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We next examined the profiles of proteins smaller than
3.5 kDa obtained from seven representative samples each
of basal and reflex tear fluid (Fig.1D). For this purpose, the
selected peak must have sufficient intensity to generate a
valuable MS/MS fragment spectrum, and a spectrum is ac-
quired in the high-resolution reflectron mode to determine
the exact mass of the molecule of interest. Although it is
clear from visual inspection (Fig.1D), the two peaks in the
spectra obtained from the reflex tears seemed to be the key
protein / peptides peaks contributing the most towards the
group selection by PCA loading plots as well (data not
shown). Subsequently, the TOF/TOF fragment spectrum is
acquired from the same sample spot and used for de-novo

Basal Tear

sequencing or database search. Before the analysis, the
tear fluids were concentrated using a ZipTip (Millipore). In
the MALDI-TOF/TOF mode, precursor ions were accel-
erated to 8 kV and selected in a timed ion gate. The frag-
ments were further accelerated by 19 kV in the LIFT cell
and their masses were analyzed after the ion reflector pas-
sage. S/MS spectra were searched against the human
NCBI database using the MASCOT search algorithm (http:/
/www.matrixscience.com/home.html), with a mass toler-
ance of 0.2Da for MS and 0.75 for MS/MS. No enzyme
was selected and methionine oxidation and acetylation of
the N terminus were used as variable modifications
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Figure 1: (D) ClinProt profiles of basal and reflex tear fluids eluted from WCX beads in the mass range 1000-3500 Da
m/z (n=7). In the reflex tear fluid samples, the height of two peaks increased markedly (m/z 2422 and 2721) (inside the

dotted squares).
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The Mascot probability score ore for the peak with m/z
=2,422 was 66, indicating a reasonably high confidence in
identifying the peptide sequence. The sequence was deter-
mined to be QEASSFFRRDRPARHPQEQP, which
matched the C-terminal fragment of proline-rich protein 4
(aa. 113-132) (locus number AAB26584) (Supplementary
data A) (Fung, 2004). A complete MS/MS spectrum of the
peak with m/z =2,721 was not obtained; however, the pep-
tide sequence was determined to be RRDRPARH ~W,
which partially matched the C-terminal fragment of pro-
line-rich protein 4 (aa.120-134) in the NCBI BLAST pro-
tein-protein database (locus number AAB26584) (Supple-
mentary data B).

We also analyzed the protease-digested HPLC fractions
of our samples by 15 ESI-LC/MS/MS (esquire HCT; Bruker
Daltonics). Not surprisingly, several well-known abundant
tear proteins, such as lysozyme, lacritin, lipocalin, and
secretoglobin, were detected, and a total of proteins, in-
cluding PRP4, were identified in the reflex tear fluids. In
this study, lactoferrin was not among the abundant proteins
detected in tear fluids (Kijlstra, 1989).

Proline-rich proteins (PRPs) are believed to play a sig-
nificant role in the oral mucosal defense system, in which
they affect the aggregation of microorganisms, thereby de-
creasing the organisms’ capacity to colonize tissue surfaces
(Fung, 2004; de Souza, 2006). In addition, bacterial proteases
are known to clip the N-5 -terminus of PRPs, releasing two
peptides that have cytokine-like properties, by which they
up-regulate the host defense against potential pathogens.
PRP4 is expressed in the lacrimal acinar cells and other
anterior exocrine glands (Dickinson, 1995). Since the reflex
tear fluids were collected soon after the nasopharyngeal
scrub, the PRP4 detected in the reflex tear fluids may have
been stored in the acinar cells and released quickly after
the stimulation. In addition to PRPs, lysozyme is reported to
mediate protective functions in the eye (Kijlstra, 1989; Zhou,
2006; Li, 2005; Fung, 2004; de Souza, 2006). Lysozyme
serves as a non-specific innate opsonin by binding to the
bacterial surface, reducing the negative charge, and facili-
tating phagocytosis of the bacterium before opsonins from
the acquired immune system arrive at the scene. In con-
trast to PRP4, the peak height of lysozyme showed no re-
markable difference between the basal and reflex tear flu-
ids. Thus, it is possible that PRP4 is the first molecule that
rapidly confronts foreign antigens at the ocular surface.

In conclusion, the key finding of this study is the up-regu-
lation of a C-terminus of PRP4 in the reflex tear fluids from
normal healthy subjects. Accordingly, the magnetic bead

separation and MALDI-TOF analysis in combination with
bioinformatics software is useful for the high-throughput
protein profiling of tear fluids. This is the first study demon-
strating the usefulness of the ClinProt beads system for r
this purpose. This simple and easy approach may be appli-
cable to the discovery of biomarkers in ocular diseases as
well.

Acknowledgements

We are grateful to Dr. Seta J. (Bruker Daltonics) and
Miss Tanaka M. and Omi N. for technical support. We also
thank Dr. Yoneda K. for sample collection. We are indebted
to Drs. Nakano, Taniguchi and Yagi for discussion and Mrs.
Kamisako and Miss Tsuda for their excellent clerical work.

References

1. Cheng AJ, Chen LC, Chien KY, Chen YJ, Chang JTC,
etal. (2005) Oral cancer plasma tumor marker identi-
fied with bead based affinity-fractionated proteomic
technology. Clinical Chemistry. 51:2236-2244.

2. Dickinson DP, Thiesse M (1995) A major human lacri-
mal gland mRNA encodes a new proline-rich protein
family member. Invest Ophthalmol Vis Sci. 36:2020-31.

3. Fung KY, Morris C, Sathe S, Sack R, Duncan MW
(2004) Characterization of the in vivo forms of lacri-
mal-specific proline-rich proteins in human tear fluid.
Proteomics. 4:3953-9.

4. Gruns FH, Podust VN, Bruns K, Lackner K, Fu S, etal.
(2005) SELDI-TOF-MS ProteinChip array profiling of
tears from patients with dry eye. Invest Ophthalmol Vis
Sci. 46:863-76.

5. Hu S, Loo JA, Wong DT (2006) Human body fluid
proteome analysis. Proteomics. 6:6326-53.

6. Ketterlinus R, Hsieh SY, Teng SH, Lee H, Pusch W
(2005) Fishing for biomarkers: analyzing mass spectrom-
etry data with the new ClinProTools software.
Biotechniques Suppl :37-40.

7. Kijlstra A, Kuizenga A, van der VM, van Haeringen
NJ (1989) Gel electrophoresis of human tears reveals vari-
ous forms of tear lactoferrin. Curr Eye Res 8:581-8.

8. Koo BS, Lee DY, Ha HS, Kim JC, Kim CW (2005)
Comparative analysis of the tear protein expression in
blepharitis patients using two-dimensional electrophore-
sis. J Proteome Res 4: 719-724.

J Proteomics Bioinform

Volume 1(7) : 368-373 (2008) - 372

ISSN:0974-276X JPB, an open access journal

— 197 —



Journal of Proteomics & Bioinformatics - Open Access

www.omicsonline.com

Research Article

JPB/Vol.1/October 2008

10.

11.

12.

LiN, Wang N, Zheng J, Liu XM, Lever OW, etal. (2005)
Characterization of human tear proteome using multiple
proteomic analysis techniques. J Proteome Res. 4:2052-
61.

Mirre EDN, Rob AEMT, Aliya OTA, Kuppen PJK,
etal. (2005) Reliability of human serum protein profiles
generated with C8 magnetic beads assisted MALDI-
TOF mass spectrometry. Analytical Chemistry. 77: 7232-
7241.

de Souza GA, Godoy LM, Mann M (2006) Identifica-
tion of 491 proteins in the tear fluid proteome reveals a
large number of proteases and protease inhibitors. Ge-
nome Biol. 7:R72.

Tomosugi N, Kitagawa K, Takahashi N, Sugai S,
Ishikawa I(2005) Diagnostic potential of tear proteomic
patterns in Sjogren’s syndrome. J Proteome Res. 4: 820-
5.

13.

14.

15.

Villanueva J, Philip J, Entenberg D, Chaparro CA,
Tanwar MK, etal. (2004) Serum Peptide Profiling by
Magnetic Particle-Assisted, Automated Sample Pro-
cessing and MALDI-TOF Mass Spectrometry. Ana-
lytical Chemistry. 76:1560-1570.

Zhang X, Leung SM, Morris CR, Shigenaga MK (2004)
Evaluation of a novel, integrated approach using
functionalized magnetic beads, bench-top MALDI-TOF-
MS with prestructured sample supports, and pattern rec-
ognition software for profiling potential biomarkers in
human plasma. J Biomol Tech. 15:167-75.

Zhou L, Beuerman RW, Foo Y, liu S, Ang LP, etal. (2006)
Characterisation of human tear proteins using high-reso-
lution mass spectrometry. Ann Acad Med Singapore
.35:400-7.

J Proteomics Bioinform

Volume 1(7) : 368-373 (2008) - 373

ISSN:0974-276X JPB, an open access journal

— 198 —



Available online at www.sciencedirect.com

=07 ) Topology
*.” ScienceDirect and its
Applications
ELSEVIER Topology and its Applications 155 (2008) 1066-1076 —————————

www.elsevier.com/locate/topol

Isovariant maps from free C,-manifolds to representation spheres *

Ikumitsu Nagasaki **, Fumihiro Ushitaki ®

& Department of Mathematics, Kyoto Prefectural University of Medicine, 13 Nishitakatsukasa-cho, Taishogun Kita-ku, Kyoto 603-8334, Japan
b Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan

Received 14 May 2007; received in revised form 22 January 2008; accepted 22 January 2008

Dedicated to Professor Kazuhiko Fukui on his sixtieth birthday

Abstract

The isovariant version of Borsuk—Ulam type theorems has been studied by Wasserman and the first author. In this paper, first we
consider the relation between the existence of Cp-isovariant maps from free C,-manifolds to representation spheres and Borsuk—
Ulam type inequalities for their dimensions. Our main result classifies the Cp,-isovariant maps by Cj-isovariant homotopy types
when a Borsuk--Ulam type inequality holds. For proving it, we use the multidegree of a C,,-equivariant map developed by the first
author.
© 2008 Elsevier B.V. All rights reserved.

MSC: primary 57S17; secondary 55M20, 55M35
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1. Introduction

Throughout this paper, all maps are understood to be continuous. Borsuk—Ulam theorem says that if there is a
continuous map between spheres f : §™ — §” such that f(—x) = — f(x) for all x € §™, then m < n holds [1]. From
a viewpoint of the theory of transformation groups, this theorem is read as follows.

Proposition 1.1. Let Cy be a cyclic group of order 2. Assume that Cy acts on both S™ and S™ antipodally. If there
exists a continuous Cy-map f:S™ — §", then m < n holds.

In the theory of equivariant topology, Borsuk—Ulam type theorems are one of the most basic theorems, since they
state whether a G-equivariant map exists or not between given G-spaces. Recently one of such Borsuk—Ulam type
results played an important role in a partial solution of the 11/8-conjecture [6]. Moreover, it has been generalized
in various directions and applied in several areas of mathematics, for example, combinatorics [9], nonlinear analysis
[13,14], and so on.
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Let G be a group. Suppose X and Y are G-spaces. A G-equivariant map ¢ : X — Y is called a G-isovariant map,
if it preserves the isotropy groups, that is, G = G(x) holds for all x € X. We note thatif ¢ : X — Y is G-equivariant,
it always holds that G, C Gy(x) for each x € X. For G-homotopy equivalent G-isovariant maps ¢, ¥ : X — Y, let
F:X x [0,1] = Y be a G-homotopy from ¢ to ¥. If F is a G-isovariant map, it is called a G-isovariant homotopy
from ¢ to ¥, and it is said that ¢ and ¢ are G-isovariantly homotopic. We denote by [X, Y ]igo" the G-isovariant
homotopy classes of all G-isovariant maps from X to Y. Various theories and results in the isovariant setting have
been obtained by several authors. For example, isovariant surgery theory on a stratified set [2,4], isovariant homotopy
theory [5], the isovariant s-cobordism theorem [2,8], and so on. The following isovariant Borsuk-Ulam theorem was
proved by Wasserman [15].

Proposition 1.2 (Isovariant Borsuk—Ulam theorem). Let G be a finite solvable group, and let V and W be G-
representations. If there exists a G-isovariant map f:V — W, then the following inequality holds:

dimV —dim VY £ dim W — dim WO,
where W is the G-fixed point set.

Various results concerning the relations between Borsuk—-Ulam type inequalities and the existence of isovariant
maps have been also studied by the first author [10-12]. In this paper, we begin by considering similar problem in the
following situation: G is a finite group, the source space is a mod |G|-homology sphere on which G acts freely, where
a mod|G|-homology sphere means a closed manifold whose homology groups are isomorphic to those of a sphere

with Z/|G| coefficients. The target space is a unitary representation sphere; namely, the unit sphere of a unitary
representation of G. Our first result is:

Theorem A. Let G be a finite group, and M an m-dimensional mod|G|-homology sphere on which G acts freely.
Let W be a unitary representation of G, and SW its G-representation sphere. If there exists a G-isovariant map
f M — SW, then for any subgroup H(# {e}) of G, the inequality

dimM + 1 £ dimSW — dim SW#
holds, where if SWH = @, we put dimSWH = —1.

For a given G-action on SW, the singular set SW>! is a subspace of SW defined by SW™! = 1< SW” . We
obtain the following corollary immediately.

Corollary B. Let G be a finite group, and M an m-dimensional mod|G|-homology sphere on which G acts freely.
Let W be a unitary representation of G, and SW its G-representation sphere. If there exists a G-isovariant map
f M — SW, then the inequality

dimM + 1 < dimSW — dim SW>! )
holds, where if SW>' = @, we put dimSW>1 = —1.

We next consider the converse of Corollary B when G is finite cyclic. Let C,, denote a cyclic group of order n. Our
second result is concerning the existence of C,-isovariant maps under the inequality (1).

Theorem C. Let M be an m-dimensional arcwise connected orientable closed C*-manifold with an orientation
preserving free Cy-action, and W a faithful unitary representation space of C,. If the inequality

dimM + 1 £ dimSW — dimSW>! 1)

holds, there exists a Cy,-isovariant map f: M — SW.

Under the assumption of Theorem C, we will discuss the classification problem of Cy,-isovariant maps f : M — SW
by Cy-isovariant homotopy types; in particular, we investigate the structure of [M, SW]&"" when the Cy-action on SW
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is not free. We remark that if the action is free, [M, SW]iCS‘Z" =[M, SW]c, holds. We will prove that [M, SW]ia‘l’" con-

sists of exactly one element under the inequality dim M + 1 < dim SW — dim SW>! by using equivariant obstruction
theory.

On the other hand, if dim M + 1 = dim SW — dim SW>!, various types of C,,-isovariant maps from M to SW exist.
In fact, set

A={H eIs0(SW) | dimSW# = dimsSw>'},

then Corollary E says that there is a one to one correspondence between [M, SW]iCSfl’v and @y 4 Z. To construct
this correspondence in Section 5, we will define the multidegree mDeg f which takes the value in @ 4 Z for
every Cp-map f: M — SWgee, where SWeee = SW\ S W>1!. Theorem D in Section 5 is a Hopf-type theorem for the
multidegrees of the C,,-maps and the key result for the classification problem of G-isovariant maps. Incidentally, the
concept of a multidegree was originally introduced by the first author for showing the existence of the S!-isovariant
maps from a rational homology sphere to a representation sphere [11].

This paper is organized as follows. In Section 2, we prove Theorem A and Corollary B. In Section 3, we give
a quick review from the equivariant obstruction theory in our setting which is used for proving Theorems C and D.
Section 4 presents a proof of Theorem C. Section 5 is devoted to the explanation of our main results. After defining the
multidegree of a C,-map from M to SWiree, we state Theorem D which is a Hopf-type theorem for the multidegrees
and Corollary E which is the solution of our classification problem, while their proofs are given in Section 6. In the
last section, we illustrate a couple of examples.

2. Borsuk-Ulam type inequalities

In this section, we prove Theorem A. Throughout this section, G is a finite group, W is a unitary representation
space of G, and M is a C°°G-manifold which satisfies the conditions given in the statement of Theorem A. For a
subgroup H of G, let (W)L denote the orthogonal complement of W# in W with respect to the Hermitian product.
We note that (W# )1 is also a representation space of H.

Lemma 2.1. Let p be a prime factor of |G|. If there exists a G-isovariant map f:M — SW, there exists a Cp-
eauivari . CpyL
quivariant map f,: M — S(W*r)=).

Proof. Since f: M — SWis Cp-isovariant and the action of C), on M is free, it follows that f (M) C SW\S WEr. The
actionof C, on § ((WCr)L) is free, and there exists a C p-homotopy equivalence between SW'\ SWEr and S(WEr)1)
given by the composition

1 1L 1L
SWA\SWEP ¢, W\ WP = ((WEP) T\ {0}) x WE ¢, (WEP) ™\ {0} ¢, S((WEP)™).
Hence, we can construct a Cp-equivariant map f, : M — S(wenhy. o
Proof of Theorem A. By the homological assumption on M, it holds that H.(M; Z/p) = H,(S™;Z/p) for any

prime factor p of |G|. By applying the C,-Borsuk—Ulam theorem [7] to the Cp-map fp,: M — SWEr constructed in
Lemma 2.1, we see that

dim M < dim S((WC?)") = dim SW — dim SWC — 1.
Hence for any subgroup H # {e}, it holds that
dimM + 1 <dimSW —dimSW?. o

Since dim SW>! = max(e)2 i< dimSW, Corollary B is an immediate consequence of Theorem A.
3. Equivariant obstruction theory
For the convenience of the readers, we give a quick review of the equivariant obstruction theory in our setting. This

theory is the main tool for proving Theorems C and D. The notations and propositions in this section are based on tom
Dieck’s book [3].
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Let G be a finite group. We first introduce suitable equivariant cohomology groups in our setting. Let (X, A) be
a relative G-CW complex such that G acts freely on X \ A, namely the n-skeleton X, is obtained from X,_; by
attaching free n-cells. The filtration (X, | n € Z) leads to a cellular chain complex C,(X, A)
d
o= Hyp 1 (Xpg1, Xp) — Hy (X, Xp—1) = -+,

where homology groups are singular homology groups with coefficients in Z and d is the boundary homomorphism
in the homology exact sequence for the triple {(X, 11, X, X,—1)}-

For any integer n € Z, the G-action on X, induces a G-action on H, (X, X,—1). Then, H,(X,, X,—1) is a left ZG-
module and C(X, A) becomes a chain complex of such modules. For any left ZG-module 7, the cochain complex

CE(X, Ay ) :=Homgzg (Cy(X, A); )

yields equivariant cohomology groups denoted by 9 (X, A; ). If a left ZG-module 7 is interpreted as a local
coefficient system {mr} on X/G \ A/G, then it holds that

9G(X, A;m) ZH*(X/G, A/ G {n}).

Let Y be an arcwise connected, n-simple G-space, where n 2 1, that is, 71 (Y, y) acts trivially on , (Y, y) for every
base point y. Then homotopy groups with different base points are canonically isomorphic each other, so we denote
this homotopy group by 7,(Y). Moreover the canonical map n,(Y) — [S”, Y] is bijective. Since the action on Y
induces the G-action on [S”, Y], the G-action on 7, (Y) is also induced. Thus 7, (Y) becomes a ZG-module, and we
have

96X, A (V) ZEH(X/G, A/G; {ma(V)}).
In addition, if G acts trivially on 7, (Y), we obtain
H5(X, A ma(Y)) 2 HY(X/G, A/ G; ma(Y)).
The following proposition shall be used for proving Theorems C and D.

Proposition 3.1. (See [3].) Let G be a finite group, (X, A) a relative G-CW complex such that G acts freely on X \ A.
Let Y be an arcwise connected m-simple G-space for every 1 < m < dim(X \ A). Then, the following hold.

(1) Ifﬁ‘é(X,A;Jrq_l(Y)) =0 for every 1 £ g £ dim(X \ A), then any G-map f:A — Y extends to a G-map
X—7.

(2) When a G-map f:A — Y extends to two G-maps F,F': X — Y, iff)‘é(X, A;mg(Y)) =0 forevery 1 Sq <
dim(X \ A), then F and F’ are G-homotopic.

4, Existence of isovariant maps

Let M be an m-dimensional arcwise connected orientable closed C°°-manifold with an orientation preserving free
Cy-action, and W a unitary representation space of C,. Set

A={H eIso(SW) | dimSW¥ = dimsw>'},

where Iso(SW) is the set of isotropy groups of SW. We begin this section by proving the following lemma.
Lemma 4.1. For distinct subgroups H, H' € A, we have:

(1) (H,H') ¢ A, where (H, H') is the subgroup generated by H and H'.
Q) WH£wH

Proof. First, we observe that H; C H; yields H| = H; for Hy, H, € A. In fact, assume H, g H,. Then, it holds that

swh g SWH1; thereby dim SW2 < dim SW because the fixed point sets are spheres. By the definition of A, we
conclude that H, ¢ A, which contradicts the definition of Ha. (1) is its immediate consequence. For proving (2), we
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note that WH N WH = wH.H") Since (H,H') ¢ A, we see that dim SWH-H) < dim SW>! = dimSW# . Thus we
have WH £ WH . O

We put SWiee = SW \ Sw>l. Proposition 3.1 says that if 5’)”5” (M; 7141 (SWgee)) = 0, there exists a C,-map
f:M — SWiee. Put k = dim SW — dim SW>!. Since the C,, -representation is assumed to be unitary, we have k 2 2.

Lemma 4.2.

(1) The space SWiee is arcwise connected, (k — 2)-connected and m-simple for every 1 Sm Sk — 1.
(2) The cyclic group Cy, acts trivially on mwg—1(SWigee).

Proof. (1) The arcwise connectivity of SWyee follows from k& = 2. The (k — 2)-connectivity follows from a general
position argument. In fact, by the homotopy exact sequence, we see that 7; (SWiree) = 741 (SW, SWiee) for i S
dim SW — 2. We show that 77; | (SW, SWee) =0 fori <k —2. Leta: (D!, §7) — (SW, SWiee) be any based map
for i <k —2. Since dim D! 4 dim SW>! < dim SW, there exists a based map o’ : (D'+1, §') — (SW, SWiee) based
homotopic to & such that &’ (D'*1) NSW>! = @. This implies that o’ (D' 1) C SWiree; thereby 741 (SW, SWiree) = 0.
Thus, if k > 2, SWiree is 1-connected; thereby it is m-simple forevery 1 Sm Sk — 1. If k = 2, SWiree is 1-simple by
Lemma 4.3 below.

(2) Since W is a unitary C,-representation, the C,-action on m;_1(SWgee) can extend to an Sl-action on
i —1(SWreee). Hence, the map induced by g € C, is homotopic to the map induced by the identity element e € C,,.
Thus, C,, acts trivially on my—1 (SWeee). O

Lemma 4.3. If k = 2, then the fundamental group w1(SWiee) is Abelian.

Proof. Set

SWatree =SW\ ] SWH = (1) (sw\swH).
HeA HeA
Since dimSW — dim SWX = 4 for {e} # K € Iso(SW) \ A, we see that the inclusion SWeee C SW 4-free induces an
isomorphism 771 (SWiree) = 71 (SW 4-free) by a general position argument. Put
W A-free = W \ U WH’
HeA

then SW 4-free 1S a strong deformation retract of W g4-gee. It is sufficient to show that w1 (W 4-fee) is Abelian. Since
by assumption dim(W#)+ =2 for H € A, it is irreducible. Moreover, since (W)L £ (WH)L if H £ H', W is
decomposed as

w=@whHew
HeA
for some W’. Thus one can see that W 4_free is homeomorphic to [ A((WH )L\ {0}) x W’ whose fundamental
group is isomorphic to Py 4 Z. O

Proof of Theorem C. By Lemma 4.2, we have
ﬁ*G (M’ Tx—1 (SWfree)) =H* (M/Crﬁ Tx—1 (SWfree)) . (2)

By the (k — 2)-connectivity of SWee, we have HY(M/Cp; mg—1(SWiree)) = 0 for g < k — 1. By Proposition 3.1, this
shows the existence of a C,,-map f from M to SWge. both of which have free C,-action. Since f (M) C SWiee, f 18
also a C,-isovariant map from M to SW. O

— 203 —



I. Nagasaki, F. Ushitaki / Topology and its Applications 155 (2008) 1066-1076 1071

5. Isovariant homotopy classes

In this section, we discuss the classification problem of Cj,-isovariant maps between M and SW under the assump-
tion of Theorem C. Since the C,-action on M is assumed to be free,

[M, SWIE” = [M, SWrreelc,

holds. For our purpose, we use equivariant obstruction theory and define the multidegree for a C,-equivariant map.
The obstruction to C,-homotopy types lies in

ﬁal (MZ ”*(SWfrec)) =H* (M/Cn; n*(SWfree))-
Recall that k = dim SW — dim SW>!.

Proposition 5.1. If diim M < k — 1, then all C,,-isovariant maps from M to SW are Cy-isovariantly homotopic each
other.

Proof. Since SWie is (k — 2)-connected by Lemma 4.2, we have HZ(M/Cy; 74 (SWree)) = 0 for ¢ < k — 2. Hence
the obstruction vanishes; thereby all C,,-isovariant maps from M to SW are C,-isovariantly homotopic. O

Next, we consider the problem when dim M = k — 1. The cohomology group H?(M/Cy; 74 (SWrree)) vanishes if
g #* k — 1 by a similar argument in the proof of Proposition 5.1. Thus, the obstruction lies in

HE (M 1 (SWiree)) = H (M) o M1 (W)
Recall
A= {H eIso(SW) | dimSW" = dimSw>'}
and
SWoactree =SW\ | SWH = (1) (W swH).
HeA HeA

Lemma 5.2. Let W be a faithful unitary C,-representation.

(1) The homomorphism iy :7—1(SWiree) = k-1 (SW A-free) induced by the inclusion map i : SWeee = SW _A-free IS
an isomorphism.

(2) The Hurewicz homomorphisms h:1i_1(SW A-tree) = Hi—1(SW A-tree) and h':mi_1(SWiree) = Hi—1(SWiree)
are isomorphic.

Proof. (1) By definition, we see that dim(SW 4-gree \ SWiree) < dimSW>! — 2 = dim SW — k — 2. Hence we have
dim SW 4-free — dim(Sk_l x 1) — dim(SW A-free \ SWiree) = 2.

Thus, by a general position argument, i, is an isomorphism.

(2) By Lemma 4.2 and the Hurewicz theorem, 4’ is an isomorphism. By a similar argument to Lemma 4.2, SW _4_free
is also arcwise connected and (k — 2)-connected. Hence it follows from the Hurewicz theorem that 4 is an isomor-
phism. O

Lemma 5.3. Let W be a faithful unitary C,-representation. Then, there is an isomorphism
1L ~
@ : He (SWiee) > @D Hit(S(W) )= P z
HeA HeA
given by the following composite of isomorphisms:
. i iH Ly ~
Hi—1 (SWiree) ~> Hi—1(SW A-free) 2> @D Hioa (SWA\SWH) 2 (B He ((s(WH) ) = P Z.
HeA HeA HeA

where i, j and iy are inclusions.
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Proof. By investigating the structure of Hy—1(SW g-free), We will construct the isomorphism @. Put A = {Hj, Ha,
..., H,}. We note that SW 4_gee = [y (SW \ SW). Since SWH: N SWH = SWHiHr) | we have (/2] (SW \
SWHiYY U (SW\ SWHr) = sW\ | /=] sSWHi-Hr) Consider the Mayer—Vietoris exact sequence:

r—1

r—1
.- — Hy (SW\ U SW(H"'H’>) — Hi—1 (SW Afree) = Hi—1 < (W SWHf)> ® Hi—1(SW\ SWHr)

i=1 i=1

r—1
— Hk—l(SW\ USW(Hi’Hr)) S
i=1

Since the representation is unitary, Lemma 4.1 yields dim SW#-Ar) < dimSWw>! — 2 foreach i (1<i <r —1).
Hence we have

r—1
dim SW — dim |_J SWH- ) > dim SW — (dim SW>! — 2) =k +2,
i=1
thereby we see that Hy (SW \ ;=] SWH-Hr)y = 0 and Hy—1(SW\ /2] SWHi-H) = 0. Thus we have

r—1

Hi1 (W Actee) = Hi1 ( N (W SW”")) ® Hi (SW\ SWH),
i=1

and by induction we see that the correspondence

. F
Hi—1 (SW -free) 2> @D Hi—1 (SW\ SWH)

i=1

is an isomorphism. As in the proof of Lemma 2.1, SW \ SWHi is homotopy equivalent to S((WH)1), which is a
(k — 1)-dimensional sphere because H; belongs to A. Therefore we have

D H (WA =P H A (sWI) ) =P H (s =Pz o
i=1 i=1 i=1

i=1

We are now prepared to define the multidegree of C,,-map f: M — SWiree.

Definition 5.4. Let M be an orientable (k — 1)-dimensional arcwise connected closed C°°-manifold with an orienta-
tion preserving free Cp-action. Let W be a faithful unitary C,-representation, and f : M — SWgee a Cy-map. Then,
we define the multidegree of f denoted by mDeg f as

mDeg f = @ (f.[M]) € P Z.

HeA

where [M] is the fundamental class of M.

Theorem D (Hopf-type theorem). Under the assumption in Definition 5.4, the following hold.

(1) mDeg:[M, SWrweelc, = @ yeaZ is injective.

(2) For Cy-maps f, g: M — SWiyee, it holds that mDeg f — mDegg € @HGA nZ.

(3) Fix a Cp-map fo: M — SWeee. Then for any d € EBHGA nZ there exists a Cp-map f: M — SWyee such that
mDeg f —mDeg fy =d.

Since [M, S W]ics,‘l’V = [M, SWteelc,, we obtain the following corollary, which is the classification theorem of C,-
isovariant maps in our setting.
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Corollary E. Let fy: M — SW be a fixed Cy,-isovariant map. Then, mDy, :[M, S W]ié;"' — @Dy Z defined by

mD, ([ f]) = (mDeg f — mDeg fo)/n

is a bijection.
6. Proof of the main result
In this section, we prove Theorem D presented in the previous section.

Lemma 6.1. Let fo, f: M — SWiee be Cp-maps. Let y., (fo, f) € fjlé;l (M; 7141 (SWiiee)) denote the obstruction to
the existence of a Cy-homotopy between f and fo. Then, the assignment [ f] € [M, SWgeelc, +> Ve, (fo, f) gives a
bijection:

P, (f0):[IM, SWieelc, = 96 (M 7x—1 (SWiree)).-
Proof. See [3,11, (3.17)]. O

The map p, (fo) defined in Lemma 6.1 depends on the choice of fy which is called a reference map. Set
C¢, (M) = Homzc, (Cw(M), x—1(SWiree))
and
C*(M) = Homgz,(Cx(M), -1 (SWiree))-

We define a homomorphism 7 : C¥~1(M) — cgl(M) by T(f)() =Y gec, 8 (@ 'c), where f € C*~1(M) and
¢ € Cy—1(M). Then, by [3, I, pp. 123-124], 7 induces the norm homomorphism

T HE Y (M 1 (SWiee)) = 6 (M 721 (SWiree)) -
By forgetting the C,-action, the forgetful map

e 56 (M -1 (SWikee)) = H ™ (M5 -1 (SWiiee))
is defined.

Lemma 6.2. The composition T o € :ﬁﬁ:l(M 3 1 (SWigee)) — YJ’EI (M; 705 —1 (SWree)) is multiplication by n.
Proof. See [3, 1L, p. 124]. O
Lemma 6.3. The forgetful map & : 5. (M; i1 (SWiree)) = H*™1(M; 11 (SWiree)) is injective.

Proof. By Eq. (2), 95 (M, 74—1(SWrree)) = H*(M/Cp; 75—1(SWiiee)). Since dim M/C,, = k — 1 and the action of
C,, on M is orientation preserving, we obtain that

S (M e (W) = it (SWoee) = (D) 2.
HeA

Since this cohomology group is torsion free, it follow from Lemma 6.2 that 7 o ¢ is injective; thereby, ¢ is injective. O

Lemma 6.4. The norm homomorphism
T HE N (M 1 (SWiee)) = H6 (M 7061 (SWree))

is an isomorphism.
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Proof. Since Cy—1 (M) is a free Z.C,-module, it follows from [3, I1, (4.5)] that 7 : C¥~! (M) — C¢' (M) is surjective,
and hence so is 7.
Since M is orientable, it holds that

H N (M 7101 (SWiee)) = a1 (SWiee) = €D 2,
HeA

and

D (M -1 (SWiee)) = €D Z
HeA

as in the proof of Lemma 6.3. Hence ﬁé:l (M; 741 (SWiiee)) and H*1 (M; i1 (SWiree)) are free Abelian groups
with the same rank. This leads that 7 is an isomorphism. 0O

Here we give a cohomological description of the multidegree. Let f : M — SWgee be a Cp,-map. Using the universal
coefficient theorem, we have the following isomorphisms:

H*! (SWfree; TTk—1 (SWfree)) _;> HomZ(Hk-—l (SWiree), mh—1 (SWfrce))

L5 Homg (mk—1 (SWiee). 71 (SWieee)).
where A denotes the Hurewicz homomorphism. Set
L(SWiree) = (h* 0.10) ™ (idr_y (5Wie)) € H ™ (SWiee: k-1 (SWiee))-
Then one can see that
(f*1(SWrtree), [M]) = fi([M]) € 7x—1 (SWiree),
where f, € Hom(Hy—1(M; Z), 7p—1 (SWiee)) and [M] is the fundamental class of M. We obtain that
mDeg f = ® o h({f*1(SWitee), [M]1)).

Proof of Theorem D. (1) It is well known [3, II, (3.19)] that

V(£ 8) = F*u(SWiee) — 8" 1L(SWitee) € H* ™1 (M, 741 (SWiee))-
Hence we obtain that

mDeg f —mDeg g = @ o h({y (f, &), [M])).

Assume mDeg f = mDeg g, then it holds that y (f, g) = 0. Since y (f, g) = &(y,, (f, 8)) and ¢ is injective, we have
Ye, (f+ ) =0. Thus f and g are Cy,-homotopic.

(2) By Lemmas 6.2 and 6.4, we have Image(e) = nH* ' (M; m—1(SWiwee)). Thus we obtain y(f, g) =
e(yc, (f, &) € nH* "1 (M; 7m4_1(SWiee)) and hence it holds that

mDeg f —mDegg = @ o h((e(vc, (/. 8)). [M])) € €D nZ.
HeA

(3) Note that

Image(e) = nH* ™' (M; 711 (SWrree)) = €P) nZ.
HeA

Every element of 5’)’("::1 (M; 7wi—1(SWree)) is realized as y, (f, fo) for some C,-map f : M — SWiree. Therefore, any
element of . 4 nZ is realized by mDeg f — mDeg fo. O
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7. Examples

Here we give a couple of examples. Put n = pq, where p and g are distinct primes.

Let g be a generator of C,,. Let T, denote the irreducible unitary representation of C, given by py, : C;, — U(1)
defined by p,, (g)(z) = ¢™z, where ¢ = exp(2mi/n). When we denote the greatest common divisor of two integers m
and n by (m, n), we note that ker pp, = Cn.n)-

Example 7.1. Suppose M = ST; and SW = S(T,, ® T,;). We determine the structure of [M, SWIE™. Since SWr =
S(Tp) and SWC = $(Ty), we have sw>l= S(Tp) U S(Ty), which is a Hopf-link in SW. Hence, it holds that dim M +
1 = k = 2, which shows the existence of C,-isovariant maps from M to SW.

Next, we classify the Cy,-isovariant maps. We see that A = {C),, Cy}. Now we define a map fo,5:5T1 — S(T, ®
Ty) by

1
fup(@) = _(Z(H'WI)P’ Zﬂ‘*‘ﬂp)‘]),

V2

where «, B € Z. Then, one can easily check that it is a C,-isovariant map. By the definition of @, we obtain
mDeg f, p = (deg(z > z21TPP), deg(z > 21 T*DP)) = (1 + Bp)gq, (1 + @q) p).

If taking fp,o as the reference map, we can construct a bijection
mD s, [ST1, ST, @ T > 2 Z

by
mD 5, (fa,p) = (mDeg fo,p — mDeg fo,0)/n = (B, ).

Remark 7.2. In the setting of Example 7.1, all fy g are C,,-homotopic each other.

Example 7.3. Here, we consider more general example than Example 7.1, that is, put M = ST and SW = S(rT1 &
sT, ®tTy) (t 2 s), where rT; means the direct sum of r-copies of 71, and so on. If dim M + 1 £ k, it holds that
k 2 2. Since the representation is assumed to be faithful, one can easily check that r £ 0 or s £ 0.

Since SWEr = S(sT,,) and SW = S(tT,), we see that SW>! = S(sT,) U S(tT,) and then k = 2(r + s) = 2,
which shows the existence of C,-isovariant maps from M to SW. If k > 2, all C,,-isovariant maps from M to SW are
C,-isovariantly homotopic each other. If k =2, we have s =0, r =1 or s = 1, r = 0, and use the multidegree for our
classifying problem.

Case I (s =0, r = 1). In this case, SW = S(T1 & tT;;) and sw>l = S(tTy). If t =0, the action is free. If £ #£ 0, we
have Iso(SW) = {1, C;} and A = {C,}. Now we define a map f, : ST1 — S(T} @ tT,) by

fa@ = (4" x ) /11
where o € Z. Then, one can easily verify that it is a C,,-isovariant map. By the definition of @, we obtain

mDeg f, =deg(z > z'T*") =1 +an.

If choosing fj as the reference map, we can construct a bijection mD g, : [ST1, S(T1 & th)]iCSf:" =Zby

mD g, ([ f]) = (mDeg fo — mDeg fo)/n =a.
Case Il (s = 1, r =0). In this case, SW = §(T), @ t1y), sw>l = ST, uS(tTy) and Iso(SW) = (1, Cp, Cy}. If £ =1,
the problem was already discussed in Example 7.1. If t 2 2, we have A = {C,}. Now we define a map

Jo: 8Ty — S(Tp, ®tTy)
by

fa(@) = (D2 %, x) /)],

— 208 —



1076 I. Nagasaki, F. Ushitaki / Topology and its Applications 155 (2008) 10661076

where « € Z. Then, one can easily check that it is a C,-isovariant map. By the definition of @, we obtain
mDeg f, = deg(z > z!*DP) = (1 + agq)p.

If taking fo as the reference map, we can construct a bijection

isov

mDy, : [ST1, S(T, ®1Ty)] . — Z
by

mD f, ([ fo]) = (mDeg f,, —mDeg fo)/n =a.
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UNITS OF THE BURNSIDE RING THAT ARE NOT
REPRESENTED BY LINEAR G-SPHERES

IKUMITSU NAGASAKI

ABSTRACT. After recalling the Burnside ring A(G) of a compact Lie group G, we
show that for an arbitrary nonsolvable compact Lie group G, there exists a unit of
A(G) represented by a semilinear G-sphere, but not by a linear G-sphere. This is
a refinement of Bauer’s result, and also generalizes Matsuda’s result.

1. THE BURNSIDE RING OF A COMPACT LIE GROUP

Throughout this paper, a subgroup means a closed subgroup unless otherwise stated.
We denote by H < K that H is a subgroup of K, and by H < K that H is a proper
subgroup of K. As usual (H) denotes the conjugacy class of H and (H) < (K) means
that H is subconjugate to K.

We shall begin by recalling the Burnside ring. General references are tom Dieck
[5, 6], Fausk [7], etc. The Burnside ring A(G) of a compact Lie group G is the ring
consisting of equivalence classes of finite G-CW complexes (or compact smooth G-
manifolds) with respect to the following equivalence relation ~:

X ~ Y if and only if x(X#) = x(Y'¥) for every subgroup H of G,

where x(—) denotes the Euler characteristic. The addition is given by disjoint union
and the multiplication is given by cartesian product. Note that A(G) is a commutative
ring.

Originally the Burnside ring Q(G) of a finite group G is defined as the Grothendieck
ring of the category of finite G-sets and G-maps. Thus there are two definitions of the
Burnside ring; however, one can see

Proposition 1.1. For a finite group G, the homomorphism i : Q(G) — A(G) induced
by regarding finite G-sets as 0-dimensional finite G-CW complezes is an isomorphism.

Dedicated to Professor Yoko Suga on the occasion of her retirement from Kycto Prefectural Uni-
versity of Medicine.
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Remark. The Burnside ring of a compact Lie group is also defined by using homoge-
neous spaces G/H with finite WH = NH/H, see Fausk [7].

Let s(G) be the space of subgroups of G with the Hausdorff metric induced from
a bi-invariant metric on G. Then s(G) is a countable, compact metric space. Let
#(G) be the space of conjugacy classes of subgroups H such that each WH := NH/H
is finite. We denote by C(G) the ring of integer-valued continuous (or equivalently
locally constant) functions on ¢(G). The ring homomorphism xg : A(G) = Z is
induced by setting xx([X]) = x(X*), where X is a finite G-CW complex, and then
the ring homomorphism ¢ : A(G) = C(QG) is defined by setting o([X])(H) = xux([X]),
(H) € ¢(G). The following is well known, see for example [6].

Proposition 1.2. The homomorphism ¢ is injective.

Via this injective ring homomorphism, one can regard A(G) as a subring of C(G).

Finally we recall some definitions in group theory. The derived group G of G is
defined as the closure of the commutator subgroup of G. Inductively G(™ is defined
by (G1D)Y1) . A compact Lie group G is called perfect if G = G() and solvable if
G(?) =1 for some n.

Proposition 1.3. Suppose that G is a connected compact Lie group. Then the follow-
ing statements are equivalent.

(1) G is solvable.

(2) G is abelian.

(3) G is a torus.
In particular, a (general) compact Lie group G is solvable if and only if the identity

component Gg is a torus and G /Gy is a finite solvable group.

2. REPRESENTING UNITS OF THE BURNSIDE RING

Let V be an orthogonal representation space of G and SV the unit sphere of V. The
action on SV is called a linear action and SV is called a linear G-sphere. A semilinear
action on a sphere is a natural generalization of a linear action.

Definition. A smooth closed G-manifold X is called a semilinear G-sphere if, for every
subgroup H of G, the H-fixed point set X is a homotopy sphere or the empty set.

Linear G-spheres are clearly semilinear G-spheres, but there are many semilinear
G-spheres with nonlinear actions, see for example [10], [11].
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Lemma 2.1. Let T be a semilinear G-sphere. In the Burnside ring A(G), the element
u=1-[%] is a unit of A(G).

Proof. In fact, ¢(u)(H) = 1 — x(£¥) = £1; therefore ¢(u) is a unit of C(G) and so u
is a unit of A(G). O

Definition. If a unit u of A(G) is described as 1 — [X] for a semilinear [resp. linear]
G-sphere I, then v is called the unit realized by a semilinear [resp. linear] G-sphere.

Matsuda [4] studied the question of whether all units of the Burnside ring of a
finite group G are represented by linear G-spheres, and showed that not all units are
represented by linear G-spheres for an arbitrary finite nonsolvable group G. On the
other hand, Bauer [1] showed that if Gy is nonabelian, then there exists a unit of A(G)
represented by a GG-homotopy representation, but not by a linear G-sphere. Here a G-
homotopy representation is a G-CW version of a semilinear G-sphere; more precisely,
it is a finite-dimensional G-CW complex X such that for every subgroup H, the H-
fixed point set X ¥ is homotopy equivalent to a sphere 8™, n = dim X ¥, or the empty
set. We note [10] that a G-homotopy representation is not necessarily realized by a
semilinear G-sphere.

Our result is the following.

Theorem 2.2. Let G be an arbitrary nonsolvable compact Lie group. There exists a
unit of A(G) represented by a semilinear G-sphere, but not by a linear G-sphere.

We call a smooth G-disk D a quasilinear G-disk if, for every subgroup H, the H-fixed
point set D is diffeomorphic to a disk or the empty set. One can easily check that
the product of quasilinear G-disks with diagonal action is also a quasilinear G-sphere
after smoothing corners, and note also that the boundary of a quasilinear G-disk is a
semilinear G-sphere.

Lemma 2.3. If D is a quasilinear G-disk, then the element [D] represents en idem-
potent of A(G).

Proof. Since

1 if DH £

0 if DH =,

we see that ¢([D]) is an idempotent of C(G) and so [D] is an idempotent of A(G). O

p([D(H) = x(D7) = {
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To show the theorem, we recall Oliver’s work [12] in which he showed that if G is
nonsolvable, then there exists a quasilinear G-disk D with the following property: For
every subgroup H of G,

DH — disk if H is solvable
0 if H is nonsolvable.

We call such a quasilinear G-disk a special G-disk.
Proof of Theorem 2.2. Take a special G-disk D and set £ = 8D. Replacing D by a
special G-disk D x D x I, where I is the unit interval with trivial action, we may
assume that dim D¥ is odd for every nonsolvable subgroup H. By Lemmas 2.1 and
2.3, the element [D] represents a nontrivial idempotent of A(G) and 1 — [X] represents
a unit of A(G). Then
p(1 - [E)(H) = (-ptm="
) if H is solvable,
AR if H is nonsolvable.

On the other hand
@(1—2[D])(H) = {

Thus it is seen that 1 — [X] = 1 — 2[D]. The following proposition shows that the unit
1 — [%] is not represented by a linear G-sphere. O

-1 if H is solvable,
1 if H is nonsolvable.

Proposition 2.4. Let e be a nontrivial idempotent of A(G) (i.e., e 55 0, 1). Then the
unit 1 — 2e is not represented by a linear G-sphere.

Proof. Suppose that 1 — 2e is represented by a linear G-sphere SV. We may assume
that e(1) = 0 since 1 — 2(1 — e) is represented by S(V @ R). Since e is nontrivial, there
is a subgroup H such that e(H) = 1. Take a minimal subgroup H such that e(H) = 1.
Since (1 —2e)(H) = (~1)4m V" it follows that dim V¥ is odd and dim V¥ is even for
every K < H .

We first consider the case where the subgroup H is connected. In this case H is not
a torus, because if H is a torus, it follows that e(H) = e(1) = 0 since H is solvable by
Proposition 1.3; this is a contradiction. Let T be a maximal torus of H; the normalizer
Ny (T) of T in H is, then, a proper subgroup of H, and dim V¥ is even for every
subgroup of Ng(T). By the following proposition proved in the next section, dim V¥
is even; this is a contradiction.
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Proposition 2.5. Let G be a connected compact Lie group and T a mazimal torus of
G. Let V be a representation of G. If dim VK is even for every subgroup K of the
normalizer Ng(T) of T, then dim V¥ is even for every subgroup H of G. In particular
dim V¢ is even.

We next consider the case where H is disconnected. In this case H/Hj is not hyper-
elementary, where Hy is the identity component of H, because if H/Hj is hyperelemen-
tary, then e(H) = e(Hy) since H/Hj is solvable; however e(Hp) = 0 and e(H) = 1 since
Hy is a proper subgroup of H; this is a contradiction. We consider VH° as an H/Hp-
representation; then dim(V#0)K/Ho — dim VX is even for every hyperelementary sub-
group K/Hy of H/Hy. Tt follows from [9, (5.4.2)] that dim V¥ (= dim(VHe)H/Ho) js
even; this is a contradiction. 0

3. PROOF OF PROPOSITION 2.5

In this section, we prove Proposition 2.5 using representation theory. We refer
to Brocker and tom Dieck [3] for notation and terminology of representation theory.
Consider the irreducible decomposition of V:

V:alt’fl@"'@anvn@bRy

where a;, b are non-negative integers and R denotes the trivial irreducible represen-
tation. Note that dimV; > 1. As is well known, there are 3 types of irreducible
representations; namely complex type, real type and quaternionic type. If W is an
irreducible orthogonal representation of complex type or quaternionic type, then the
complification W @ C is isomorphic to U & U or U @ U, respectively for some irre-
ducible complex representation U, where U denotes the complex conjugate of U, see
[3, II (6.6)]. Since

dimW¥# = dimeg(W ® C)¥ = dimg(U @ U)? = dimec(U @ U)¥,

in this case, it follows that dim W# is even for every subgroup H. Therefore we
may assume that all irreducible components are of real type. If W is an irreducible
representation of real type, then W ® C is an irreducible complex representation;
therefore we may assume that V is a complex representation, and thus it suffices to
show the following.

Proposition 3.1. Let G be a connected compact Lie group and T o mazimal torus of
G. Let V be a complex representation of G whose irreducible components are of real
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