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(2) G has the 1B-property in Sg.
(3) G is a solvable compact Lie group.

Proof. We have already seen the implication (3) = (1), and trivially (1) = (2). To
see (2) = (3), we show that there is a counterexample to the isovariant Borsuk-Ulam
theorem when G is nonsolvable. According to Oliver [40, Theorem 4], there exists a
disk D with a smooth G-action such that D is also a disk if H is a solvable subgroup,
and the empty set if H is a nonsolvable subgroup. The boundary of this G-disk D
is clearly a semilinear G-sphere. Note also that D¢ = ) since G is nonsolvable. Set
Y. = 0(D x D(R™)), where D(R"™) is an n-dimensional disk with trivial G-action.
Then ¥, is a semilinear G-sphere without G-fixed points. For any positive integer
n, take a map h, : D(R") — D(R?!) such that h,(D(R")) C 0D(R!), and define a
G-map
Gn :=1id X hy, : D x D(R™) — D x D(R").

Then one can easily see that g, is a G-isovariant map and g, maps the boundary
9(D x D(R™)) into the boundary d(D x D(R!)). Hence we obtain a G-isovariant
map fp, = gnz, : Bn — 21. Since dim¥, > dim3,; for n > 1, this f, gives a

counterexample to the isovariant Borsuk-Ulam theorem. O

Remark. The semilinear G-sphere ¥; in the above proof is equivariantly embedded in
some linear G-sphere SW [6]. Hence there is an isovariant map f, : £, — SW such
that dim ¥, + 1 > dim SW — dim SW¢ for some large n.

In the case Fg = Lg, the problem is more difficult; in fact, a complete answer is
unfortunately unknown to the best of the author’s knowledge. However some partial
answers are known. We present them here without proof.

To state Wasserman’s result, we recall the prime condition for a finite group G.

Definition. We say that a finite simple group G satisfies the prime condition if for

1
Z);;ﬁl

plo(g

every element g € G,

holds, where o(g) denotes the order of g, and p is a prime dividing o(g).
We say that a finite group G satisfies the prime condition if every simple factor

group in a normal series of GG satisfies the prime condition as a simple group.
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Theorem 3.2 ([49]). Every finite group satisfying the prime condition has the IB-
property in Lg.

This theorem provides nonsolvable examples of having the IB-property in L¢.

Example 3.3. The alternating groups As, Ag, ..., Aj; satisfy the prime condition,
and hence A; has the IB-property in L£g4,, 2 = 5,6,...,11.

Remark. The alternating groups A,, n > 11, do not satisfy the prime condition.
However, the author does not know whether A, has the IB-property for n > 11.

Another partial answer is a weak version of the isovariant Borsuk-Ulam theorem.

Theorem 3.4 ([31]). For an arbitrary compact Lie group G, there exists a weakly
monotone increasing function pg : Ng — Ny diverging to co with the following prop-

erty.

(WIB) For any pair of representations V. and W such that there is a G-isovariant
map f: SV — SW, the inequality

pe(dimV — dim VG) < dimW — dim W¢
holds.

Here Ny denotes the set of nonnegative integers.

The above result does not hold for G-equivariant maps even if SVE = SW¢ = 0.
For example, when G is a cyclic group C,4 of order pg, where p, ¢ are distinct primes,
a Borsuk-Ulam type theorem does not hold as can be seen below.

Let U, (= C) be the representation of C,, = (g) for which g acts by g- 2z = £*z,
z € U, where £ = exp(2rv/—1/n).

Proposition 3.5 (cf. [48]). Let Cp, = (g) be a cyclic group of order pq, where p,
q are distinct primes. For any positive integer r, there is a Cpg-map f : S(rUy) —
S(U, @ U,), where rU; is the direct sum of r copies of U;.

Proof. Set G = Cpqy. By a result of [48], there is a self G-map h : S(U, & Uy) —
S(U, @ U,) with degh = 0; hence h is (nonequivariantly) nullhomotopic. Since G
acts freely on S(rU), S(rU;) has a G-CW complex structure consisting of free G-
cells. We put S(rU;) = |, Xk, where X}, is the k-skeleton. A G-map from S(rUs)
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to S(U, @ Uy) is inductively constructed as follows. Suppose that one has a G-
map fr-1 : Xg—1 — S(U, @ Uy). Then fr_; can be extended to a G-map [’ :
X1 Uy G x DF — S(U, @ U,). Indeed, since h o ¢jyxgi-1 : S¥1 — S(U, & U,) is
nullhomotopic, h o ¢gx—1 is extended to a map g : D* — S(U, ® U,), and next g is
equivariantly extended to a G-map ¢’ : G x D* — S(U, ® U,). By gluing ¢’ to fi—1,
one obtains a G-map [’ : X;_1 Ug G x D* — S(U, & U,). Repeating this procedure,
one has a G-map fi : Xy — S(U, @ U,). O

Remark. More generally, Bartsch [1] shows that a weak version of the Borsuk-Ulam
theorem holds for linear G-spheres of a finite group G if and only if G has prime
power order.

Combining this proposition with the isovariant Borsuk-Ulam theorem, we obtain

another Borsuk-Ulam type result.

Corollary 3.6. For any Cye-map f : S(rUy) — S(U, ® U,), r > 2, the image of f
meets the Hopf link SU, [ SU, in S(U, ® Uy).

Proof. Suppose that f~'(SU,[[SU,) = 0. Then f is a G-isovariant map, since G
acts freely on S(U, @ U,) \ (SU, [] SU,). Furthermore Resc, f is a Cp-isovariant map.
By the isovariant Borsuk-Ulam theorem, it follows that

2r = dim S(rU,) + 1 < dim S(U, ® U,) — dim S(U, ® U,)?» = 2.
This is a contradiction. |

Remark. Another equivalent statement of the original Borsuk-Ulam theorem is: For
any Cy-map f : S™ — R™, the image of f meets the origin in R™, where the Cs-actions

on S™ and R™ are both given by multiplication by —1.

4 The converse of the isovariant Borsuk-Ulam the-
orem

The isovariant Borsuk-Ulam theorem is interpreted as a nonexistence result of iso-
variant maps, and it produces several inequalities, which give a necessary condition
for the existence of an isovariant map. In several cases, it is also sufficient. In this

section, we shall present such examples for the existence of an isovariant map and
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discuss the converse of the isovariant Borsuk-Ulam theorem. The materials are taken
from [34], [35], [38], [39].
As a special case of Corollary 2.8, we consider the case N = SW, a linear G-sphere.

Then, the inequality
dim M + 1 < dim SW — dim SW~>*

holds if there is a G-isovariant map f : M — SW. In this case, we show that the

converse is true.

Proposition 4.1. Let G be a finite group and M a compact G-manifold with free
G-action. Let W be a representation of G. If dimM + 1 < dim SW — dim SW>1,
then there exists a G-isovariant map f : M — SW.

We define the free part SWe. of SW by SWiee = SW\SW>1. Set d = dim SW —
dim SW>1.

Lemma 4.2. The free part SWhee is (d — 2)-connected.

Proof. Since dim S* x I + dim SW>! < dim SW for k < d — 2, any homotopy into
SW deforms to a homotopy into SWree by a general position argument. Hence every
map from S* to SWiee is nullhomotopic for k < d — 2. ]

Proof of Proposition 4.1. Since G acts freely on M and SWi,e, it suffices to show the
existence of a G-map from M to SWiee. Since M has a G-CW complex structure,
we may put M = |J, Xi, where X} is the k-skeleton of M. The inequality means
k< d-—1. A G-map into SWhee is inductively constructed as follows. Suppose
that fr_; is constructed as a G-map from Xj_; to SWhee; then fr_; is extended on
X(k-1)Ug G x D¥; indeed, since SWre is (d—2)-connected, the map fr—10¢|{13xsr-1 :
Skl — SWhee is extended to a map g : DF — SWyee and then ¢ is equivariantly
extended to a G-map § : G X D* — SWi... By gluing § to f,_1, one can obtain a G-
map fi_; @ Xp—1 Uy G X D* — SWi... Repeating this procedure, we obtain a G-map
from the k-skeleton X to SWhee, and finally we obtain a G-map f : M — SWeee. O

Thus, in this situation, the existence problem is solved as follows.
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Corollary 4.3. Let M be a mod |G| homology sphere with free G-action and W a

representation of G. There exists a G-isovariant map from M to SW if and only if
dim M + 1 < dim SW — dim SW~".

Next we consider the existence problem of an isovariant map between (real) rep-
resentations. Let G be a finite solvable group. Let f : V — W be a G-isovariant
map between representations V and W. Take any pair (H, K) of subgroups of G with
H < K. Then f#:V# — WH# is considered as a K/H-isovariant map. Since K/H

is solvable, the isovariant Borsuk-Ulam theorem implies the inequality
dim V7 — dim V¥ < dim W# — dim W¥.

From this observation, we consider the following condition for a pair of representations

V and W of a solvable group G-
(Cyw) dmVH# —dim V¥ < dim W¥# — dim WX for every pair (H, K) with H < K.

Moreover the condition (Iy,w): Iso V' C Iso W is obviously necessary for the existence

of an isovariant map.

Definition. We say that a finite solvable group G has the complete IB-property if,
for every pair (V, W) of representations satisfying conditions (Cy,w) and (Iyw ), there

exists a G-isovariant map from V' to W.

Remark. If G is nilpotent, then (Cy,w) implies (Iy,w) [34].

Which solvable groups have the complete IB-property? A complete answer is not

known; however, some examples that have the complete IB-property are known.

Theorem 4.4 ([34], [35]). Let p, g, r be distinct primes. The following finite groups
have the complete IB-property:

(1) abelian p-groups,
(2) Cpmgn: cyclic groups of order p™q",
(3) Cpgr: cyclic groups of order pqr,

(4) D3, D4 and Dg: dihedral groups of order 6, 8 and 12, respectively.
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Remark. S. Koéno also obtains a similar result in the case of complex Cpmgn-represen-

tations.

For details of the proof, see [34] and [35]. The idea is to decompose (V, W) into
primitive pairs (V;, W;).

Definition. A pair of representations (V,W) is called primitive if V and W cannot
be decomposed into V' =V, @ Vo, W = W, @ W such that (V;, W), V; #£ 0, W, # 0,
satisfies (Cy, w,), @ =1, 2.

Then, by constructing a G-isovariant map f; : V; — W;, we have a G-isovariant
map f=®;f;: V — W.

Example 4.5. The following are examples of primitive pairs of C,-representations,
and there exist isovariant maps between the representations. Suppose that p, ¢, r are

pairwise coprime integers greater than 1.
(1) (Ux,U,) when (k,n) = (I,n) = 1.
(2) (Uh,U, ® U,) when pq divides n.
(3) (U, ® Uy, Uy @& Upy) when pq divides n.
4) Uy Uy U, Ui & Uy ® Uy @ Up,) when pgr divides n.

In the cases (1)-(3), one can define a C,-isovariant map concretely; however, in
case (4), equivariant obstruction theory is used. We illustrate it in Section 5.

On the other hand, there exists a group not having the complete IB-property.

Theorem 4.6 ([35]). Let D, be the dihedral group of order 2n (n > 3). Every D,
(n # 3,4,6) does not have the complete IB-property.

The dihedral group D,, has the following presentation:
D, = {a,bla” =b* = 1,bab™! =a™").

One has the normal cyclic subgroup C,, = (a™™) of D, for every divisor m of n, and
there are n/m dihedral subgroups (a™™,b), (a™™, b%),... (™™, a™™ 'b) containing

C,n as a subgroup of index 2. If n/m is odd, then these are all conjugate in D,,. As
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a representative of their conjugacy class, we take D,, = (a™™,b). If n/m is even,
then there are two conjugacy classes. As representatives, we take D, = (a™™, b) and
D! = (a™™ ab).

Let T, = C,1 < k < n/2, be the D,-representation on which D,, acts by a-z = £*2,
b-z=7% z € S, where £ = exp(2nv/—1/n). These T} are all (nonisomorphic) 2-
dimensional irreducible representations over R [45]. It follows that Ker T}, = Cp).
and

Is0 Ty = { Dy, (a™*™) atb) (a™*M) |0 <t <n—1}.
Note also that

2it H < Clrpmy
dim T = { 1if H is conjugate to D gy or Dzk,n)

0 otherwise.

Proof of Theorem 4.6. Let k be an integer prime to n with 1 < k < n/2. Consider
a pair (Ty, Ty) of representations of D,. It is easily seen that (T3, T}) satisfies
conditions (Cq, 1) and (I, 1,). We show that there is no D,-isovariant map from
T, to Tp. Suppose that there is a D,-isovariant map from 7} to T} for some k;
then, by normalization, one has a D,-isovariant map f : STy — ST;. Note that
STt = ST = {exp(rty/—1/n) |0 <t <n—1}. Takex = 1 and y = exp(mv/—1/n),
then the isotropy subgroup at z in STj is (b), and also the isotropy subgroup at y
in ST} is (ab). Since ST,éb> = {£1} c C, it follows that f(1) = 1. Composing, if
necessary, the antipodal map z — —z on ST with f, we may assume f(1) = 1. Let
A be the shorter arc joining x with y in ST;. Since every point of the interior of A
has trivial isotropy subgroup, it follows that f(A\ {z,y}) is contained in ST} \ ST;*;
hence f(y) must be y or 7. However the isotropy subgroup at y (resp. 7) in ST} is
equal to (a"b) (resp. (a~"b)), where r is a positive integer with kr = 1 mod n, but it
is not equal to (ab), since k # £1 mod n. This contradicts the isovariance of f. Thus

the proof is complete. 0
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5 The existence of isovariant maps from a rational
homology sphere with pseudofree S'-action to a
linear S'-sphere

Let G = S' (C C). Let T; (= C) be the irreducible representation of S defined by

g-z=g"z Let M be a rational homology sphere with pseudofree S*-action.
Definition (Montgomery-Yang [28]). An S'-action on M is pseudofree if
(1) the action is effective, and

2) the singular set M>?1 := , M is not empty and consists of finitely man
g 1£H<S y

exceptional orbits.
Here an orbit G(z) is called exceptional if G(z) = S'/D, (1# D < S*) [6].
Remark. Other meanings for the term “pseudofree action” appear in the literature.

Example 5.1. Let V = T,®T,®T,. Then the S*-action on SV is pseudofree. Indeed

it is clearly effective, and
SV =ST, [[ ST, [[ ST
e | e | Eie®

Remark. There are many “exotic” pseudofree S'-actions on high-dimensional homo-
topy spheres [28], [42].

Then the following isovariant Borsuk-Ulam type result can be verified.

Theorem 5.2 ([33]). Let M be a rational homology sphere with pseudofree S*-action
and SW a linear S*-sphere. There is an S*-isovariant map f: M — SW if and only

if
(I): IsoM C Iso SW,

(PF1): dim M — 1 < dim SW — dim SW# when H is a nontrivial subgroup which is

contained in some D € Iso M,
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(PF2): dim M + 1 < dim SW — dim SW# when H is a nontrivial subgroup which is

not contained in any D € Iso M.
We give some examples. Let p, g, r be pairwise coprime integers greater than 1.
Example 5.3. There is no S'-isovariant map
[:S(LeT,@T) — S(Tp ® Ty @ Top).

Proof. Condition (PF1) is not fulfilled. O

Remark. There is an S'-equivariant map
f:SeTl,@T.) — S(Ty& Ty ®1,).
Example 5.4. There is an S'-isovariant map
[ ST, @T,8T,) = S(T1 @ T,® T, ®1L,).
Proof. One can see that Iso M = {1,C,, C,,C,} and
Iso SW = {1, C,, Cy, Cy, Cpq, Ciry Crp }-

Hence it is easily seen that (PF1) and (PF2) are fulfilled and Iso M C Iso SW. By
the theorem above, there is an S*-isovariant map. O

From this, we obtain an isovariant map in the case of Example 4.5(4).
Corollary 5.5. There is an Cpyr-isovariant map
f:SU,@U,®U,) — SUL & Uy ® U, @U,).

Proof. By restricting f in Example 5.4 to the Cp4-action, one has the desired map.
|
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5.1 Proof of Theorem 5.2 (outline)

We shall give an outline of the proof of Theorem 5.2. Full details can be found in
[33]. Set SWiee := SW \ SW>'. Note that S' acts freely on SWie. Let N; be
an Sl-tubular neighborhood of each exceptional orbit in M. By the slice theorem,
N; is identified with S* xp, DU; (1 < ¢ < r), where D; is the isotropy group of the
exceptional orbit and U; is the slice D;-representation. Set X := M \ ([[, int V;).
Note that S* acts freely on X.

The “only if” part is proved by the (isovariant) Borsuk-Ulam theorem. Indeed for
(PF1), take a point x € M with G, = D and a D-invariant closed neighborhood B of
x which is D-diffeomorphic to some unit disk DV. Hence we obtain an H-isovariant
map fisy : SV — SW by restriction. Applying the isovariant Borsuk-Ulam theorem
to f, we obtain (PF1).

We next show (PF2). Since f is isovariant, one sees that f maps M into SW \
SWH. Since SW \ SWH is S*-homotopy equivalent to S(W#), one obtains an
Stmap g: M — S(WH"). By Corollary 2.3, condition (PF2) follows.

To show the converse, we use the equivariant obstruction theory. We recall the

following result.
Lemma 5.6. There is an S*-isovariant map f; : N; — SW.

Proof. Let N; = N =g S' xp DV C M, where D is the isotropy group of the
exceptional orbit and V is the slice representation. Similarly take a closed S*-tubular
neighborhood N’ of an exceptional orbit with isotropy group D, and set N' =g
St xp DV' c SW. By (PF1), one sees that dim SV + 1 < dim SV’ — dim SV'>1.
Since D acts freely on SV, there is a D-map g : SV — SV’ \ SV>1 C SW by
Corollary 2.8, which leads to a D-isovariant map ¢ : SV — SW. Taking a cone,
we have a D-isovariant map § : DV — DV’  and hence an S'-isovariant map f =

S'xpi: N — N C SW. O

Set f; .= Ji’laNi : ON; — SWhee, and f =[], fi : 0X — SWhee. If f is extended
to an S'-map F : X — SWhee, by gluing the maps, we obtain an S'-isovariant map

Fu([]f):M— sw.
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Thus we need to investigate the extendability of an S'-map f : 0X — SWiee to
F : X — SWhgee. Equivariant obstruction theory [10] answers this question. A

standard computation shows
Lemma 5.7 ([33], [38]). Set d = dim SW — dim SW=".
(1) SWhee is (d — 2)-connected and (d — 1)-simple.
(2) Ta-1(SWhtee) = Hy1(SWhee)) = ©reaZ, where
A= {H € Iso SW|dim SW¥# = dim SW>'}
and the generators are represented by S(WH), H € A.

By noticing that dim M — 1 < d by (PF1) and (PF2), the obstruction og:(f) to

the existence of an S*-map F : X — SWy., lies in the equivariant cohomology group
98 (X, 0X; 741 (SWhee)) = HY(X/S",0X/S"; 14-1(SWhee))-
If dim M — 1 < d (i.e., dim X/S* < d), then one sees that
H*(X/S',0X/S";7.-1(SWhee)) = 0

by dimensional reasons. Hence the obstruction vanishes and there exists an extension
F: X — SWhee-

We hereafter assume that dim M — 1 = d (i.e., dim X/S* = d). The computation
of the obstruction is executed by the multidegree.

Definition. Let N = S' xp DU C M, 1 # D € IsoM. Assume that dim M —
1 = dimU = d. Let f : ON — SWpyee be an S'-map, and consider the D-map
f = flsv : SU — SWiee. Then the multidegree of f is defined by

mDeg f := f,([SU]) € ®yesZ,
under the natural identification Hy 1(SWiee) with @gec4Z.

The obstruction og:(f) is described by the multidegree as follows.
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Proposition 5.8 ([33]). Let Fy : X — SWhee be a fized S*-map; this map always
exists, however, it is not necessary to extend it to an isovariant map on M. Set
foi = Folon,. Then

0s1(f) = ) _(mDeg f; — mDeg fo,)/|Dil,

=1

under the natural identification Hy_1(SWhee) with ®gesZ.

Remark. Tt follows from the equivariant Hopf type result [33] that
mDeg f; — mDeg fo; € ©pealDi|Z.
In addition, the following extendability result is known.

Proposition 5.9 ([33]). Let N = S' xp DV be as before and f : ON — SWhe be
an S'-map. Set mDeg f = (dg(f)).

(1) f: ON — SWhe. is extendable to an S*-isovariant map f : N — SW if and
only if dg(f) =0 for any H € A with H £ D.

(2) For any extendable f and for any (ay) € @®pea|D|Z satisfying ay = 0 for
H e A with H £ D, there exists an S*-map f': ON — SWyee such that f' is
extendable to an S'-isovariant map f' - N — SW and mDeg f' = mDeg f +

(am).

Using these propositions, one can see that there are S'-isovariant maps f; : ON; —
SW such that [, fi extends both on X and on [], N; as isovariant maps. Thus an

isovariant map from M to SW is constructed.
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