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Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many
developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone
conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing
aids require surgery (bone anchored hearing aid) or great pressure to the skull. The first purpose of this study is
to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a
hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.

Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external
auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage). After the best position for the
cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion
earphone (air conduction), a bone conduction transducer, and a cartilage conduction transducer. Then we made a
new hearing aid using cartilage conduction and got subjective data from the patients.

Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean
hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage
conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was
comparable to those from the bone conduction hearing aid.

Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction.
Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such
as pain and the need for surgery.

Originality/wvalue: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype
‘cartilage conduction hearing aid’, which is the first hearing aid to use sound transmission via cartilage.
Keywords: Industrial management and organization; Safety and health management; Hearing aid; Sound
conduction via tragal cartilage
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1. Introduction

It is well known that physical function deteriorates with
increasing age [1], and hearing ability is no exception [2, 3].
A hearing aid is usually supplied to elderly people with a hearing
impairment. Given the aging of populations in many developed
countries, the potential demand for hearing aids is increasing.
Since the first appearance of digital hearing aids in 1987, there has
been an explosion in the number of digital hearing aids on the
market. The digital signal processing which is applied for the
digital hearing aid improves noise suppression without
deterioration of the auditory signal, acoustic feedback control, and
word intelligibility, etc.[4-6]. The development of digital hearing
aids is boon to the patients with hearing impairment.

Although such developments in digital hearing aids are expected
to result in the better communication in patients with hearing
impairment, patients who suffer from specific pathological
conditions such as otorrhea or atresia of the external auditory
meatus cannot benefit from common air conduction digital hearing
aids, since the air conduction earphone cannot be used.

For patients with such pathological conditions, bone
conduction hearing aids have been widely used [7, 8]. The bone
conduction hearing aid also amplifies sounds but the sounds don’t
pass into the external auditory canal, instead the sounds are
conducted to the bone of the skull. To transmit the sound to the
skull, the bone conduction transducer should be positioned on the
cranial bone at the retroauricular area. In the bone conduction
hearing aid, the audio signal is converted into mechanical

vibration and it is conducted into the inner-ear via the cranial bone.

The bone conduction hearing aid can be used by the patients
with pathological conditions in their external auditory canal,
however, the transmission efficacy of acoustic information is low
because it relies on the vibration of the bone. In addition, despite
fixation of bone conduction transducer is essential for comfortable
use, an ideal method for fixation of the transducer has not yet been
determined. And because the bone conduction transducer has to be
strongly pressed on the skull for good transmission efficacy, many
patients complain of pain and give up extended use. Since such
problems are fatal for bone conduction hearing aids, bone
anchored hearing aid (BAHA) was developed [9] for conductive
and mixed hearing loss in 1977. The BAHA consists of two parts:
a titanium implant with an external abutment, and a detachable
sound processor. The sound processor transmits sound vibrations
through the external abutment to the titanium implant.
The vibrating implant sets up vibrations within the skull and inner
ear, then finally stimulate the hair cells of the inner ear.

Although it can partially overcome the disadvantages of bone
conduction hearing aids, there still remain several problems [10].
For example, to wear a BAHA, a surgical operation is needed
to embed a titanium implant in the skull, which can introduce
infection since a part of the implant is appeared in the air after the
surgery. In addition, since the BAHA relies on bone conduction,
the enough binaural hearing effect cannot be obtained.

Based on these backgrounds, we selected a piezoelectric
transducer among several transducers [11-15] as the best transducer
to solve these problems and effectively transmit auditory stimuli in
hearing aids. Since we consider that auditory stimuli are transmitted
via the cartilage of the tragus in this transducer, we call this as
‘cartilage conduction’. In this study, we first examined the efficacy
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of sound transmission via cartilage conduction. Second, we
developed a hearing aid using a cartilage conduction transducer for
patients who cannot use regular air conduction hearing aids.

2. Materials and methods

2.1. Participant

An 11-years old patient with atresia of both external auditory
canals participated in this study.

The patient’s right ear was completely imperforated, but there
was a shallow recess at the opening of the left external auditory
canal (Figure 1).

Fig. 1. Appearance of the opening of the external auditory canal
in this case. There is only a shallow recess

Fig. 2. Retroauricular area of the patient in this study. Since this
patient has used a bone conduction hearing aid, a cave derived
from the strong and lasting pressure of the bone conduction
transducer was observed

Since a recess is needed to measure the hearing ability via air
conduction, all measurements were performed on his left ear.
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As this patient was diagnosed with moderate conductive hearing
loss more than 10 years ago, he has used a bone conduction
hearing aid. Since the bone conduction transducer requires strong
pressure on the skull, this patient has complained of pain and
annoyance with bone conduction hearing aid. In fact, a small
collapse was observed at the spot where the bone conduction
transducer was usually fixed (Figure 2).

2.2. Apparatus

The transducers for cartilage conduction were made up of the
piezoelectric bimorph and covering material. The architecture of
the transducer and its frequency-specific traits by several kinds of

covering material are shown in Figure 3 and Figure 4, respectively.

Covering materials used in the measurement is shown in Table 1.

covering material

piezoelectric bimorph

Fig. 3. Architecture of the transducer
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Fig. 4. Frequency-specific traits of transducer. #0 indicates that
covering material was not used

They revealed that covering materials inhibit frequency-
dependent changes in output force by controlling the secondary
resonance point at 5.5 kHz, and relatively flat output force across
frequencies could be obtained. And, it is able to control the
frequency of primary resonance and obtain appropriate traits by
changing the covering material.

Table 1.
Elastic modulus and thickness of covering materials used in the
measurement

Elastic modulus  Thickness of covering

Covering material

Y [GPa] material Tc [mm]
#0 - - -
#1 Silicone rubber A 0.0035 1.3
#2 Silicone rubber B 0.0035 2
#3 Silicone rubber C 0.0012 1.3

According to the measurement of the frequency-specific traits
of the transducer, it became clear that the acoustic traits are
controllable by changing the thickness or elastic modulus
of covering material. Therefore, developed transducers are able
to remodel for several applications by changing the covering
material or its form. Figure 5 shows the prototype of organic-
material-covered-transducers that are intended to be used in the
hearing aids.

Fig. 5. Prototype of organic-material-covered-transducers aimed
for the hearing aids

Among several prototypes of transducers, the acoustic traits
oftwo transducers (KDS-UM-01 and KDS-UM-05) were
measured with artificial mastoid (Figure 6). Both transducers
contain piezoelectric bimorph, of which electrostatic capacitance
between negative and positive terminals are 200 nF. Numbers
of piezoelectric bimorph are six and four for KDS-UM-01 and
KDS-UM-05, respectively. Our measurement showed that the
acoustical output of low frequencies below 1 kHz is stronger in
KS-UM-01 than in KS-UM-05, which is thought to be caused by
the differences in the numbers of piezoelectric bimorphs

An audiometer (AA-7A; Rion, Inc., Tokyo, Japan) was used
to measure the hearing ability of the patient. For air conduction,
an insert earphone (Cabot Safety Corporation, Indianapolis, IN)
was used. The earphone was calibrated to conform with the
International Organization for Standardization (ISO) 389-2 before
the measurement. For bone conduction, a bone conduction
transducer (BR-41; Rion, Inc), which is an attachment of the
audiometer, was used. This bone conduction transducer also
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conformed to the ISO 389-3. For cartilage conduction, a selected
piezoelectric transducer was used (Figure 7; hereafter called the
‘cartilage conduction transducer’).
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Fig. 6. Acoustic traits of transducers measured with artificial
mastoid

Fig. 7. Piezoelectric transducer used in this study

2.3. Procedure

In order to compare three kinds of thresholds of the participant
on the same scale, average hearing thresholds for three pathways
were obtained from normal hearing subjects.

Since the right external auditory canal was completely closed,
the data from the left ear is presented. After measurement of air
and bone conduction, the cartilage transducer was softly attached
to the patient’s left tragus (Figure 8) and the cartilage conduction
threshold was measured. The tragus was found to be the best
position for sound transmission via a cartilage conduction
transducer.

In advance of the experiments, he was provided written
consent after being informed the nature of the experimental
procedure and purpose of this study. All procedure used in this
study were approved by the ethics committee of Nara Medical
University.
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Fig. 8. Appearance of the cartilage conduction transducer attached
to the patient’s tragus (left ear)

3. Results and discussion

The thresholds obtained from the measurement of air
conduction and bone conduction are shown in Figure 9. The mean
hearing levels calculated by the three-frequency pure tone average
were 58.3 and 6.7 dBHL for air conduction and bone conduction,
respectively. Considering that this patient’s hearing ability
is impaired for air conduction but not bone conduction, i.e., the
air-bone gap is wide, he was diagnosed as conduction hearing loss.
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Fig. 9. The hearing thresholds for air and bone conduction on the
audiogram (x: air conduction, : bone conduction)

The threshold for cartilage conduction is shown in Figure 10.
The calculated mean hearing level was 3.3 dBHL, which
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is superior to that of air conduction. When compared with bone
conduction, the hearing level of cartilage conduction was
comparable to that of bone conduction. Hence, the cartilage
conduction root can be used in order to get the good hearing for
the patient.
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Fig. 10. The hearing threshold for cartilage conduction on the
audiogram

Since we confirmed the efficiency of the cartilage conduction
transducer in transmitting auditory stimuli, we applied this
transducer to a hearing aid (Figure 11). This is the first hearing aid
to use sound transmission via cartilage, and is referred to as
a ‘cartilage conduction hearing aid’.

Fig. 11. Cartilage conduction hearing aid developed in this study.
It consists of a cartilage transducer (right) and microphone/amplifier
complex (white box on left). The red circle is convenient to fix the
cartilage conduction transducer to the tragus

The transducer and the microphone/amplifier complex weigh
6 g and 69 g respectively. According to the description from
patients using the cartilage conduction hearing aid, their subjective
hearings were comparable to those of bone conduction hearing
aids. Because neither strong pressure nor surgery is necessary for
the cartilage conduction hearing aid, It is expected to be useful for
patients who cannot use regular air conduction hearing aids.

Frequency responses of the cartilage conduction hearing aid
were measured. The sensitivity of the microphone were calibrated as
-52dB, 0dB: 1V/0.1 Pa. The frequency response curves of the input
voltage level to the cartilage transducer of the hearing aid at the
maximum volume position are shown in Figure 12. Curves are
plotted for the input sound pressure levels at 40, 50, 60, 70 and
80 dB. As input voltage level (decibels), the ratio of the RMS value
of the voltage (reference value of 1V) that is transformed into
common logarithm and then increased twenty-fold was used.
The frequency response curves of the output force level from
the cartilage transducer measured by the mechanical coupler (IEC
60373) for static force 3N is shown in Figure 13. As force level
(in decibels),the ratio of the RMS value of the force transmitting
vibration (reference value of 1 pN) that is transformed into common
logarithm and then increased twenty-fold was used. The hearing
levels calculated from the values of Figure 13 is shown in Figure 14.
Those hearing levels were calculated based on the Reference
Equivalent Threshold Force Level defined by ISO 389-3.

4. Conclusions

Final purpose of the present study was to develop a cartilage
conduction hearing aid suitable for practical use. For this aim,
we examined the hearing ability of a patient with atresia of the
external auditory meatus via three conduction pathways (air, bone,
and cartilage). Our results showed that the patient’s hearing ability
was dramatically increased with cartilage conduction compared
with air conduction to a level comparable with bone conduction.
Since we had confirmed the efficacy of the cartilage conduction
transducer in sound transmission, we made a prototype of
a cartilage conduction hearing aid. Although the experiments
on the cartilage conduction hearing aid are in progress, subjective
reports from patients suggest that a cartilage hearing aid would be
useful and practical.

Although the cartilage conduction transducer improved the
hearing of this patient remarkably, the transmission pathway
of auditory stimuli in cartilage conduction is still unknown. It is
also not yet determined whether sound localization will be
possible if cartilage hearing aids were worn on both ears. Research
about the cartilage conduction hearing aid is in a germinal stage,
these questions, and others regarding the practical use of cartilage
conduction hearing aids, should be examined in future studies.
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