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206 NAGASAKI, KAWAKAMI, HARA and USHITAKI

Abstract

Let k be a positive integer greater than 1 and Cj be the cyclic group of
order k. Let X be an arcwise connected free Cj -space and Y be a
Hausdorff free Cj -space. If there exists a positive integer » such that
Ho(X;Z[kZ) =0 for 1<g<n and Hpy(Y/Cy; Z[kZ) =0, then
there is no continuous Cj -map from X'to Y.

We also prove a definable version of this topological version in an
o-minimal expansion of N = (R, +, -, <, ...} of areal closed field R.

1. Introduction

Let k be a positive integer greater than 1 and Cj, be the cyclic group of order £.
Let S” be the n-dimensional unit sphere of the (n + 1) -dimensional Euclidean space

R with the antipodal C, -action. From the viewpoint of transformation groups,

the classical Borsuk-Ulam theorem states that if there exists a continuous C, -map

from S” to S™, then n < m. There are several equivalent statements of it and
many related generalizations (e.g., [2], [13], [14], [15], [17]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by
several authors. For example, Walker [21], Pergher et al. [18]. They prove non-
existence of continuous C, -maps between free C, -spaces under certain homological
conditions on the free C,-spaces. Essentially they use the Smith-Gysin exact
sequence in their proof. If k is a positive integer greater than 1, then several C; -
versions of the classical Borsuk-Ulam theorem are discussed in Kobayashi [11] and
Hemmi et al. [7].

In this paper, we use the Smith homology (c.f. [10]) which is a useful simple
tool to study Cj -versions of the classical Borsuk-Ulam theorem in the topological

setting and the definable setting. The Smith exact sequence which is expressed by
using the Smith homology is a generalization of the Smith-Gysin exact sequence. By
using this, we can give a simple proof of a C;, -version of the classical Borsuk-Ulam
theorem. In this paper, we prove the following generalized Borsuk-Ulam theorem
which is a generalization of [21], [18], [11] and [7].
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THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS 207

Theorem 1.1. Let X be an arcwise connected free Ci-space and Y be a
Hausdorff free Cy-space. If there exists a positive integer n such that
Hy(X; Z/kZ)=0 for 1< g<n and H,,(Y/Cy; ZfkZ) = 0, then there is no

continuous Cy -map from X to Y. Here this homology means the singular homology.

The following remark shows that we cannot take k£ =1 and & = « in Theorem
1.1.

Remark 1.2. (1) Let » € N and Y be a one-point set. Then the constant map

from R” to Y is a continuous map and R” and Y satisfy the conditions on Theorem
1.1

(2) Let n € N. Then R” has the free Z -action defined by Z x R” —» R”,
(g, Xqs s X, ) > (g + X1, X3, ..., X,,). Therefore, R” and R satisfy the assumptions
on Theorem 1.1 and the map f :R” = R defined by f(x, .., x,)=x is a
continuous Z -map.

Let k be a prime. For a topological space Y, let D= {(y), ... y) €

Yx--x¥|y =+-=y;} be the diagonal and write ¥* =¥ x---x ¥ — D admitting

the free Cj -action defined by g(y1, 2, - Y&} = (32, ¥3» «» Yg» Y1), Where g
generates Cj,.

Theorem 1.3. Let k be a prime and X be an arcwise connected free Cy -space.

If there exists a positive integer n such that Ho(X; ZJkZ)=0 for 1< g <n andY
is a Hausdorff space with H, (Y*|Cy; Z{kZ) =0, then every continuous map
f:X =Y has a Cy -coincidence point, that is, a point x such that f(x)=

Flgx) =+ = f(g*"'x), where g is a generator of Cy.

We can consider the definable versions of Theorem 1.1 and Theorem 1.3 in an
o-minimal expansion N = (R, +, -, <, ...) of a real closed field R.

Many results in the semialgebraic geometry hold in the o-minimal setting and
there exist uncountably many o-minimal expansions of the standard structure of the
field R of real numbers ([19]). See also [4], [6], [12] for examples and constructions
of o-minimal structures. General references on them are [3], [5], [20]. In this paper,
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208 NAGASAKI, KAWAKAMI, HARA and USHITAKI

“definable” means “definable with parameters in A ”, every definable object is
considered in A and each definable map is continuous unless otherwise stated.

Let S” denote the #-dimensional unit sphere of R™!, If R = R g, then §”
is neither arcwise connected nor connected. Thus we cannot apply [21], [18], [11],

[7] and Theorem 1.1 even if X = §2"*! and ¥ = §2"*!,

The singular definable homology is introduced in [22]. Using the singular
definable homology, we have the following theorem which is a definable version of
Theorem 1.1.

Theorem 1.4, Let X be a definably connected definable set with a free definable
Cy -action. If there exists a positive integer n such that H,(X; Z{kZ)=0 for

1<g<n and Y is a definable set with a free definable C, -action such that
H,(Y/Cy ; ZJKZ) = 0, then there is no definable Cj, -map from X to Y. Here this

homology means the singular definable homology.

Note that a definably connected definable set is not necessarily connected and a
definable set is definably connected if and only if definably arcwise connected. Here
a definable set X is definably arcwise connected if for every two points x, y € X,

there exists a definable map f from the closed unit interval [0, 1], of R to X such that
x = f(0) and y = f(1).
In the definable setting, we have the following simple sufficient condition on ¥

which implies H,,(¥Y/Cy ; Z{kZ) = 0.

If Y is a definable set with a definable Cj -action, then by Corollary 10.2.18 in
[3], Y/C, is a definable set and the orbit map = : ¥ — Y/C; is definable. If dim ¥
< n, then by Corollary 4.1.6 in [3], dimY/C, < n. Thus if dimY < n, then
Ho(Y/Cy ' Z/KZ) = 0,

Corollary 1.5. (1) Suppose that k >3 and that C;, acts on ™! and s¥*!
definably and freely. If there exists a definable Cj,-map f : S*"*! - §2"*1  then

m<n.

(2) If 8™ and S" have free definable C, -actions and there exists a definable

Cy-map f:S™ — S", then m < n.
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THE SMITH HOMOLOGY AND BORSUK-ULAM TYPE THEOREMS 209
Corollary 1.5 is a generalization of Theorem 1.1 [16].
Using Theorem 1.4, we have the following theorem.

Theorem 1.6. Let k be a prime and X be a definably connected definable set
with a free definable Cj -action. Assume that there exists a positive integer n such

that H (X, Z[kZ)=0 for \ < q <n. If Y is a definable set with H,,,|(Y" |Cy.; Z/KZ)
= 0, then every definable map f : X — Y has a Cy -coincidence point, that is, a

point x such that f(x) = f(gx) = - = f(g*"\x), where g is a generator of Cy.

2. Proof of Theorem 1.1 and Theorem 1.3

We first prove Theorem 1.1.

Let Z/kZ[C}] denote the group ring of C, over Z{*Z. Forany g € NU {0},
the g-dimensional chain group C,(X; Z/Z) has the standard C;, -action. Then this

action induces Z/kZ[C;]-action on C,(X; Z/kZ).

Let g be a generator of Cp, o =1+g+ -+ gk’l, and § =1-g. Then by
definition af = Bo = 0, for every g, aC,(X; Z/kZ) and BC,(X; Z[KZ) are
Z[KZ[Cy]-submodules of C,(X; Z[kZ) and ad =0da, PO =0B, where 9 is
the boundary operator of {C,(X; ZfkZ)}. Therefore, {0.C,(X;Z/kZ)} and
{BC,(X; Z/kZ)} are subchain complexes of {C, (X; Z/kZ)}.

Proposition 2.1. For every g, the following two sequences are exact:
0 - aC,(X; Z/kZ) S C,(X; Z/kz) & BC, (X; 2/i2) - 0,

0 — BC,(X; Z/kZ) D> €, (X; Z/k2) S aC,(X; Z/R2) > 0,

where i, j denote the inclusions and a (resp. B) stands for the multiplication of a
(resp. B).
Proof. Since Bei=0,a0j =0, Imi < KerB, Im j < Kera.

Let s = Zj Z::(; n jigic ; € Ker, where g is a generator of Cy. If /= /'
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and 0<i<k-1, then g'c;#op. Since Bs=0, for any j, zf;(:nj,-gi(l~g)oj
=0. Thus for every J, Z,:l("ﬁ - nj(i-l))gic; +{njo — njg-1))o; = 0. Hence for
eachj, njo = nj = =ny_. Weset nj =njo(=nj =---=nj_;). Then we have

5= Zjnj(l+g+---+gk'l)cj =azjnjcj € Imi. Therefore, Kerf = Imi.

k-1 i .
Let s= Zj Z;':O nﬂg"oj e Kera. Since as = Zj (njo + -+ "j(k-l))

I+ + gk")cj =0, nj9 + - +nj4-1) =0.

Thus s = Zj(”jo(l—g)"‘("jo +n;)g(l-g)+(njo +njy + "jz)gz(l“g)
+et(njo+nj +~~~+nj(k,2))gk'2(l—-g))cj € Im j. Therefore, Kero =Im . (0

Let HZ (X, Z[kZ) (resp. Hg (X; Z/kZ)) denote the homology group induced

from the chain complex {aC,(X; Z/kZ)} (resp. {BC,(X; Z/kZ)}). We call these
homeology groups the Smith homology groups.

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact:
o> HE(G Z/KZ) > Hy(X; ZZYS HYX; ZIKZ)> HE(X; Z/KT) — -

= HY X ZIREY H (X ZIKESS HE (X 2/RDYS HE (X Z/K2) — -~

In particular, if k = 2, then o. = Band

ix (> 29 O
e > Hg(X; Z/ZZ)L)Hq(X; Z/2Z)——>H3(X; Z/ZZ)-«)H;‘_I(X; Z/ZZ) —> e
is exact.

Let p: E - X be a continuous map. We say that p has the homotopy lifting
property if for any compact space Z, each homotopy 4:Z x[0,1]— X and a
continuous map F : Z — E such that po F(z) = k(z, 0), for all z € Z, there
exists a homotopy H : Z x[0,1] = E such that po H = h and H(z, 0) = F(z),

for all z € Z, where [0, 1] denotes the closed unit interval of R.
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Proposition 2.3. Let X be an arcwise connected Hausdorff free C), -space. Then

the orbitmap ©n : X — X/C has the homotopy lifting property.

Proposition 2.4. If Y is an arcwise connected Hausdorff free Cj -space, then

Jor every q, Hy (Y, ZfkZ) = H,(Y/Cy, Z[KZ).

Proof. We first show that the map o : C(Y; Z/kZ) — C(Y; Z/kZ) and the map
e : C(Y; ZfkZ) — C(Y/Cy ; Z{kZ) induced from the orbit map n:Y — Y/C;
have the same kernel. Let o be a singular s-simplex of Y. We need only to consider
elements of C(C0), since C(¥) = S(glea(s)/c; C(Cko), where A(s) is the set of

singular s-simplexes of Y and A(s)/C, is its orbit set under the induced action.

Since a(z mg' c) = (Zn,- )a(o‘), a(z ng' cs) =0 if and only if Zn,- =0,
and similarly TC.(Z ng' o’) = (Z n; )1; oo =0 ifand only if ) n; = 0; therefore,
both kernels coincide.

We next show that =, is surjective; namely, there is a lift T: A° > ¥ of
t: A° - Y/Cy, where A’ denotes the affine span of (s +1)-points which are

affine independent. Since A® is contractible, there is a homotopy H':A° x[0,1]

— A% such that H'(~, 0) = ¢, and H'(~, 1) = id s> Where ¢, denotes the constant

map whose value is ey € A’. Then the composition H = 1o H' is a homotopy

from the constant map cq(,,) to 1. Let yo be a point of ¥ such that n(yg) = lep),
and ¢, : &° — Y the constant map whose value is y,. Since H(-, 0)=r®o Cypo
it follows from Proposition 2.3 that there exists a lift & : A’ x[0, 1] = ¥ of H such
that H(~, 0) = c,,,. Then ¥ = H(-, 1) isalift of t = H(-, 1).

Since , is surjective, aC(Y; Z{kZ) and C(Y/C,; Z[kZ) are isomorphic as
chain complexes. Accordingly their homology groups are also isomorphic. O

Proof of Theorem 1.1. Assume that there exists a continuous C; -map f: X
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—> ¥ under the conditions of Theorem 1.1. Since X is arcwise connected, f{X) is
acrwise connected. Hence f(X) is contained in an arcwise connected component of

Y. Therefore it is sufficient to prove the case where ¥ is arcwise connected.

We first prove the case where k = 2. Since f is a continuous C, -map,

ofy = fyo.

For simplicity, we abbreviate the coefficient Z/2Z in the singular homology.

By Theorem 2.2, we have a commutative diagram

~ Ho,(X) % HAX) B OH(X) % HE(X) B oHO,(X) — .
Jel . el fol el fel

ir ar

-~ HaW ZE 2 omy) S oy B oHL(Y) - ..

iX a¥ i X X
- H{(X) = H(X) = H{(X) = H§(X) = HoX) - Hg(X) — 0

FHR! Jo 'l Jol frl Lol ol Sl

-~ my 5 my = oHy 5 omy) S HRy) S H(Y) - 0

1=
1%

with exact rows.

By definition, (iX)y =0 and (i), = 0. Thus (), : Ho(X) = HE(X)
and (af Yo : Ho(Y) > H§(Y) are isomorphisms. By assumption, Ho(X) = Z/2Z.
Hence Hy(X)= H{(X) = Z/2Z. Similarly, Ho(Y) =z H§(Y)= Z/2Z. Since
(f3)o : Ho(X) = Ho(¥) is an isomorphism and (a)g © (fu)g = (£*)g * (@ )y,
(F&)o : HE(X) —» HG(¥) is an isomorphism. Since (i), =0, we have
Im(B@L ) = Ker (i Jo = H§(X). Thus we see that (@f)l o (i) = (£ o0 ), -
H{*(X) > H{(Y) is a non-zero homomorphism. Hence (£,*), : H{*(X) - H{(Y)
is a non-zero homomorphism. Using the assumptions on X, we see that (63" )q :
HZ(X) - HJ_1(X) is an isomorphism for each 1< ¢ < n. Using this fact and
by induction, we can prove that (f*),:Hg(X)—> Hg(Y) is a non-zero

homomorphism for each 0 < ¢ < n.
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By Proposition 2.4, Hp, (Y)= H,,(Y/C,). Thus Hy,(¥)=0. Hence

(i), : HX(Y) > H,(Y) is injective and (i), o(i%), : HY(X) —> H,(¥) isa
non-zero homomorphism.

On the other hand, since H,(X) =0, (il’)n o(f), = (f), o (i ), = 0. This

contradiction proves the theorem in this case.

Next, we prove the case where k > 2. For simplicity, we abbreviate the
coefficient Z/kZ in the singular homology. By Theorem 2.2, we have two
commutative diagrams

%

~ HyX) S oHax) B omE) B OHL.(O) — ...
ol Ly 2 A
- HAY) 5 H) B oHAY) & He(v) - ...

-~ HX) 5 mx B R B om0 5 Hx0) % EEX) - o
fel Sl £ fel Sl £ Sl
) g Y .8 o 4 B .8
-~ HY) 5 my) Z B % oHY) S my) % HEY) - o
and
X o o oX x g
- B0 % om £ omoo 2 omeo B R0~
fel 2 JA fel I
oY ¥ a¥ ay 8
- Hav) 2 HY) E B B HM B HLY) - ..
-~ B 5 meo % oEpx B OEEX) B OB % HIX) - 0

21 I £l £l fel £l

v a BIV Y
- HY) S my) S B B B B H(Y) B OHSY) — 0

<

with exact rows.

We easily see that (i )y = 0 and (i), = 0. Thus (8), : Ho(X) = HJ(X)
and (BY Yo : Ho(Y) = Hg(Y) are isomorphisms. Since (), : Ho(X) — Ho(Y)
is an isomorphism, (/# Yo Hg (X) > Hg (Y) is an isomorphism. Similarly, we see
that (f2), : Hg (X) = Hg(Y) is an isomorphism from the second diagram. Since
Hi(X)=0 and (i), =0, (6‘,."{)1 : HIB(X) — H§(X) is an isomorphism.
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Similarly (8,% ) HEX) - Hg (X) is an isomorphism. Since (8} e 78 )=
(52) @) and (@) o (A%) = (PP = (@), (W) : HE(X) > HE (D)
and (7§ ) HE(X) > HP (Y) are non-zero homomorphisms. By induction, we can
prove that (f*), : Hg(X) - HJ (¥) and (f,?)q HEHX) - HS(Y) are non-zero
homomorphism for each 0 < ¢ < n. By Proposition 2.4, Hy.\(Y) = H,(Y/Cp).
Hence H;, (Y/C,)=0 and ( i¥ ), : H3(Y) - H,(Y) is injective. Therefore,
(Y )y e 78 ), is a non-zero homomorphism.

On the other hand, (j1), o (/), = (#1), ° (X), = 0 because H,(X)=0.
This is a contradiction. Therefore, the proof is complete. O

Proof of Theorem 1.3. Suppose that there is no point x € X such that
F(x)= f(gx)=--= f(g*'x). Then the map F:X —Y" defined by F(x)=(f(x),

Flgx), ..., f{g*'x)) is a continuous C, -map. This contradicts Theorem 1.1. -0

3. Proof of Theorem 1.4 and Theorem 1.6

To prove Theorem 1.4, we need a definable version of Proposition 2.4.

Definable fiber bundles are introduced in [9].

Proposition 3.1 (Corollary 1.5 [8]). Let X be a definable set with a free
definable Cy -action. Then (X, n, X/C}, Cy) is a principal definable Cj -fiber
bundle, where n: X — X[C,, denotes the orbit map. In particular, n: X — X[C;,
is a definable covering map.

Let p: E — X be adefinable map. We say that p has the definable homotopy
lifting property if for any definable set ¥, each definable homotopy 4 : Y x[0, 1],
—-> X and a definable map F :Y — E such that p o F(y) = h(y, 0) forall y e ¥,
there exists a definable homotopy H :Y x [0, l]R —> E such that po H = h and
H(y, 0)= F(y) forall y e Y.

Theorem 3.2 (Proposition 4.10 [1]). Every definable covering map has the
definable homotopy lifting property.
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The following corollary is a definable version of Proposition 2.4.

Corollary 3.3. Let X be a definable set with a free definable Cj -action. Then

the orbit map = : X — X[Cy, has the definable homotopy lifting property.

Proof of Theorem 1.4 and Theorem 1.6. Using Corollary 3.3 instead of

Proposition 2.4, we can prove Theorem 1.4 by a way similar to the proof of Theorem
1.1. A similar proof of Theorem 1.3 proves Theorem 1.6. O

(m

(2

(4]

(31

[6]

M

(8]

9

[10]

(11]

(12]

References

E. Baro and M. Otero, On o-minimal homotopy groups, Quart. J. Math. (2009) (to
appear).

Carlos Biasi and Denise de Mattos, A Borsuk-Ulam theorem for compact Lie group
actions, Bull. Braz. Math. Soc. (N.S.) 37(1) (2006), 127-137.

L. van den Dries, Tame topology and o-minimal structures, London Mathematical
Society Lecture Note Series 248, Cambridge University Press, Cambridge, 1998.

L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted
analytic field with exponentiation, Ann. of Math. (2) 140(1) (1994), 183-205.

L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke
Math. J. 84(2) (1996), 497-540.

L. van den Dries and P. Speissegger, The real field with convergent generalized power
series, Trans. Amer. Math. Soc. 350(11) (1998), 4377-4421.

Y. Hemmi, T. Kobayashi and T. Yoshida, The Borsuk-Ulam theorem for a Zq -map
from §2"*! 10 a Z,,-complex, Mem. Fac. Sci. Kochi Univ. Ser. A Math. § (1987),
27-30.

T. Kawakami, Definable C” groups and proper definable actions, Bull. Fac. Ed.
Wakayama Univ. Natur. Sci. 58 (2008), 9-18.

T. Kawakami, Homotopy property of definable fiber bundles, Bull. Fac. Ed.
Wakayama Univ. Natur. Sci. 53 (2003), 1-6.

K. Kawakubo, The Theory of Transformation Groups, The Clarendon Press, Oxford
University Press, New York, 1991.

T. Kobayashi, The Borsuk-Ulam theorem for a Z, -map from a Z, -space to Sz"“,
Proc. Amer. Math, Soc. 97 (1986), 714-716.

C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic
68(1) (1994), 79-94.

— 287 —



216
(13}

(14]

(15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

NAGASAKI, KAWAKAMI, HARA and USHITAKI

1. Nagasaki, Isovariant Borsuk-Ulam results for pseudofree circle actions and their
converse, Trans. Amer. Math. Soc. 358 (2006), 743-757.

L. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups,
Osaka J. Math. 43(3) (2006), 689-710.

1. Nagasaki, The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch.
Math. (Basel) 81(3) (2003), 348-359.

1. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Borsuk-Ulam theorem in a
real closed field, Far East J, Math. Sci. (FIMS) 33(1) (2009), 113-124.

1. Nagasaki and F. Ushitaki, Isovariant maps from free C,, -manifolds to representation
spheres, Topology Appl. 155(10) (2008), 1066-1076.

Pedro L. Q. Pergher, Denise de Mattos and Edivaldo L. dos Santos, The Borsuk-Ulam
theorem for general spaces, Arch. Math. (Basel) 81(1) (2003), 96-102.

J. P. Rolin, P. Speissegger and A. J. Wilkie, Quasianalytic Denjoy-Carleman classes
and o-minimality, J. Amer. Math. Soc. 16(4) (2603), 751-777.

M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics
150, Birkh3user Boston, Inc., Boston, MA, 1997.

J. W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math,
Monthly 90(7) (1983), 466-468.

A. Worheide, O-minimal homology, Ph.D. Thesis, University of Illinois at Urbana-
Champaign, 1996.

— 288 —



A survey of Borsuk-Ulam type theorems for
isovariant maps

ITkumitsu Nagasak:

ABSTRACT. In this article, we shall survey isovariant Borsuk-Ulam type theorems, which
are interpreted as nonexistence results on isovariant maps from the viewpoint of equivariant
topology or transformation group theory. We also discuss the existence problem of isovariant

maps between representations as the converse of the isovariant Borsuk-Ulam theorem.

1 Introduction — backgrounds

Ever since K. Borsuk [5] proved the celebrated antipodal theorem, called the Borsuk-
Ulam theorem, this theorem has attracted many researchers and has been generalized
as Borsuk-Ulam type theorems, because it is not only beautiful but also has many in-
teresting applications in several fields of mathematics like topology, nonlinear analysis

and combinatorics. The original Borsuk-Ulam: theorem is stated as follows:

Proposition 1.1. For any continuous map f : S™ — R™, there exists a point x € S™
such that f(z) = f(—z).

Let Cs be a cyclic group of order 2. Consider Cy-spheres S™ and S™ on which
Cs, acts antipodally. By means of equivariant topology, the Borsuk-Ulam theorem is

restated as follows:

Proposition 1.2. If there is a Cy-map f : S™ — S™, then m < n. In other words,

if m > n, then there is no Cy-map from S™ to S™.

12000 Mathematics Subject Classification: Primary 57S17; Secondary 55M20, 57525, 55M35
Keywords and phrases: Borsuk-Ulam theorem, semilinear action, isovariant map.
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Thus, in the context of equivariant topology, Borsuk-Ulam type theorems are
thought of as nonexistence results on G-maps. Such results are implicitly and explic-
itly applied in several mathematical problems; for example, a Borsuk-Ulam type result
plays an important role in the proof of Furuta’s 10/8-theorem [14] in 4-dimensional
topology. Lovész [21] succeeded in proving Kneser’s conjecture in combinatorics us-
ing the Borsuk-Ulam theorem. Matousek [27] also illustrates several applications to
combinatorics. Clapp [9] applied a Borsuk-Ulam type theorem to a certain problem
in nonlinear analysis. Further results and applications on the Borsuk-Ulam theorem
can be found in excellent survey articles [46], [47].

Wasserman [49] first considered an isovariant version of the Borsuk-Ulam theorem.
Nagasaki [31], [33], [34] and Nagasaki-Ushitaki [38] also studied isovariant Borsuk-

Ulam type theorems. For example, Wasserman’s results imply the following.

Proposition 1.3. Let G be a solvable compact Lie group and V, W real G-represen-

tations. If there exists a G-isovariant map from V to W, then the inequality
dimV — dim V% < dim W — dim W¢
holds. Here V¢ denotes the G-fized point set of V.

In this article, we shall survey isovariant Borsuk-Ulam type theorems and related
topics, in particular, we shall discuss the existence or nonexistence problem for iso-
variant maps between G-representations or more general G-spaces. This article is
organized as follows. In Section 2, after recalling some equivariant Borsuk-Ulam type
theorems, we shall show the isovariant Borsuk-Ulam theorem for semilinear actions
which is a generalization of Proposition 1.3. In Section 3, we shall discuss the ques-
tion of determining for which groups the isovariant Borsuk-Ulam theorem holds. In
Section 4, we shall discuss the existence of an isovariant map between representations.
Finally, in Section 5, other topics, in particular, the isovariant Borsuk-Ulam theorem

for pseudofree S!-actions and its converse are discussed.

2 Isovariant Borsuk-Ulam type theorems

We first recall some definitions and notations in transformation group theory. Let G

be a compact Lie group and X a G-space. For any x € X, the isotropy subgroup G,

76

- 290 —



1. Nagasaki A survey of Borsuk-Ulam type theorems

at z is defined by G, = {g € G| gx = z}. We denote by Iso X the set of the isotropy
subgroups. A subgroup of G always means a closed subgroup. The notation H < GG
means that H is a subgroup of GG, and H < GG means that H is a proper subgroup of
G. As usual X¥ denotes the H-fixed point set: X = {z € X|hz =z (Vh € H)}.
All G-equivariant maps (G-maps for short) are assumed to be continuous. A G-
map f : X — Y is called G-isovariant if f preserves the isotropy subgroups, i.e.,
Gz = Gy for all € X. The notion of isovariance was introduced by Palais
[41] in order to study a classification problem on orbit maps of G-spaces. Moreover
isovariant maps often play important roles in classification problems of G-manifolds
or equivariant surgery theory, for example, see [7], [44], [50]. For the study of these
maps from the viewpoint of homotopy theory, see [12].

As mentioned in the Introduction, the Borsuk-Ulam theorem can be stated in the
context of equivariant topology or transformation group theory. In this context, there
are very rich researches and results on Borsuk-Ulam type theorems, see, for example,
(1], [3], [4], 9], [11], [13], [15], [16], [17], [19], [20], [26], [43]. Here we present the

following generalization of the Borsuk-Ulam theorem for free G-spaces.

Theorem 2.1 ([3], [37]). Let Cy be a cyclic group of order k. Let X be an arcwise
connected free Cy-space and Y a Hausdorff free Cy-space. If there exists a positive
integer n such that Hy(X;Z/k) =0 for 1 < q <n and H,11(Y/Cy; Z/k) = 0, then
there is no continuous Cx-map from X to Y. Here this homology means the singular

homology.

Remark. This result can be deduced from a more general result of [3] and therein the
Borel cohomology and spectral sequence arguments are used. On the other hand, in
[37], the Smith homology is used. The advantage of the latter method is that the
proof is still valid in the category of definable sets with the o-minimal structure over
a real closed field, see [36], [37].

Theorem 2.1 implies a well-known Borsuk-Ulam type theorem.

Corollary 2.2 (mod p Borsuk-Ulam theorem). Let C, be a cyclic group of prime
order p. Assume that C, acts freely on mod p homology spheres ¥™ and X". If there
is a Cp-map f : X™ — X", then m < n. In other words, if m > n, then there is no
Cp-map from ¥™ to X"

77

— 291 —



I. Nagasaki A survey of Borsuk-Ulam type theorems

In addition, one can see the following.

Corollary 2.3. Let S be a circle group. Assume that S' acts smoothly and fized-
point-freely on rational homology spheres ¥™ and X", If there is an St-map f : ™ —
" then m < n.

Proof. One can take a large prime number p such that C, (< S') acts freely on ™
and X", and that X™ and X" are mod p homology spheres. O

Thus Borsuk-Ulam type theorems are thought of as nonexistence results of G-
maps. In this direction, we discuss the nonexistence of G-isovariant maps; namely,
the isovariant Borsuk-Ulam theorem. We here recall a linear action or a homologically
linear action on a (homology) sphere. Let V be a real representation of G, i.e., V
is a (finite dimensional) real vector space on which G acts linearly. Since every
representation of compact Lie group G is isomorphic to an orthogonal representation
[2], we may suppose that the representation is orthogonal. Since, then, the G-action
on V preserves the standard metric, it induces linear G-actions on the unit sphere
SV and the unit disk DV. A G-manifold which is G-diffeomorphic to SV [resp. DV]
is called a linear G-sphere [resp. a linear G-disk].

A homologically linear action on a homology sphere is defined as follows. Let G

be a compact Lie group. Set

e {Z/G i dimG =0
71z if dimG > 0.

Let ¥ be an Rg-homology sphere, i.e., H.(X; Rg) = H,.(S™; Rg), where m = dim X.
Suppose that G acts smoothly on .

Definition.

(1) The G-action on ¥ is called homologically linear if for every subgroup H of G,
the H-fixed point set ©¥ is an Rg-homology sphere or the empty set.

(2) The G-action on ¥ is called semilinear or homotopically linear if for every
subgroup H of G, the H-fixed point set 2 is a homotopy sphere or the empty
set. (Hence ¥ itself must be a homotopy sphere.)
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(3) We call a smooth closed manifold ¥ with homotopically linear [resp. semilinear]

G-action a homotopically linear [resp. semilinear| G-sphere.

Let Hg denote the family of homologically linear G-spheres and Sg the family of
semilinear G-spheres. We also denote by L5 the family of linear G-spheres.

Remark. Clearly Lo C S¢ C Hg, but the converse inclusions are not true in general.

For semilinear actions on spheres, see [29], [30], [32].

Lemma 2.4. Let Fg = Hg, Sg or Lg.
(1) Let H be a subgroup of G. If ¥ € Fg, then ¥ € Fy by restriction of the action.
(2) Let H be a normal subgroup of G. If & € Fg, then B € Fa/m-

Proof. (1) Since XX, K < H, is an Rg-homology sphere (or the empty set), it is also
an Rp-homology sphere (or the empty set).

(2) Since (XH)K/H = ¥¥ is an Rg-homology sphere (or the empty set), it is also
an Rg/m-homology sphere (or the empty set). O

Now we state the isovariant Borsuk-Ulam theorem for homologically linear actions.

Theorem 2.5 (Isovariant Borsuk-Ulam theorem). Let G be a solvable compact Lie
group. If there is a G-isovariant map f : ¥ — 3o between homologically linear
G-spheres X, i = 1,2, then the inequality

dim¥; — dim ¢ < dim £, — dim ¢
holds.

A convention: if 3¢ is empty, then we set dim ©¢ = —1. To prove the theorem,

we make the following definition.

Definition. We say that G has the IB-property in Fg, where Fg = Lg, Sg or Hg if
G has the following property: If there is a G-isovariant map f : X1 — X9, 3; € Fq,
then the inequality

dim ¥, — dim £¢ < dim ¥y — dim 2§

holds.

79

— 293 —



I. Nagasaki A survey of Borsuk-Ulam type theorems

We first show the following fact.
Lemma 2.6 ([49], [31)).

(1) Let H be a normal subgroup of G. If H and G/H have the IB-properties in Fy
and Fg/u respectively, then G also has the IB-property in Fq.

(2) Let Fo = Sg or Lg. If G has the IB-property in Fq, then G/H also has the
IB-property in Fa/n.

Proof. (1) Let f : ¥ — X5 be any G-isovariant map between 3; and X5 in Fg. Then
resgf : ¥y — Xy is H-isovariant and f# : ©# — ¥ is G /H-isovariant. It follows

from Lemma 2.4 that ¥}, ¥y € Fy and L8, X € Feyu- By assumption, we have
dim¥; — dim ©F < dim 2y — dim ¥
dim 7 — dim ¢ < dim = — dim X5

Hence we obtain
dim¥; — dim ¢ < dim 5 — dim X5 .

(2) Suppose that f : 3; — ¥, is a G/H-isovariant map between ¥; and ¥y €
Feu. Via the projection G — G/H, the G/H-action lifts to a G-action. Hence %,
i =1, 2, are thought of as in F¢ and then f is a G-isovariant map. Thus we have
dim ¥; — dim % < dim 2y — dim 5/ since dim S/ = dim %€, O

Proof of Theorem 2.5. We show that a solvable compact Lie group has the IB-property
in Hg. Suppose that f: ¥ — 3 is a G-isovariant map. Since G is solvable, there is

a normal series of closed subgroups:
l=Hy<xHh<---<H =G

such that H,/H; 1, 1 <14 <r, is isomorphic to C, (p: some prime) or S*.

By Lemmas 2.4 and 2.6, the proof is reduced to the cases of C, and S*; moreover,
the case of S is also reduced to the case of C,, since there exists some cyclic subgroup
C, of S* such that 3 = Z,L-Cp, t = 1,2, in fact, 3; € Hg has only finitely many orbit
types [6], [18].

In the case of C,, the proof proceeds as follows. Let G = C,. Since f is G-
isovariant, it follows that f(X; —X¢) C Xy — . Set N; := ; — 3¢, Since &; and B¢
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are mod p homology spheres, by Alexander duality, one can see that N; := %;—X¢ has
the same mod p homology groups as a sphere S™, where n; = dim %; — dim ©¢ — 1.
Since G = C,, acts freely on N; and f|y, : Ny — Ny is a G-map, it follows from

Theorem 2.1 that n; < ns, and hence
dim¥; — dim ¢ < dim ¥, — dim %
Thus C, has the IB-property in He,. O
This theorem implies Proposition 1.3.

Proof of Proposition 1.3. Let f : V — W be a G-isovariant map between repre-
sentations. Let VG denote the orthogonal complement of V¢ in V, and then V
decomposes as V = V& @ VE'. Similarly W decomposes as W = W¢ @ W&,
Then the composition map g :=po foz: VG 5 WO is a G-isovariant map, where
i : V6& — V is the inclusion and p: W — WS is the projection. Since g~(0) = {0},
g induces a G-isovariant map go : V" \ {0} — We* \ {0}. By normalizing, one has
a G-isovariant map g : (V) — S(WCE"). Since G has the IB-property in Hg,
one has

dim S(VE) +1 < dim S(WOH) + 1,

which leads to the inequality

dimV —dim V% < dim W — dim W¢.

The following is obtained from Smith theory [6], [18].

Corollary 2.7. Let G be a finite p-group. Let ¥;, i = 1,2, be mod p homology spheres

with G-actions. If there is a G-isovariant map f : X1 — Yo, then
dim ©; — dim £ < dim ¥y — dim 2§
holds.

Proof. Smith theory shows that for every subgroup H, the H-fixed point set ¥ is a
mod p homology sphere or the empty set. Hence the G-action on ¥; is homologically
linear and ¥, € He. O
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The singular set N>! of a G-manifold N is defined by

N> = U NE .
1£H<G

The following is a variant of the isovariant Borsuk-Ulam theorem, which is a gener-

alization of a result in [33].

Corollary 2.8. Let G be a finite group and W a representation of G. Let M and N
be homologically linear G-spheres and assume that G acts freely on M. If there is a

G-isovariant map f: M — N, then the inequality
dimM +1 < dim N — dim N>!
holds.

Proof. Since dim N>! = max{dim N¥ |1 # H < G}, there is a subgroup H # 1
such that dim N = dim N>!. Taking a cyclic subgroup C, < H of prime order, one
has dim N = dim N>'. By restricting to the Cj-action, it turns out that f is a

Cp-isovariant map. Hence, by the isovariant Borsuk-Ulam theorem, one has
dim M + 1 < dim N — dim N = dim N — dim N>,
O
Remark. Not all finite groups can act freely on a (homology) sphere. For details, see
[8], 23], [24], [25].
3 Which groups have the IB-property?

As seen in the previous section, a solvable compact Lie group has the IB-property
in Fg, i.e., the isovariant Borsuk-Ulam theorem holds in Fg. In this section, we
discuss the question: Which compact Lie groups have the IB-property in F5? First

we consider the case of Fg = Hg or Sg. In this case, a complete answer is known.
Theorem 3.1 (cf. [31]). The following statements are equivalent.
(1) G has the IB-property in He.
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