to W’. To show this, it suffices to

show that there exists an isovariant map

fTi—-TeR_L&R__,
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since a; —b; < a; —b;, © = 2,4,5. Indeed this is proved as follows. Set U = T, dR_, &

R__. The dimensions of H-fixed point sets are the following.

(H) | 1Dy |Di|Cy|Dy|Cy|Ds|Dsl|Csl|Ds
GmUA 42 22|12 |1]1]0]0

By Lemma 2.2, it suffices to show that there exists an isovariant map f : STy — SU.
It is easily checked that ST} is decomposed into STy = (G/(b) [ G/{ab)) Uy G x I as
a G-CW complex, where G = Dg and [ is the interval [0,1]. The attaching map
¢: Gx{0,1} — G/(b) || G/(ab) is equivariantly defined by ¢(1 x 0) = (b) € G/(b) and
¢(1 x 1) = (ab) € G/{ab). On the other hand, SU has the 1-dimensional singular set

su>t= ) suet|Jsuc:| Jsucs.
0<t<n~1

and its complement SU\SU>! is path-connected. Note that G acts freely on SU\SU>*.
Take points y, z € SU such that G, = (b) and G, = (ab). Then an isovariant map
fo : G/(b)[1G/(ab) — SU is defined by fo(g(b)) = gy and fo(g(ab)) = gz. Since
SU \ SU>! is path-connected, one can take a path ¢ : I — SU such that ¢(0) = y,
©(1) = z, and (I \ {0,1}) € SU \ SU>!. Using this map, one can equivariantly
extends fp to a map f : STy — SU, which is an isovariant map. Thus the proof is
complete. |

Finally we discuss (2) of Theorem 4.1.

Proposition 4.4. Suppose n # 1,2,3,4,6. Let k and | be distinct positive integers
less than n/2 with (k,n) = (I,n) = 1. Then there is no Dy-isovariant map from T} to
T;.

Proof. Suppose that there is a D, -isovariant map from Ty to 1; for some k£ and I.
Lemma 2.2 shows that there is a D,-isovariant map f : ST — S7;. Note that
ST = ST = {exp(nt\/—1/n)|0 <t <n—1}. Take z =1 and y = exp(mv/—1/n),
then the isotropy subgroup G, at z in ST is (b), and also Gy = (a®b) in ST}, where
s is a positive integer with ks = 1modn. Since STl<b) = {x1} ¢ C, it follows that
f(1) = £1. Composing, if necessary, the antipodal map z — —z with f, we may
assume f(1) = 1. Let A is the shorter arc joining x with y in STy. Since every point
of the interior of A has the trivial isotropy subgroup, it follows that f(A\ {z,y}) is
contained in ST} \ ST;™!; hence f(y) must be y or j. However the isotropy subgroup
at y (resp. §) in ST; is equal to (a"b) (resp. {a~"b)), where r is a positive integer with
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Ir = 1modn, but it is not equal to (a®b), since | # *kmodn. This contradicts the

isovariance of f. O

From this proposition, (2) of Theorem 4.1 is easily seen; in fact, every pair (T}, T})
as above satisfies conditions (Cry, 1) and (I, 7). Thus the proof is complete.
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Abstract

Background/aims: Scant consideration has been given to the variation in structure of
human amniotic membrane (AM) at source or to the significance such differences
might have on its clinical transparency. Therefore, we applied our experience of
quantifying corneal transparency to AM.

Methods: Following elective caesarean, AM from areas of the fetal sac distal and
proximal (i.e. adjacent) to the placenta was compared to freeze-dried AM. The
transmission of light through the AM samples was quantified spectrophotometrically,
also measured were tissue thickness by light microscopy and refractive index by
refractometry.

Results: Freeze-dried and freeze-thawed AM samples distal and proximal to the
placenta differed significantly in thickness, percent transmission of visible light and
refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission
spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the
highest refractive index. Using the direct summation of fields method to predict
transparency from an equivalent thickness of corneal tissue, AM was found to be up
to 85% as transparent as human cornea.

Conclusion: When preparing AM for ocular surface reconstruction within the visual
field, consideration should be given to its original location from within the fetal sac
and its method of preservation, as either can influence corneal transparency.
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