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Fig. 2 - TAPIR was not correlated with clinical symptoms. There were no significant differences in MMS scores (A), disease
duration (B) or decline of the clinical course of AD according to TAPIR grade. No significant difference in the decline of MMS
scores according to duration was shown among AD subgroups (C). Y=-0.09X+19.54, r*=0.19, p=0.01 in TAPIR - (o);

Y=-0.06X +18.50, r’=18.50, p=0.52 in TAPIR = (0); Y=0.12X +20.59, r*=0.17, p=0.02 in TAPIR + (s); Y=-0.06X +18.63, r*=0.04,

p=0.72 in TAPIR ++ (¢).

amyloid cores in AD brains (Fig. 4G-I). The appearance rate was
1/3 at 4 months old (1 TAPIR +), 3/3 at 8 months old (1 TAPIR ++
and 2 TAPIR +), 1/1 at 16 months old (1 TAPIR ++) and 1/1 at
23 months old mice (1 TAPIR +).

Finally, we summarized age-dependent TAPIR-positive rates
(TAPIR grading + and ++) in 10 year increments in both AD and
tNC groups (Fig. 4]). TAPIR-positive rates were high in young
subjects (1-20 years old), low during adulthood (21-50 years old)
and then increased again after 50. No differences were observed
between AD and tNC samples from 50 to 91 years old. Thus, the
appearance of antibodies to AR preceded Ap amyloid deposition
in human and model mouse brains.

2.5. Levels of plasma AB40 and AB42 were age-dependently
regulated in the tNC group

To examine the effect of antibodies to AR on plasma AR
concentrations, we measured levels of Ap40 and AR42 in 318
plasma samples by specific ELISA. In the tNC group, plasma
Ap40 levels increased after 40 years of age (Fig. 5A; p<0.0001).
On the contrary, plasma Ap42 levels increased between the
teens and twenties, then gradually declined with age (Fig. 5B;
p=0.0158). The Ap ratio (ApR40/Ap42) was stable until
~30 years old and then gradually increased (Fig. 5C; p<0.0001).

2.6. Plasma AR ratio is increased in AD

Significantly increased levels of plasma Ap40 were observed in
the AD group (112+39.51 pmol/L) compared to the aNC group
(95.38+ 32.30; p<0.0002; Fig. 5D). Ap42 levels were significantly
decreased in the AD group (10.29+13.80 pmol/L) compared to
the aNC group (12.13+12.29; p<0.0001; Fig. SE). Based on these
changes, the Ap ratio (Ap40/AB42) was more strongly increased
inthe AD group (14.42+10.00) thanin the aNC group (8.34+3.83;
p<0.0001; Fig. SF). ROC analysis of the Ap ratio indicated that
the significant cut off value was 9.0, which provided high
sensitivity (78.8%) and low specificity (30.3%) for clinical
diagnosis of AD. When the mean+2 SD (15.9) of the aNC
group was used as a cut off value, the sensitivity was 24% and
the specificity was 96%. When AD was divided into 3 subgroups
according to clinical stage, increasing Ap40 levels and AR ratio,
as well as decreasing Ap42 levels progressed from the early

stage to the advanced stage (Fig. 5G-I). Thus, the plasma Ap
ratio can be used as a specific biomarker for AD although the
sensitivity and specificity are lower than those of CSF samples
(Kanai et al., 1998; Shoji et al., 2001; Shoji, 2002).

2.7.  TAPIR did not modify AB concentration

Finally, we examined whether antibodies to A could affect levels
of plasma AR40 and Ap42. There were no significant differences
in the concentrations of plasma Ap40 or Ap42, or in the Ap ratio
among AD and aNC classified by TAPIR score (Fig. 6A-C).
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Fig. 3 - TAPIR-positive plasma immunoprecipitated AB40
and amyloid AB, but AB42 very weakly. On direct western
blotting of synthetic AB40, AB42, and FAB from the AD brain,
antibody 6E10 detected monomers and dimers of AB40, AB42
and brain amyloid AR with smear aggregates (left panel).
Immunoprecipitations of AB40, AB42, and FAP using
TAPIR -, +, and ++ plasma from the AD group (right upper
panel, AD) or the aNC group (right lower panel, NC) were
labeled by antibody 6E10, showing that monomers (arrow)
and dimers (arrow) of AB40 were recognized by
TAPIR-positive plasma (grading + and ++) in addition to AB42
monomers, and brain AB amyloid monomers and dimers
with smear aggregates, which showed weak signals.
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3. Discussion

In our study, a high positive rate of TAPIR was found in both AD
(45.1%) and aNC (41.2%) groups, but no significant difference
was found between these groups. Essentially the same
findings were observed even in strongly positive (++) sub-
groups of AD (6.2%) and aNC (12.9%). Non-parametric analysis
revealed that neither MMSE score nor disease duration
correlated with TAPIR grade, indicating that the physiological
impact of naturally occurring anti-Ap antibodies is below
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clinical significance. This is consistent with previous reports
describing frequent presence of low levels of antibodies to
ApR40 or AR42 peptides as detected by ELISA in plasma and CSF.
Alarge scale study by Hyman et al. showed by ELISA that there
were low and modest levels of anti-Ap42 peptide antibodies in
52.3% and 4.7% of 365 plasma samples from AD and age-
matched controls, respectively (Hyman et al., 2001). Neither
the presence nor the amounts of anti-Ap antibodies correlated
with the likelihood of developing dementia or plasma levels of
AB40 and Ap42 (Hyman et al., 2001; Orgogozo et al., 2003; Moir
et al., 2005; Li et al., 2007). Our study indicated that TAPIR-
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Fig. 4 - Antibodies to AP appeared before AB amyloid deposits in the brain. TAPIR was positive in 7 years old (TAPIR +; A, 7Y),
14 years old (TAPIR +; B, 14Y), and 18 years old young persons (TAPIR +, C, 18Y). TAPIR-positive plasma strongly
immunoprecipitated monomers and dimers (arrow) of AB40 and FA(, and weakly immunoprecipitated monomers of AB42 and
AP amyloid (D, E and F; corresponding plasma of upper panels; D and A 7Y, E and B 14Y and F and C 18Y). Plasma from younger
and older Tg2576 mice also labeled amyloid cores in AD brains (G: 4 months old TG; H: 8 months old Tg and I: 16 months old Tg).
Bar scale=15 pm. J: TAPIR-positive rates in the tNC group according to age. Columns show the TAPIR-positive rate

(TAPIR grading + and ++) for 10 year increases in the AD (black columns) and tNC (white columns) groups. TAPIR-positive rates
were high in young subjects (1-20 years old), low during adulthood (21-50 years old) and then increased again after age 50.
No differences were observed between AD and tNC groups in samples from subjects 50 to 91 years old.
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positive antibodies to Ap amyloid plaques also occur naturally
and frequently in human plasma and that their titers are not
sufficient to prevent development of dementia. High titer of
antibodies are necessary to improve the AR burden as shown in
AD patients treated with an Ap vaccine (Hock et al., 2002) or an
anti-Ap antibody infusion therapy (Dodel et al., 2002).

TAPIR is a new method to detect anti-Ap antibodies (Hock
et al., 2002, 2003). The fact that cognitive impairment was
improved in patients who generated anti-Ap antibodies after AR
vaccination leads us to hypothesize that TAPIR-positive anti-AB
antibodies are substantially different from naturally occurring
anti-AB peptides antibodies in their specificity for AB40 and
AP42 species or conformational epitopes of AR oligomers (Mirra
et al,, 1991; Kayed et al., 2003). Antibodies labeling AR amyloid
plaques were more effective for the clearance of the Ap burden
of transgenic mice in passive immunization experiments (Bard
et al., 2000). Direct action of the anti-Ap antibody through the
blood-brain barrier without T-cell proliferation as well as

microglial clearance via the Fc or non-Fc portion of the anti-
bodies mediated disruption of the plaque structure (Bard et al,,
2000; Bacskai et al., 2002; Lombardo et al., 2003). Binding of an
IgG2a antibody to the special N-terminal region of A correlated
with a clearance response (Bard etal., 2003). Injected antibodies
may bind and sequestrate blood Ap completely and disturb the
balance between CSF A8 and blood AB, leading to increased
clearance from the brain into the blood (DeMattos et al., 2001,
DeMattos et al., 2002). Clearance of diffusible AR oligomers
that impair cognitive function was considered to be another
target for passive immunization (Kayed et al., 2003). Recently a
56-kDa soluble amyloid-B assembly termed AB*56 has been
shown to disrupt memory (Lesné et al., 2006), and Ap oligomers
have been shown to be increased in CSF from AD patients
(Georganopoulou et al., 2005).

These reports all support the hypothesis that naturally
occurring TAPIR-positive antibodies to Ap recognize special
Ap species. Our immunoprecipitation study suggested that
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Fig. 5 - Age-dependent regulation of plasma A levels in controls, and their alteration in AD. Plasma AB40 and AB42 levels
showed different age-dependent alterations in the tNC group. AB40 levels increased from age 50 and decreased from age 70 (A).
APB42 levels were high in the teens and twenties, then gradually decreased with age (B). Based on these different changes,
the AP ratio (AB40/AP42) progressively increased from age 40 (C). Significantly increased levels of AB40 (D: p=0.0002) and
increased AP ratio (F: p<0.0001) as well as decreased levels of AB42 (E: p<0.0001) were shown between the AD and aNC groups.
When the mean +2SD of the AP ratio in the aNC group was used as a diagnostic marker for AD, the cut off value 15.9 (dot line)
provided 24% sensitivity and 96% specificity (F). Constant alterations of plasma AP levels in AD were recognized at the early
(MMS score >20), moderate (MMS score 20-11), and advanced stages (MMS score <11) (G-1). A, D, G: AB40; B, E, H: AB42;C,F, I

AB ratio. Bars show mean levels.
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Fig. 6 - TAPIR did not modify AB concentration.

No significant differences were found in AB40 and AB42
concentrations as well as AP ratios among all TAPIR

grades (-, + , +and ++) in AD () and aNC (o) group (A, B and C).

TAPIR ++/+ plasma obtained from AD and aNC subjects re-
trieved Ap40 monomers and dimers as well as higher
molecular mass polymers. Immunodetection of monomeric
Ap42 using 6E10 was very weak, whereas no dimeric form of
Ap42 was detected under our testing conditions. The absence
of anti-Ap42 dimer antibodies and the relatively low levels of
anti-Ap42 monomers were characteristic of naturally occur-
ring antibodies to Ap. These findings are considered to be
another reason why naturally occurring antibodies to Ap are
not sufficient for prevention of development of dementia.
Our TAPIR assay also showed that anti-Ap antibodies were
naturally present throughout the entire human life span. Itis
relevant to note that naturally occurring anti-Ap antibodies
were unequivocally detected in young human subjects as well
as young Tg2576 mice. In relative terms, the positive rates of
anti-Ap antibodies were highest in young individuals, lowest
in those middle-aged and higherin the elderly. The presence of
anti-Ap antibodies in young human subjects was character-
ized by the subsequent immunoprecipitation study. Anti-Ap
antibodies retrieved Ap40 monomers and dimers as well as
high molecular mass oligomers in FApR fractions, but they
retrieved fewer Ap42 dimers. To our knowledge, this is the first
report showing the relatively selective presence of anti-Ap40
antibodies, and reduced amounts of anti-Ap42 antibodies in

young individuals. We also found that this was the case in
normal elderly as well as AD patients, suggesting that the
immune response to AB was unchanged in the two groups
tested. Impaired spontaneous production of anti-Ap42 anti-
bodies also took place in elderly human subjects as well as AD
patients. It is unknown why these antibodies to Ap appeared
more frequently in the young and the elderly populations and
how specific immune tolerance for Ap42 monomers and
oligomers could be present. However, it should be noted that
naturally occurring antibodies to Ap appear in young human
subjects and young Tg2576 mice, which do not develop an Ap
burden in their brain. The appearance of naturally occurring
antibodies to AR is not correlated with the Ap burden in the
brain.

The exact mechanism underlying spontaneous anti-Ap
antibody production remains unknown. Although increased
Ap42 levels have been detected in transgenic animal models
(Kawarabayashi et al., 2001), immune hyporesponsiveness to
Ap42 was also shown (Monsonego et al., 2001). Increased T-cell
reactivity to Ap42 was shown to increase in elderly individuals
and patients with AD (Monsonego et al., 2003). However, the
previous findings and our results could not show increased
titers of anti-Ap42 antibodies in these groups. Thus, hyopoim-
munue responses to Ap42, especially to the Ap42 oligomer,
actually occurred in AD and healthy populations. Since Ap42 is
highly pathogenic and neurotoxic, Ap42 may be sequestered
and spontaneous immune responses to A may be suppressed
in human populations. For effective immunotherapy as shown
in transgenic mice studies and Ap vaccine trials (Orgogozo
et al., 2003; Hock et al., 2003), it is necessary to further generate
antibodies to Ap42 oligomers as well as monomers and
monitor their titers. Furthermore, in order to prevent unex-
pected adverse reaction as seen in the Phase I trials of AN1792,
detection of these spontaneous antibodies to Ap will be
necessary before treatment.

Recent studies have shown that plasma concentrations of
AR40 and Ap42 are possible biomarkers (Ertekin-Taner et al.,
2000; Fukumoto et al., 2003; Mayeux et al., 1999, 2003; van
Oijen et al., 2006; Graff-Radford et al., 2007) and can be used to
monitor the effects of special treatments for AD (Dodel et al.,
2002; DeMattos et al.,, 2001, 2002). After administration of an
antibody to Ap, the rapid increase in plasma Ap was highly
correlated with the amyloid burden in the brain (DeMattos
et al,, 2002), suggesting the possibility that naturally occurring
anti-Ap antibodies may cause increases the plasma Ap con-
centration. In order to clarify this effect, we first analyzed age-
dependent levels of plasma Ap40 and Ap42, and then
examined alterations of Ap40 and Ap42 levels according to
the presence or absence of AD and antibodies to A. In the tNC
group, plasma Ap40 levels increased from age 40. Plasma Ap42
levels increased between age 10 and 20, then gradually
declined with age. The Ap ratio (Ap40/Ap42) was stable until
about 30 years and then gradually increased. These natural
time courses were identical to those of CSF Ap40 levels, but
completely different from those of CSF Ap42 levels. CSF levels
of Ap40 and ApR42 showed U-shaped age-dependent curves,
suggesting their correlation with brain development and
decline (Kanai et al., 1998; Shoji et al., 2001; Shoji, 2002). The
correlation was prominent between the appearance of natu-
rally occurring anti-Ap antibodies and increased Ap40 levels in
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the CSF and plasma. Increased opportunities for immunolo-
gical exposure to AB40 monomers and oligomers in immature
or declining brains in young and elderly indivisuals may be
sources for the naturally occurring immune response to AB40.
Based on these natural time courses of plasma AR con-
centrations, a comparison between AD and aNC groups was
performed that provided intriguing findings. Significantly
increased levels of plasma Ap40, increased Ap ratio and
decreased levels of AR42 were revealed in the AD group when
compared to the aNC group. Since a clear separation was
obtained in the A8 ratio between the AD and aNC groups, we
evaluated the value of the AB ratio as a diagnostic or monitor
maker of AD. ROC analysis indicated high sensitivity (78.8%)
and low specificity (30.3%) for diagnosis of AD. When the
“mean+2 SD (15.9) of the aNC group was used as a cut off value,
the sensitivity was 24% and specificity was 96%. When AD was
divided into 3 groups according to clinical stage, the Ap ratio
increased progressively from the early stage to the advanced
stages of AD. These findings show that plasma Ap ratio can be
used as an easy, non-invasive, and useful biomarker for diag-
nosis and monitoring of clinical symptoms of AD, although
the sensitivity and specificity are lower than those in CSF
samples (Kanai et al,, 1998; Shoji et al., 2001; Shoji, 2002).
However, naturally occurring antibodies to A did not affect
plasma Ap40 or Ap42 levels, or the Ap ratio. There was a
possibility that our ELISA system could not detect increased
levels of AR40 and Ap42 oligomers. However, all results taken
together, suggest that the titer and specificity of naturally
occurring anti-Ap antibodies were not sufficient to elevate
plasma AP concentrations and increase Ap clearance from the
brain to the peripheral blood with subsequent improvement of
clinical symptoms. Higher titers of antibodies to Ap42
oligomers will likely be necessary to facilitate AB clearance
from brain amyloid to peripheral blood for AD treatment.

4. Experimental procedures
4.1. Patients and normal controls

After informed consent was given, blood samples were
collected into 0.1% EDTA from a total of 318 subjects including
113 patients with AD (AD group) and 205 normal controls (total
normal control group: tNC group). As age-matched controls

Table 2 - Summary of the study subjects

No. of Gender Mean age  Mean Mean
subjects (M/F) (range), MMS duration
yT Score (SD) (SD), mo
AD 113 32/81  75(55-89)  14.9 (6.7) 44 (28)
tNC 205 84/121 64 (1-91) 29.8 (0.3) -
aNC 155 59/96 76 (43-91)  29.7 (0.4) =

6
Total 318  116/202 68 (1-91)

AD: Alzheimer’s disease patients; tNC: total normal controls; aNC:
age-matched controls over 43 years old selected from the tNC
group; M/F: male and female; yr: years old; MMS: Mini-Mental State
Examination; SD: standard deviation; Duration: duration from
onset, mo months.

(aNC group), 115 samples from subjects over 43 years old were
selected from the tNC group. The basic findings for the respec-
tive groups are summarizedin Table 2. The clinical diagnosis of
AD was based on NINCDS-ADRDA criteria (McKhann et al,
1984). Appropriate diagnostic studies including magnetic
resonance imaging and single photon emission computed
tomography were used to exclude other disorders of dementia.
The clinical severity of AD was evaluated using the Mini-
Mental State Examination (MMS) (Folstein et al., 1975). AD
patients were divided into 3 subgroups according to clinical
stages: early stage MMS score >20, moderate stage MMS score
10-20, advanced stage MMS score <10. Controls were judged to
be normal based on their MMS score (>28 points) and follow-up
with neurological evaluation. After separation of plasma from
blood cells, plasma was stored frozen at —80 °C until use.

4.2.  Tissue amyloid plaque immunoreactivity (TAPIR)

Five micrometers serial paraffin sections of brains from Tg2576
mice (16-18 months old) or Alzheimer’s patients were used.
Sections were immersed in 0.5% periodic acid for blocking
intrinsic peroxidase and treated with 99% formic acid for 3min
to increase AP staining. Sections were then immersed with
blocking solution with 5% normal serum in 50 mM phosphate-
buffered saline (PBS) containing 0.05% Tween20 and 4% Block
Ace (Snow Brand Milk Products, Saporo, Japan) for 1 h; goat
serum was used to stain human plasma, and horse serum was
used to stain mouse plasma. Sections were incubated at 4 °C
overnight with human or mouse plasma diluted with blocking
solution (1:100). Sections were then incubated with biotinyzed
second antibody (anti-human goat antibody or anti-mouse
horse antibody), and horseradish peroxidase-conjugated avi-
din-biotin complex of Vectastain Elite ABC kit (Vector,
Burlingame, CA). Immunoreactivity was visualized by incuba-
tion with 0.03% 3, 3’-diaminobenzidine, and 0.02% H,0,. Tissue
sections were counterstained with hematoxylin. Immunos-
taining with Ab9204 (Saido et al., 1995) (1:1000, antibody to a
synthetic Ap peptide starting from the amino-terminus of
normal L-aspartate) or without the primary antibody were used
as positive and negative controls, respectively.

4.3. Grading of TAPIR

TAPIR findings were classified into 4 levels: negative -, no
senile plaque core (Fig. 1F); weakly positive +, senile plaque
cores were stained weakly and less than 5 cores were stained
in each brain section on a slide (Fig. 1G); positive +, >5 senile
plaque cores were stained clearly in at least one brain section
per slide (Fig. 1H); strongly positive ++, most senile plaque
cores were strongly labeled when compared to Ab9204
immunostaining (Fig. 1I). Immunostaining findings of diffuse
plaques, amyloid angiopathy, positive neurons, degenerative
neurites and glial cells were excluded from this grading.

4.4.  Purification of amyloid AB (FAp)

An autopsy brain fulfilling the CERAD criteria for definite
AD (Mirra et al., 1991) was selected. About 2 g of gray matter of
the AD brain was homogenized with 4 volumes of TBS (10 mM
Tris, 150 mM NaCl, pH 8) with protease inhibitors (1 pg/ml
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Leupeptin, 1 pg/ml TLCK, 0.1 pg/ml Pepstain A, 1 mM
phenylmethysulfonyl fluoride and 1 mM EDTA), and centri-
fuged at 100,000 xg for 1 h. The resulting pellet was extracted
with 10 ml of 10% sodium dodecyl sulfate (SDS) in TBS and
then with 1 ml of 99% formic acid (FA). The final supernatant
was lyophilized, dissolved with 20 ul of 99% dimethylsulfoxide
(DMSO), and stored at —80 °C until use (formic acid soluble
amyloid Ap fraction: FAR) (Harigaya et al., 1995; Matsubara
et al,, 1999).

4.5.  Immunoprecipation

20 ul of protein G agarose (Roche diagnostic GmbH, Germany)
was washed 3 times with 1 ml RIPA buffer (50 mM Tris, 1%
Triton X-100, 0.1% SDS, 0.5% cholic acid and 150 mM NaCl, pH
8.0). Prewashed protein G agarose was mixed with 600 ng
synthetic Ap40, 600 ng synthetic AB42 (Sigma, Mo) or 300 ng
FAp in 1 ml of RIPA buffer and incubated at room temperature
for 30 min. After centrifugation, the resulting supernatant was
mixed again with 20 pl of prewashed protein G agarose and
10 ul of plasma, incubated at room temperature for 3 h, and
then centrifuged. The pellet was boiled with 1x NuPage LDS
sample buffer containing 0.1 M dithiothreitol for 100 min at70 °C
and separated on a 4 to 12% NuPage Bis-Tris gel (Invitrogen,
CA). After electro-transfer, the blot membrane was blocked
with 10% skim milk (Snow Brand Milk Products, Saporo, Japan)
in TBS with 0.05% Tween 20 (TBST), and incubated with
monoclonal 6E10 (specific to AB1-16, 1:1000, Signet Lab.
Inc. MA) at 4 °C overnight. After washing and incubation with
horseradish-peroxidase-conjugated goat anti-mouse IgG
(1:2000, Amersham Biosci, Buckinghamshire, UK) at RT for
2 h, the signal was developed by SuperSignal west Dura ex-
tended duration substrate (Pierce Biotechology, CA), and
quantified by a luminoimage analyzer (LAS 1000-mini, Fuji
film, Japan).

4.6.  Quantification of plasma AB40 and A[342 concentrations
by ELISA

Sandwich ELISA was used to specifically quantify whole
plasma AB, as previously described (Matsubara et al., 1999).
Microplates were pre-coated with monoclonal BNT77 (IgA,
anti-Ap11-28, specific AB11-16) and sequentially incubated
with 100 ul of samples followed by horseradish-peroxidase-
conjugated BA27 (anti-Ap1-40, specific Ap40) or BCO5 (anti-
Ap35-43, specific Ap42 and Ap43) (Kawarabayashi et al., 2001).
Synthetic Ap40 (peptide content: 79.95%, Sigma, MO) and Ap42
(peptide content:76.58%, Sigma, MO) were used for standard
Ap. The sensitivity was 40 fmol/ml in the Ap40 assay and 10
fmol/ml in the Ap42 assay. Both intra-assay coefficients of
variation were less than 10% (Matsubara et al., 1999).

4.7.  Statistical analysis

Comparisons among the groups using Student’s t-test, one-
way analysis of variance or a non-parametric test with post hoc
tests, a receiver-operating characteristic (ROC) curve analysis
to determine the cut off value, Mann-Whitney U test for ap-
pearance rates, and 1st order regression analysis of the
relationship between MMS score and AD duration were all

performed using SPSS 11.0 (SSPS Inc., IL) and GraphPad Prism,
Version 4 (GraphPad Software, San Diego, CA).
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Novel Role of Presenilins in Maturation and Transport of Integrin 17
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ABSTRACT: Presenilins (PSs) play important roles in modulating the trafficking and maturation of several
membrane proteins. However, the target membrane proteins whose trafficking and maturation are regulated
by PS are largely unknown. By characterizing PS-deficient fibroblasts, we found that integrin 1 maturation
is promoted markedly in PS1 and PS2 double-deficient fibroblasts and moderately in PS1- or PS2-deficient
fibroblasts: in contrast, nicastrin maturation is completely inhibited in PS1 and PS2 double-deficient
fibroblasts. Subcellular fractionation analysis demonstrated that integrin 81 maturation is promoted in the
Golgi apparatus. The mature integrin 1 with an increased expression level was delivered to the cell
surface, which resulted in an increased cell surface expression level of mature integrin 81 in PS1 and PS2
double-deficient fibroblasts. PS1 and PS2 double-deficient fibroblasts exhibited an enhanced ability to
adhere to culture dishes coated with integrin 81 ligands, namely, fibronectin and laminin. The inhibition
of y-secretase activity enhances neither integrin 41 maturation nor the adhesion of wild-type cells. Moreover,
PS deficiency also promoted the maturation of integrins a3 and o5 and the cell surface expression of
integrin o3. Integrins a3 and a5 were coimmunoprecipitated with integrin 1, suggesting the formation
of the functional heterodimers integrins a331 and 054 1. Note that integrin 1 exhibited features opposite
those of nicastrin in terms of maturation and trafficking from the endoplasmic reticulum (ER) to the
Golgi apparatus in PS1 and PS2 double-deficient fibroblasts. Our results therefore suggest that PS regulates
the maturation of membrane proteins in opposite directions and cell adhesion by modulating integrin

maturation.

Mutations in the genes encoding presenilin-1 (PS1') and
PS2 account for most cases of familial early onset Alzhe-
imer’s disease (FAD) (/, 2). PS1 and PS2 most likely provide
the catalytic subunit of the y-secretase complex (3). FAD-
linked mutant PS proteins increase the level of highly
amyloidogenic Af342, which is generated by the proteolytic
processing of the amyloid precursor protein (APP) and
deposited early as senile plaques in the brains of aged
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! Abbreviations: PS, presenilin; PS1, presenilin-1; PS2, presenilin-
2; wt, wild-type; PS-ko, presenilin-1 and -2 double knockout; Ap,
amyloid S-protein; APP, amyloid precursor protein; PNGase F, peptide:
N-glycosidase F; ER, endoplasmic reticulum; NTF, N-terminal frag-
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individuals and AD patients (4-6). PS-mediated cleavage
occurs within the transmembrane domain of several type I
membrane proteins such as Notch, APP, the APP homo-
logues APLP1 and APLP2, ErbB-4, CD44, N- and E-
cadherins, the low-density lipoprotein receptor-related protein
(LRP), Syndecan, Delta, Jagged, and Nectinla (7).

PS1 and PS2 may also have other functions, in addition
to their central role as catalytic subunits of the y-secretase
complex. Previous studies have shown their involvement in
[B-catenin turnover, apoptosis, Ca?* homeostasis, and protein
trafficking (8, 9). PS proteins have also been shown to
function as endoplasmic-reticulum (ER)-resident chaperones
affecting the maturation of nicastrin (/0-12), APP (13-15),
TrkB (16), N-cadherin (/7), and the neurotrophin receptor-
like death domain (NRADD) protein (/8). Nicastrin matura-
tion and cell-surface delivery are completely inhibited in the
absence of PS1 and PS2 (/0-12). PS1 aspartic acid mutants
expressed in a PS-null background restore nicastrin matura-
tion but not y-secretase activity, suggesting a y-secretase-
independent function of PS in the maturation and trafficking
of nicastrin (/9). PS1-null neurons exhibit compromised
TrkB maturation (/6). The transfection of dominant-negative
PS1 D385A in SH-SYS5Y cells leads to disrupted maturation
and a decreased cell-surface expression level of N-cadherin
(17). In addition, the absence of PS1 and PS2 results in the
intracellular retention of caveolin 1, the loss of caveolae (20),
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and an abnormal accumulation of telencephalin/ICAM in
intracellular compartments (27). These suggest that PS
deficiency disrupts the ER-to-Golgi apparatus trafficking of
a set of membrane proteins. In contrast to these membrane
proteins, APP exhibits enhanced expression and cell surface
accumulation in PS1- and PS2-deficient cells. The expression
of dominant-negative PS1 D385A or treatment with a
y-secretase inhibitor, DAPT, also leads to an enhanced cell
surface accumulation of APP, via the acceleration of APP
trafficking (/3) or the delay of APP endocytosis (/4).

We determined whether PS deficiency affects the matura-
tion of other membrane proteins and whether ER-to-Golgi
apparatus trafficking is generally disrupted in PS-deficient
cells. We examined several type I membrane proteins in PS1
and PS2 double-deficient cells and found that the loss of
PS1 and PS2 results in an enhanced maturation of integrin
B1 and an enhanced cell-surface delivery of mature integrin

B1.
MATERIALS AND METHODS

Cell Culture and Antibodies. Wild-type (wt), PS1- and PS2
double-knockout (PS-ko), PS1-deficient (PS1 —/—), and PS2-
deficient (PS2 —/—) mouse embryonic fibroblast (MEF) cell
lines were kindly provided by Dr. Bart De Strooper (22).
The cell lines were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (GIBCO, Grand Island, NY)
containing 10% fetal calf serum (FCS). The cells were lysed
in RIPA buffer [10 mM Tris/HCI (pH 7.5), 150 mM NaCl,
1% Nonidet P-40, 0.1% sodium dodecyl sulfate (SDS), and
0.2% sodium deoxycholate, containing a protease inhibitor
cocktail (Roche, Mannheim, Germany)] at a point before or
after confluence. Monoclonal antibodies against integrins S1,
o3, aV, syntaxin 6, BiP/GRP78, and calnexin were obtained
from BD Biosciences (San Jose, CA). Polyclonal antibodies
against integrins A1, al, a2, a4, o5, a6, a7, oL, and the
N-terminus of PS1 (H-70) were from Santa Cruz Biotech-
nology (Santa Cruz, CA). A monoclonal antibody against
the loop of PS1 (MABS5232), which recognizes the C-
terminal fragment of PS1, was purchased from Chemicon
(Temecula, CA). A polyclonal antinicastrin antibody raised
against the C-terminus of nicastrin (amino acids 693-709)
was purchased from Sigma (Saint Louis, MO).

Electrophoresis, Immunoblotting, Deglycosylation, and
Immunoprecipitation. Total protein (50 ug) from cell lysates
was dissolved in SDS sample buffer, separated on 4-20%
gradient gels, and transferred to nitrocellulose membranes
(equal loading was confirmed by Western blotting for Bip/
GRP78 or a-tubulin). The target proteins were visualized
using SuperSignal (Pierce, Rockford, IL) with antibodies to
integrins, nicastrin, Bip/GRP78, calnexin, syntaxin 6 and
PS1. To assess integrin 41 maturation and nicastrin glyco-
sylation, lysates from the wt and PS-ko cells were treated
with PNGase F, O-glycanase, or sialidase A using an
enzymatic deglycosylation kit according to the manufactur-
er’s instructions (PROzyme, San Leandro, CA). For immu-
noprecipitation, the cells were homogenized in a solution of
10 mM Tris/HCI (pH 7.5), 150 mM NaCl, and 8 mM 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS) containing a protease inhibitor cocktail, and the
homogenate was centrifuged at 10,000g and 4 °C for 10
min. The supernatant was immunoprecipitated with a
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polyclonal antibody to integrin 81 or PS1 and protein G
sepharose (Amersham Biosciences, Uppsala, Sweden).
Coimmunoprecipitated PS1, nicastrin, integrin 81, and
integrin a subunits were detected by Western blotting.
Subcellular Fractionation on lodixanol Gradient. The wt
and PS-ko cells were grown in eight 10-cm tissue culture
dishes, and subcellular fractionation was performed as
previously described (23). They were homogenized in an ice-
cold homogenization buffer [10 mM HEPES (pH 7.4), | mM
EDTA, and 0.25 M sucrose containing a protease inhibitor
cocktail]. The postnuclear supernatant was centrifuged for
1 h at 4 °C and 65,000g. The resultant vesicle pellets were
rehomogenized in 0.8 mL of the homogenization buffer and
layered on a step gradient consisting of 1 mL of 2.5%, 2
mL of 5%, 2 mL of 7.5%, 2 mL of 10%, 0.5 mL of 12.5%,
2 mL of 15%, 0.5 mL of 17.5%, 0.5 mL of 20%, and 0.3
mL of 30% (v/v) iodixanol (GIBCO). After centrifugation
at 90,000g (SW41 rotor, Beckman) for 2.5 h at 4 °C, 11
fractions were collected from the top of the gradient.

Transfection, y-Secretase Inhibitors Treatment and A
ELISA. The retrovirus-mediated gene expression of human
APP695, PS1, PS2, PS1D257A, PS1D385A, PSIAE 9,
PS11143F, PS1R278K, and PS1L392V was carried out as
previously described (24). The fibroblasts were transfected
at 10% confluence and maintained in DMEM containing 10%
fetal calf serum. The transfection efficiency was nearly 100%
in this study, as estimated by the control transfection of the
pMX-green fluorescent protein (pMX-GFP). y-secretase
inhibitors, namely, DAPT and L-685,458, were added to the
wt cells stably expressing hAPP695 immediately after
passage. The culture medium was collected two days after
confluence, and the level of AS1-40 secreted was measured
using an A3 ELISA kit (Wako Pure Chemical, Osaka, Japan).

Cell Surface Biotinylation and Cell Surface Uptake of
Integrin 1. Cell surface biotinylation was carried out using
a Pinpoint cell surface protein isolation kit (Pierce). The wt
and PS-ko cells were grown in four 10-cm tissue culture
dishes, and washed twice with ice-cold PBS (GIBCO). The
cells were incubated in 10 mL of ice-cold 0.25 mg/mL
sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate
(Sulfo-NHS-SS-Biotin) (Pierce) in ice-cold PBS for 30 min
at 4 °C. Then, 500 uL of the quenching solution was added
to each dish to quench the reaction. The cells were scraped
and washed twice with Tris-buffered saline (TBS) [10 mM
Tris/HCI (pH 7.5) and 150 mM NaCl] and lysed in the lysis
buffer containing protease inhibitors. Each lysate was
incubated with streptavidin-agarose beads (Pierce) at 4 °C
for 60 min, and captured proteins were eluted with 50 mM
DTT in Laemmli’s SDS sample buffer. To assess cell surface
integrin A1 internalization, immunostaining was performed
as previously reported (/4). The cells plated on a fibronectin-
coated culture slide were washed in ice-cold PBS, and
incubated on ice with a monoclonal antibody against integrin
B1 at 1:200 dilution in PBS containing 0.1% BSA. After 20
min, the cells were washed with ice-cold PBS, and then
incubated in prewarmed culture medium for various durations
at 37 °C. After the indicated durations, the cells in the culture
slides were fixed with 4% paraformadehyde in PBS for 20
min. After rinsing three times in PBS, permeabilization was
achieved in 0.1% Triton X-100/PBS for 5 min, and the slides
were incubated with rhodamine-coupled goat antimouse IgG
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(Chemicon) for 20 min. Confocal images were taken with a
Zeiss LSM 510 confocal system (Carl Zeiss, Jena, Germany).

Cell Attachment Assay. Ninety-six- and 6-well plates
(Corning Inc., Corning, NY) were coated with 10 xg/mL
fibronectin or laminin (Sigma) for 8 h at 4 °C. After
aspirating the coating reagent, 0.2 or 1.5 mL of 10 mg/mL
filtered, heat-denatured bovine serum albumin (BSA) (Sigma)
was dispensed into the wells, and the plates were incubated
.at 4 °C for 16 h. The cell attachment assay using single
resuspended cells was carried out in 96-well plates as
previously reported (25). Subconfluent cells were washed
with HEPES-buffered saline [HBS, 150 mM NaCl, and 25
mM HEPES (pH 7.5)] and resuspended at a density of 0.2
to 1 x 106 cells/mL. A 50-uL aliquot of the cell suspension
was then added to each well. The plates were incubated for
30 min at 37 °C in 5% (v/v) CO,. Unbound or loosely bound
cells were removed by aspiration and gentle washing with
HBS. To assess the total number of cells added, 100%, 75%,
50%, 25%, and 0% cells were added to the wells and fixed
by adding 1/10 vol of 50% (v/v) glutaraldehyde. To assess
the attachment strength of the wt and PS-ko cells after the
cells reached confluence, the cell attachment assay was
performed in 6-well plates. After aspirating the conditioning
medium, the cells were incubated in 1 mM EDTA for 30
min at room temperature. Detached cells were washed out
with HBS. The cells were fixed in the wells by adding 5%
(v/v) glutaraldehyde in HBS and stained with 0.1% (w/v)
crystal violet in 200 mM MES (pH 6.0) for 60 min. The
solution in the wells was then aspirated, and the wells were
washed with water. Acetic acid [10% (v/v)] was dispensed
into the wells of the 96-well plates, and the absorbance at
570 nm of each well was measured with a multiscan plate
reader. Images of the 6-well plates were taken when the wells
were dried, and the area of the wells occupied by adherent
cells was measured using Image J 1.36b software (NIH,
Bethesda, MD).

RESULTS

Integrin B1 is synthesized as an 87-kDa polypeptide that
undergoes glycosylation in ER and the Golgi apparatus. In
ER, the most prevalent, incompletely glycosylated immature
integrin 81 has a mass of 105 kDa. The mature form of this
105 kDa integrin 81 has a mass of 125 kD (26, 27). The
immature form is not found on the cell surface and has no
role in cell adhesion or cell signaling (26, 28). These features
of integrin A1 in terms of maturation are similar to those of
nicastrin, a member of the y-secretase complex. To determine
how the absence of PS affects integrin 41 maturation, we
performed a Western blotting of cell lysates prepared from
wt, PS-ko, PS1(—/—), and PS2(—/—) fibroblasts. In the wt
cells, integrin A1 was detected as a nonglycosylated core
protein (87 kDa), a poorly glycosylated immature protein
(105 kDa), and a highly glycosylated mature protein (125
kDa). Most of these integrin 81 isoforms are of the immature
form. Interestingly, a marked increase in the expression level
of mature integrin 81 and a decrease in that of ER-localized
immature integrin 1 were observed in the PS-ko cells,
suggesting that PS proteins exert an inhibitory effect on the
post-translational maturation of integrin 81 (Figure 1A). The
PS1(—/—) or PS2(—/—) cells exhibited an intermediate
increase in the expression level of mature integrin 31 and a
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FIGURE 1: Presenilin deficiency promotes integrin 1 maturation
and inhibits nicastrin maturation. The wt, PS-ko, PS1(—/—), and
PS2(—/—) fibroblasts were lysed in RIPA buffer 2 days after
reaching confluence. Western blots of 50 ug of total protein from
the cells were probed with an anti-integrin 41 monoclonal antibody
(A) or antinicastrin polyclonal antibody (B). Three isoforms of
integrin 81 were observed in the cells: the ~87-kDa core protein,
~105-kDa immature glycosylated form, and ~125-kDa mature
glycosylated form (indicated by arrows). Note that the predominant
isoform of integrin A1 in the wt fibroblasts was the immature form
and that in the PS-ko fibroblasts was the mature form. For nicastrin,
the immature form of ~105 kDa and the mature form of ~125
kDa were observed in the wt fibroblasts. The mature form of
nicastrin was absent in PS-ko fibroblasts. The expression level ratio
of mature integrin 31 to immature integrin 81 was determined by
densitometry (C). Data represent the means & SEM; n = 3, *p <
0.05, **p < 0.001, PS-ko or PS1(—/=) vs wt, Bonferroni/Dunn
test.

decrease in that of immature integrin 31, suggesting that the
regulation of the post-translational maturation of integrin 51
is PS-dependent, not cell-line-dependent (Figure 1A). The
PS-ko cells showed a level ratio of mature integrin 81 to
immature integrin $1 18-fold higher than that of the wt cells.
The PS1(—/—) cells showed a 4-fold increase in the level
ratio of mature integrin A1 to immature integrin 31 (Figure
1C). In contrast to integrin 51, the 125-kDa mature nicastrin
species showed a significant decrease in expression level
(Figure 1B), in agreement with previous reports (/0—12).
These results suggest that PS regulates the maturation of
membrane proteins in opposite directions.

To determine whether the mature integrin 1 with an
increased expression level is glycosylated in PS-ko cells as
it is in wt cells, we experimentally examined the glycosy-
lation of mature integrin B1. Similar to nicastrin, both
immature and mature integrin 31s were sensitive to PNGase
F. Digestion with PNGase F decreased the apparent size of
mature and immature integrin S1s to 95 kDa as a major
species in the wt cells (Figure 2A, lane 5). Integrin 31 in
the PS-ko cells was partially resistant to PNGase F. In
addition to the 95-kDa species, a 105-kDa species was
detected after digestion with PNGase F. This PNGase
F-resistant 105-kDa integrin 1 was likely generated from
the 125-kDa mature integrin 41 because of its abundance in
the PS-ko cells and scarcity in the wt cells (Figure 2A, lane
6). However, the wt cells showed a 105-kDa nicastrin
PNGase F-resistant species in addition to the 70-kDa
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FIGURE 2: Deglycosylation of integrin 41 and nicastrin. Total protein
(50 pg) from the wt or PS-ko fibroblast lysate was digested with
PNGase F (0.1 U/mL), O-glycanase (0.025 U/mL), or sialidase A
(0.1 U/mL) and analyzed by SDS—PAGE and immunoblotting.
Western blots were probed with an anti-integrin 41 monoclonal
(A), antinicastrin polyclonal (B), or anti-Bip/GRP78 (C) antibody.
Lanes 1 and 2, no treatment; lanes 3 and 4, PNGase F, O-glycanase,
and sialidase A treatment; lanes 5 and 6, PNGase F treatment; lanes
7 and 8, O-glycanase treatment; and lanes 9 and 10, sialidase A
treatment. The mature form of integrin 1 in the PS-ko cells and
the mature form of nicastrin in the wt cells are partially PNGase
F-resistant. Equal amounts of protein loaded are shown by the
Western blot of Bip/GRP78.

deglycosylated species; the PS-ko cells showed that the
apparent size of the 105-kDa immature nicastrin as a single
species decreased to 70 kDa (Figure 2B, lanes 1, 2,5, and
6). Treatment with O-glycanase had no effect on the
SDS—PAGE mobility of either integrin 81 or nicastrin,
indicating the absence of an O-linked glycosylation of these
two proteins (Figure 2A and B, lanes 7 and 8). The mature
forms, not the immature forms of integrin 81 and nicastrin
were sensitive to sialidase A digestion, indicating the
sialylation of the mature forms of both proteins (Figure 2A
and B, lanes 9 and 10). The ER protein Bip/GRP78 served
as the internal control protein, which indicated the same
amount of protein loaded in each lane (Figure 2C). These
results show that (i) in contrast to that of nicastrin, whose
mature form is absent in PS-ko cells, the maturation of
integrin A1 in PS-ko cells is enhanced compared with that
in wt cells and that (ii) mature integrin A1 in PS-ko cells is
normally glycosylated by N-glycans, the characteristics of
which are similar to those of N-glycans in mature nicastrin
in wt cells.

The results described above demonstrate that the absence
of PS1 and PS2 promotes integrin A1 maturation. We also
confirmed that the absence of PS1 and PS2 inhibits nicastrin
maturation, as shown by previous studies. To investigate how
the absence of PS1 and PS2 disrupts the processing and
intracellular distribution of integrin A1 and nicastrin, we
carried out iodixanol gradient fractionation to separate the
Golgi apparatus and ER-derived membranes (23). Syntaxin
6 and calnexin in the wt cells served as the Golgi apparatus
and ER markers, respectively (Figure 3C). The distributions
of syntaxin 6 and calnexin in PS-ko cells did not differ from
those in wt cells (data not shown). In the wt cells, integrin
B1 and nicastrin underwent normal maturation and ER-to-
Golgi apparatus trafficking, with most of their immature
forms localizing in the ER, and most of their mature forms
localizing in the Golgi apparatus. The mature and immature
forms of nicastrin showed patterns similar to those of the
mature and immature forms of integrin 1. In contrast, in
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FIGURE 3: Absence of PS1 and PS2 enhances integrin 51 maturation
in the Golgi apparatus and has no effect on the intracellular
distribution of integrin 1. The wt and PS-ko fibroblasts were
harvested and fractionated on iodixanol gradients. Fractions rich
in ER (lanes 9-11) are at the bottom, and 11 fractions were collected
from top to bottom. Golgi-apparatus-rich fractions are shown in
lanes 6-8. The fractions were analyzed by immublotting with an
anti-integrin A1 antibody (A), an antinicastrin antibody (B), and
antibodies to the Golgi apparatus marker protein syntaxin-6 and
ER marker protein calnexin (C). Note that nicastrin was retained
in the ER fractions of the PS-ko cells, but not integrin $1. The
maturation of integrin 31 in PS-ko fibroblasts in the Golgi apparatus
was markedly accelerated compared with that in wt fibroblasts.
the PS-ko cells, mature forms of nicastrin were absent, and
most of the immature forms of nicastrin were restricted in
the ER fractions, suggesting the disrupted exit of nicastrin
from ER. Interestingly, in the PS-ko cells, the expression
level of mature integrin S1 increased predominantly in the
Golgi apparatus, whereas that of immature integrin S1
significantly decreased in the Golgi apparatus, as compared
with those in the wt cells, indicating that the maturation of
integrin A1 in the Golgi apparatus is enhanced. In addition,
there was no selective retention of integrin 1 in the ER in
the PS-ko cells. These results suggest that the trafficking of
immature integrin 81 from ER to the Golgi apparatus is
accelerated in PS-ko cells (Figure 3A and B).

Because PS1 and PS2 can regulate cell signaling pathways
via y-secretase activity (29), we determined whether the
blockade of y-cleavage leads to an enhanced maturation of
integrin 81. We treated hAPP-transfected wt cells with two
major y-secretase-specific inhibitors, namely, DAPT and
L-685,458, to inhibit y-secretase activity and monitored the
level of AB1-40 secreted in the culture medium to evaluate
y-secretase activity (Figure 4). y-secretase inhibitors at a
concentration higher than 2.5 uM completely inhibited
y-secretase activity but did not facilitate integrin #1 matura-
tion, indicating that the inhibition of y-secretase activity is
not sufficient to facilitate integrin 81 maturation (Figure 4
A and B). In Figure 1, we show that the expression level of
mature integrin 31 was enhanced in three independent PS-
deficient cell lines, namely, PS-ko, PS1(—/—), and PS2(—/
—). The expression level of mature integrin A1 inversely
correlated with the expression level of PS in these three
independent cell lines. The transfection of PS-ko cells with
human PS1 and PS2 restored the normal expression of mature
nicastrin and inhibited the maturation of integrin 1, sug-
gesting that PS is essential for post-translational maturation
of nicastrin and for inhibiting the maturation of integrin 1
(Figure 4C). The transfection with PS1 aspartate mutants
lacking y-secretase activity, namely, PS1 D257A and PS1
D385A, did not restore the expression of mature integrin
B1, whereas it restored the normal expression of mature
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FIGURE 4: Effects of y-secretase inhibitors and FAD PS mutants
on integrin 1 maturation and restoration of integrin A1 and nicastrin
maturation by transfection with PS1 and PS2. The wt fibroblasts
stably expressing human APP695 were treated with or without
DAPT or L-685,458 immediately after passage. The cells were lysed
after reaching confluence, and the lysate was analyzed by immu-
noblotting with an anti-integrin 81 antibody (A). The level of AB1-
40 secreted to the culture medium was measured using an AB1-40
ELISA kit (Wako) (B). y-secretase inhibitors at a concentration
greater than 2.5 uM completely inhibited y-secretase activity, which
was monitored by analyzing A1-40 secretion; however, integrin
B1 maturation remained unchanged. The PS-ko fibroblasts were
transfected with human PS1 and PS2. Western blots of 50 ug of
total protein from the transfected PS-ko fibroblasts were probed
with an anti-integrin 81 antibody, an antinicastrin antibody, and
anti-PS1 antibodies (C). Double transfection of PS-ko fibroblasts
with human PS1 and PS2 restored the maturation of integrin A1
and nicastrin. The wt fibroblasts were transfected with human PS1
and FAD PSI mutants, and integrin 1 maturation remained
unchanged (D). FL, full-length; NTF, N-terminal fragment; CTF,
C-terminal fragment.

nicastrin (data not shown). Because PS1 aspartate mutants
do not form the mature, high molecular weight PS complexes
(30), these results suggest that the formation of the high
molecular weight PS complex may be required to inhibit
integrin $1 maturation. The expression of transfected PS1
was confirmed by Western blotting. The exogenous human
PS1 in PS-ko cells was maintained in larger amounts of the
full-length form and smaller amounts of the N-terminal
fragment (NTF) and C-terminal fragment (CTF) than those
of endogenous mouse PS1 in wt cells. Interestingly, the
human PS1-NTF in the PS-ko cells showed a lower molec-
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ular weight than the mouse PS1-NTF in the wt cells, whereas
the full-length human and mouse PS1s showed the same
molecular weight. In agreement with this result, the human
PS1-CTF in the PS-ko cells showed a higher molecular
weight than the mouse PS1-CTF in the wt cells (Figure 4C,
bottom three panels). These results suggest that mouse and
human PS1s may undergo principal endoproteolytic cleavage
at different sites or that presenilinase cleaves PS1 at different
sites in wt and PS-ko cells. We also examined whether the
overexpression of the PS1 mutants of familial Alzheimer’s
disease (FAD) alters integrin 51 maturation in wt cells. The
overexpression of human wt PS1 and FAD PS1 mutants,
namely, PS1AE 9, PS11143F, PS1R278K, and PS1L392V,
did not affect integrin 1 maturation in the wt cells,
suggesting that the loss of PS function, probably the loss of
both the y-secretase and the chaperone protein functions of
PS, may facilitate integrin 1 maturation (Figure 4D).

Integrin A1 associates with multiple integrin o-subunits
to form transmembrane receptors of extracellular matrix
proteins, including fibronectin, collagen, and laminin (3/-33).
To determine whether mature integrin 31 with an increased
expression level in PS-ko cells is delivered to the cell surface,
we determined the expression level of integrin S1 on the
cell surface by surface biotinylation. Neither immature
integrin A1 nor immature nicastrin was biotinylated in the
wt or PS-ko cells, indicating that no immature forms of
the two proteins localize on the cell surface (Figure 5A and
B). The expression level of surface-biotinylated mature
integrin 81 in the PS-ko cells significantly increased com-
pared with that in the wt cells, indicating that the cell-surface
delivery of integrin 1 is enhanced in PS-ko cells (Figure
5A, lanes 3 and 6). The expression level of integrin 31 on
the surface of the PS-ko cells was 2.5-fold that on the surface
of the wt cells (Figure 5C). In contrast to integrin 41, surface-
biotinylated nicastrin was detected in the wt cells; however,
no apparent signal of this protein was detected in the PS-ko
cells, indicating that the cell-surface delivery of nicastrin is
impaired in PS-ko cells (Figure 5B, lanes 3 and 6). Because
the increased surface expression level of mature integrin 51
can be induced by delayed internalization and accelerated
trafficking to the cell surface, we investigated the internaliza-
tion of mature integrin A1 in living wt and PS-ko cells. The
cells were labeled on ice with an antibody that recognizes
integrin A1, washed, and incubated at 37 °C to initiate
internalization. At the indicated time points, the cells were
fixed, permeabilized and processed for immunofluorescence
staining. The PS-ko cells had a large amount of surface-
labeled integrin 81 in the absence of incubation at 37 °C
(Figure 5D), which was consistent with the results of
biotinylation. After 10 min of incubation at 37 °C, surface
integrin 81 was partially internalized, and after 30 min,
surface integrin 31 disappeared and was completely internal-
ized in both the wt and PS-ko cells, indicating that PS
deficiency has no effect on integrin $1 internalization.
Combined with the results of the iodixanol gradient frac-
tionation, these results suggest that the increased cell-surface
expression level of mature integrin 1 is induced by the
accelerated trafficking of integrin A1 from ER to the Golgi
apparatus and then to the cell surface.

To determine whether an increased cell-surface expression
level of mature integrin 31 has the same effect in PS-ko cells
as in wt cells, we performed a cell attachment assay to
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