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Muscle weakness and
neuromuscular junctions in
aging and disease
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A critical issue in today’s super-aging society is the need to reduce the burden of
family care while continuing to make our medical institutions supportive. A rapidly
emerging, major health concern is the debilitating effect of muscle weakness and atrophy
from aging, termed sarcopenia; however, the molecular basis of this condition is not
well understood. Our research aim is to elucidate the molecular mechanisms of age-
related muscle atrophy and to devise new measures for preventing and treating this
disability. A promising treatment for muscle atrophy is the promotion of muscle regen-
eration by recruiting stem cells into the targeted region. The first requirement is to
understand how the motor system, which consists of muscles and motoneurons, is
maintained to accomplish that goal. Recent studies in the field of neuroscience have
focused on neuromuscular junctions (NM]), which play important roles in the mainte-
nance of both motor nerves and muscle fibers. Signaling between muscles and moto-
neurons at NM]J supports interactions within the motor system. To understand the
mechanisms involved, we focus our research on the pathogenic processes underlying
neuromuscular diseases. The well-known autoimmune disease, myasthenia gravis (MG),
serves as a model not only for tracking the pathogenesis and treatment outcomes of
all autoimmune diseases, but also for understanding synaptic functions in maintaining
the motor system. Here, we describe recent insights into the molecular mechanisms
required for the maintenance of NM]J and the related causes of muscle atrophy. Geriatr
Gerontol Int 2010; 10 (Suppl. 1): S137-S147.

Keywords: muscle-specific kinase, myasthenia gravis, neuromuscular junction,
sarcopenia.

o-motor neuron is situated in a shallow depression of

Neuromuscular junctions
the muscle cell membrane, which is invaginated further

Neuromuscular junctions (NM]J), which are structures
located between motor terminals and muscles, are the
sites of synapses between motor nerves and muscle
fibers. At the anterior horn of the spinal cord and brain-
stem, skeletal muscle fibers are innervated by large
motor neurons. The terminal arborization of each
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into deep and regular folds, termed postjunctional folds
(Fig. 1). The motor nerve terminal is specialized for
neurotransmitter (acetylcholine; ACh) release. Synaptic
vesicles containing ACh cluster adjacent to specialized
structures of the presynaptic membrane, called active
zones. The active zones are aligned precisely with
mouths of the post-junctional folds. ACh receptors
(AChR) are highly concentrated, with a density of about
12 000 receptors per um?, at the post-junctional mem-
brane nearest to the fold’s peak (Fig. 1). When the nerve
action potential reaches the terminal, depolarization
opens voltage-gated Ca* channels on the presynaptic
membrane. This allows a Ca* influx that triggers the
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Figure 1 Structure and molecular architecture of the neuromuscular junctions (NM]J). Drawings show progressive
enlargement of segments of a NM]. The presynaptic terminals consist of multiple swellings called synaptic terminals covered by
a thin layer of Schwann cells. The nerve terminal occupies a shallow gutter in the muscle fiber and is capped by processes of
Schwann cells. Acetylcholine (ACh) from 150 to 200 vesicles is released from the active zones in the nerve terminal, which
directly oppose junctional folds in the postsynaptic membrane. The terminals are separated from the postsynaptic cell by the
synaptic cleft, which is about 50 nm wide. Acetylcholine receptors, muscle-specific kinase (MuSK) and rapsyn concentrated at
the peaks of postsynaptic folds are shown, with their subcellular localizations indicated by bars. Voltage gated sodium channels

are localized in the depths of postsynaptic folds.

fusion of synaptic vesicles with the presynaptic mem-
brane and the release of ACh. The post-synaptic mem-
brane responds rapidly and dependably to ACh released
from the overlying active zones in the nerve terminal.
AChR, by binding ACh, become transiently permeable
to both Na* and K, then opening the associated
voltage-gated ion channels, which contribute to the
action potential and muscle contraction. The synaptic
cleft between nerve terminals and postsynaptic mem-
brane is approximately S0 nm wide. A layer of connec-
tive tissue called basal lamina (basement membrane)
sheaths each muscle fiber, passes through the synaptic
clef and extends into the junctional folds. Both the
presynaptic terminal and the muscle fiber secrete
molecules including collagen IV, laminin, ectactin and
heparan sulfate proteoglycans to the basal lamina.
However, synaptic portions of the basal lamina contain
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their distinctive isoform composition separate from that
of the extrasynaptic portions. Synaptic basal lamina also
contain the enzyme acetylcholinesterase, which quickly
inactivates the ACh released from the presynaptic ter-
minal by hydrolyzing it to acetate and choline. Concen-
trations of released ACh in the synaptic cleft decrease
rapidly by diffusion and interaction with acetylcho-
linesterase, upon which the neuromuscular transmis-
sion terminates.

Myasthenia gravis and autoantibodies
to AChR

Myasthenia gravis (MG) is a rare neuromuscular
disease, but a well-recognized disorder because of such
characteristic clinical features as ptosis with fluctuating
general fatigue and muscle weakness that worsens with
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repeated activity,”” but tends to improve with rest.
Ptosis and diplogia occur early in the majority of these
patients. With passing time, when the bulbar and
respiratory muscles deteriorate, the disease becomes
life-threatening so that intubation with mechanical
ventilation is required. Approximately 80% of patients
with MG have autoantibodies against AChR."? In 1973,
Patrick and Lindstrom provided the first evidence indi-
cating the pathogenicity of AChR antibodies in a model
of experimentally induced MG.? Thereafter, a number
of studies showed the pathogenic roles of AChR anti-
bodies in causing structural and functional damage of
the NMJ, but no such autoantigens could be identified
in ~20% of these MG patients.* However, even patients
who did not have AChR antibodies responded to immu-
notherapies, and their serum antibodies transferred a
defect in neuromuscular transmission to mice, indicat-
ing that autoantibodies against NMJ can induce the
muscle weakness.

Previously, studies on the mechanism(s) of synaptic
transmission at the NMJ had facilitated understanding
of how antibodies to AChR induce the pathogenicity
typical of MG."* Effective neuromuscular transmission
depends on numerous interactions between ACh and
its receptor, AChR, and the failure of neuromuscular
transmission results in myasthenic weakness and
fatigue. To evoke action potential for the contraction of
muscle fibers, a large enough number of AChR must
be present at postsynaptic membranes. In 1973, Fam-
brough et al. found an abnormal decrease in the number
of AChR at postsynaptic membranes of the NM]J of
patients with MG.* Others showed that AChR anti-
bodies affect neuromuscular transmission by three
main mechanisms: (i) complement-mediated lysis of
post-synaptic membrane by binding and activation of
complement at the NM]J; (ii) accelerated degradation
of AChR molecules cross-linked by antibodies (anti-
genic modulation); and (iii) functional AChR block by
antibodies. The predominant pathogenicity is caused by
the complement-mediated mechanisms,® but all three
mechanisms tend to reduce the number of available
AChR and, thereby, decrease neuromuscular transmis-
sion between motor nerve endings and postsynaptic
membranes. Therefore, an individual nerve impulse
cannot generate enough postsynaptic depolarization to
achieve the crucial firing threshold required for opening
of sufficient voltage-gated sodium channels to initiate
an action potential in the muscle fiber.”

Antibodies to muscle-specific kinase in
myasthenia gravis (MG) patients

For the last three decades, causative autoantibodies
other than those to AChR have been sought in MG
patients but have eluded identification despite extensive
research efforts.!? In 2001, Hoch et al. found autoanti-
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bodies against muscle-specific kinase (MuSK) in a pro-
portion of patients with generalized MG.* MuSK is
essential during the development of NM]J, when it
organizes fetal AChR clustering at the postsynaptic
membrane. Subsequently, in mature NMJ, MuSK is
expressed predominantly at the postsynaptic mem-
brane. Studies by Vincent etal. showed that the
frequency of MuSK antibodies in “seronegative MG
patients,” that is those who lack autoantibodies to
AChHR, varied from 4 to 50%.**'" Ohta et al. detected
MuSK antibodies in approximately 30% of seronegative
MG patients but not in any MG patients with AChR
antibodies (seropositive MG) or other autoimmune
diseases." ' The clinical features of patients with MG
and MuSK antibodies are distinctive. These individuals
often suffer from a severe bulbar dysfunction that is
difficult to resolve with immunosuppressive and immu-
nomodulatory treatments, and muscular atrophy of
facial and tongue muscles is common.'*" The response
to acetylcholine esterase inhibitors is generally unsatis-
factory with the risk of worsening symptoms, especially
when starting treatment in patients with bulbar symp-
toms or an impending respiratory crisis.'* Thymec-
tomy does not alleviate the symptoms.™ In short-term
therapy, patients with MuSK-positive MG respond as
well to plasma exchange and intravenous immunoglo-
bulin as those with AChR seropositive MG.'"* Even so,
those patients whose neck and shoulder muscles are
affected often experience respiratory weakness.” MG in
which weakness is limited to the ocular muscle is not
frequent but does occur.’

A number of clinical studies showed that MuSK MG
constitutes a distinct subclass of the disease.*'%'* The
reason is that many patients with MuSK antibodies
develop severe muscle weakness and eventual atrophy,
which is less common in patients with AChR seroposi-
tive MG, and the former respond differently to therapy
than persons in the latter group. After the identification
of MuSK antibodies in an MG patient, laboratory
testing is now required to confirm the diagnosis of MG,
to seek AChR antibodies and to formulate the clinical
treatment.

MuSK functions in neuromuscular
junctions (NMJ)

MuSK plays multiple roles in clustering AChR
during development of the postsynaptic membranes of
NM]J."”!® Contact of the motor-nerve growth cone with
the muscle induces a narrow, distinct endplate zone in
the mid-muscle that is marked by a high density of
ACHhR clustering. In this step, agrin released from moto-
neurons activates MuSK and redistributes AChR clus-
ters to synaptic sites.'®!* However, agrin does not bind
MuSK, and additional components are required to
activate MuSK.'”"* Recent studies showed that Lrp4,
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a member of the LDLR family, is a receptor of agrin,
forms a complex with MuSK and mediates MuSK acti-
vation by agrin.**?! Intriguingly, MuSK is also required
for organizing a primary synaptic scaffold to create the
post-synaptic membrane.'® Prior to muscle innervation,
AChHR clusters form at the central regions of muscle
fibers, creating an endplate zone that is somewhat
broader than that in innervated muscle. Thus, MuSK is
required for pre-patterning of AChR clustering in the
absence of motor innervation. However, establishing
a scenario for MuSK’s participation in the process is
somewhat complicated. For example, an element
other than agrin might activate MuSK and trigger the
postsynaptic specialization at NM]J. Simultaneously or
alternatively, MuSK could act as a primary scaffold mol-
ecule without activation. The listed pleiotropic roles of
MuSK in AChR clustering at developmental NMJ could
also be required for the maintenance of mature NMJ.?2%
Studies carried out in vivo have shown that synaptic
ACHhR intermingle among themselves completely over a
period of ~4 days and that many extra-synaptic AChR
are incorporated into the synapse at the mature NMJ,
although the synaptic membrane in adult muscle
appears macroscopically to be stable.?* Therefore, the
mechanisms at play during AChR clustering in devel-
oping NM]J are also required in mature NMJ where
postsynaptic complexes including those with AChR
and MuSK are dynamically turning over for the main-
tenance of muscle function.

Do MuSK antibodies cause MG?

In contrast to the well-accepted mechanisms by which
AChR antibodies function in MG, the pathogenic role
of MuSK antibodies has been unclear.” First, no sig-
nificant loss of AChR at NMJ was observed in biopsies
from biceps brachii muscles of MuSK-positive patients
with MG.** Second, MuSK antibodies are mainly in
the IgG4 subclass, which does not activate comple-
ment'* and complement-mediated damage to postsyn-
aptic membranes, is considered a major source of
pathogenicity in MG patients with AChR antibodies.
Third, no research results have shown that passive
transfer of MuSK serum from MG patients generates
the equivalent disease in mice. Fourth, no experimental
animal model of myasthenia gravis (EAMG) induced by
immunization of MuSK protein has been developed.
However MuSK antibodies from MG patients can
inhibit MuSK functions in vitro.*

The pathogenicity of AChR antibodies was simulated
experimentally by the induction of muscle weakness
and development of paralysis in rabbits immunized with
ACHhR protein purified from the electric eel.? This AChR
protein induced the production of antibodies that
cross-reacted with rabbit AChR at the NM]J. The flaccid
paralysis that followed and electrophysiological studies
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Figure 2 Schematic representation of the muscle-specific
kinase (MuSK) domain structure and expression of secretory
MuSK proteins in COS-7 cells. The domain structures of
recombinant secretory MuSK protein (MuSK-His and
MuSK-Fc} and receptor-type MuSK are shown. The whole
coding region of the MuSK extracellular domain was fused
with the His-tag or Fc region of human IgG1 as shown.

of these animals provided a model that resembled the
MG of humans. Therefore, the demonstration of
experimental autoimmune MG in animals induced
by MuSK antibodies was essential for proving their
pathogenicity and investigating their mechanisms of
eliciting MG.

In 2006, we found that immunization of rabbits with
MuSK ectodomain caused myasthenic weakness and
produced electromyographic findings that were com-
patible with a diagnosis of MG,” as shown earlier by
Patrick and Lindstrom.® The extracellular segment of
MuSK comprised five distinct domains, that is four
immunoglobulin-like domains and one cysteine-rich
region (Fig. 2). The fusion protein expression con-
structs, which consisted of mouse MuSK ectodomain
with the Fc region of human IgG1l or His-tag, were
generated and transfected into COS-7 cells. The secreted
recombinant MuSK-Fc and MuSK-His proteins were
purified by using protein-A Sepharose and histidine
affinity columns, respectively. New Zealand White
rabbits were then immunized with 100-400 ug of puri-
fied MuSK recombinant protein. After three to four
injections of MuSK protein, all six rabbits manifested
flaccid paralysis (Fig. 3a). Sera from the paretic rabbits
contained a high titer of MuSK antibodies that reacted
specifically with MuSK molecules on the surfaces of
C2C12 myotubes as observed in sera from MG patients
who were positive for MuSK antibodies.”® Histological
studies of the muscle tissues from the paretic rabbits,
which had manifested severe exhaustion, showed
alterations in muscle fibers ranging from subtle to
angular atrophy intermingled with normal muscle tissue
(Fig. 3b). The histological changes typical of atrophied
muscle fibers can result from MG, reduced mechanical
ability or cachexia. In repetitive electromyograms from
ong of these paretic rabbits, the retroauricular branch of
facial nerve was stimulated at 20 Hz, and recordings were
taken from adjacent retroauricular muscle (Fig. 3c). The
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Figure 3 Rabbits manifest myasthenia gravis (MG)-like
paresis after immunization with muscle-specific kinase
(MuSK) protein. (a) Two rabbits representative of four
animals with positive outcomes developed myasthenic
weakness after immunization with the recombinant MuSK
protein. After three injections of MuSK protein, M1 and M2
rabbits manifested flaccid weakness within 3 and 9 weeks,
respectively. M2 rabbit developed severe exhaustion with
muscle weakness. (b) Cross-sections from the soleus
muscles of two paretic rabbits (M1 and M2) and a normal
rabbit (Normal) were stained with hematoxylin-eosin.
Muscle fibers in M1 paretic rabbit showed only subtle
changes in shape and size, whereas atrophy of muscles fibers
in M2 paretic rabbit was observed as small angular fibers
(indicated by arrows; bar, 50 pm.) (c) Electromyograms
recorded from M1 paretic rabbit. The retro-auricular branch
of the facial nerve was continuously stimulated with
constant square-wave pulses of 0.1 msec at 20 Hz delivered
by a current stimulator, and the compound muscle action
potential (CMAP; second peak observed on the oscilloscope
screen recorded at the indicated time-points during
stimulation) showed a decremental pattern, consistent with
MG. Reproduced from J Clin Invest 2006; 116: 1016-1024
with permission. © 2009 The American Society for Clinical
Investigation.

compound muscle action potential (CMAP) showed a
decremental pattern, consistent with MG. However,
injections of acetylcholine esterase inhibitor did not sig-
nificantly reverse either the CMAP defect or the paralytic
symptoms. Importantly, induction of myasthenia by
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Figure 4 Manifestations of myasthenia gravis after injection
of purified muscle-specific kinase proteins in a mouse.

MuSK antibodies is not confined to the rabbit, because
we and others also produced myasthenia in mice by
injection of MuSK protein (Fig. 4).27%

How do antibodies to MuSK
cause MQG?

We have provided the first piece of evidence that
active immunization with MuSK protein reproduces the
MG-like disease in animals.?**® Next, we focused on
how MuSK antibodies cause MG. The pathogenic role
of MuSK antibodies in MG has been questioned,
because the number of AChR is not reduced and
complement is not deposited at the NMJ of biceps
brachii muscles from MuSK-positive patients with
MG.?** The mechanisms used by AChR antibodies to
cause MG are well delineated,'? but those mechanisms
simply do not apply to MG associated with MuSK anti-
bodies. MuSK antibodies have been identified as pre-
dominantly IgG4, which does not activate complement.
However, antibodies binding to MuSK could accelerate
the degradation of MuSK molecules (antigenic modu-
lation) and/or inhibit MuSK functions directly. MuSK is
essential for AChR clustering at the developing NMJ,
and its deficiency might lead to the complete loss of
junctional ultrastructure.”** Further, MuSK might
also play important roles in the maintenance of AChR
clustering and the structure of mature NM]J. To show
precisely how MuSK antibodies participate in MG,
unraveling the way in which MuSK acts at mature NM]J
is necessary.

To elucidate the mechanisms of AChR clustering at
NMJ, numerous studies were carried out using cultured
C2C12 myotubes (Fig. S). Agrin induces clustering of
AChR in C2C12 myotubes after autophosphorylation by
MuSK. In vivo, this event represents a major cascade of
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Figure 5 Inhibition of agrin-induced and agrin-independent acetylcholine receptors (AChR) clustering by muscle-specific
kinase (MuSK) antibodies. (a) C2C12 cells were treated with agrin, laminin-1 or VVA-B4. AChR clusters were stained with
rhodamine-conjugated BTX. AChR clustering induced by agrin, laminin-1 and VVA-B4 was inhibited in the presence of MuSK
antibodies. This inhibition was blocked by absorption of the MuSK antibodies with MuSK-AP before treatment of the cells
(bar, 20 pum). (b) Quantification of the inhibitory activity of the MuSK antibodies confirmed that they significantly inhibited
agrin-, laminin-1- and VVA-B4-induced AChR clustering. Preabsorption of the MuSK antibodies with MuSK-AP significantly
blocked inhibition. Values represent means + SEM of 10-15 fields for each of the two experiments per treatment.

#a%%%%P < 0.01 versus similar treatment without MuSK antibodies; *****P < 0.01 versus similar treatment without
preabsorption; ANOVA. J. Clin. Invest. 2006; 116: 1016-1024. Copyright 2009 The American Society for Clinical Investigation.

AChR clustering at the NM] after innervation by moto-
neurons. Laminin-1 and the N-acetylgalactosamine
(GalNAc)-specific lectin Vicia villosa agglutinin (VVA-B4)
also induce AChR clustering on C2C12 myotubes,
without activation of MuSK. Neither the receptor nor the
activation mechanisms of AChR clustering induced by
agrin-independent inducers has been identified with cer-
tainty. However, these mechanisms might also be impor-
tant for the formation and maintenance of NM], the
latter through agrin-independent pathways as shown by
genetic studies.”
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In a previous study, Hoch etal. observed that the
MuSK antibodies of MG patients inhibited agrin-
induced AChR clustering in C2C12 myotubes.* We also
found that agrin-induced clustering of AChR was
strongly blocked in the presence of MuSK antibodies,
whereas absorption of the antibodies with purified
MuSK products prevented this blocking effect as shown
in Figure 5.% These results showed that MuSK antibod-
ies effectively inhibited the formation of agrin-induced
AChR clustering. Intriguingly, the monovalent Fab
fragments of MuSK antibodies from rabbits with
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experimental autoimmune MG also inhibited AChR
clustering by agrin on C2C12 cells, indicating that
complement-mediated mechanisms are not necessarily
required for such inhibition (unpubl. data). We also
noted that MuSK-specific antibodies strongly inhi-
bited AChR clustering induced by all known agrin-
independent pathways as well as by agrin itself (Fig. 5).*

We then examined the reduced expression of
AChR at NM] in soleus muscles of paretic and normal
rabbits by using fluorescence microscopy after apply-
ing a rhodamine-conjugated AChR agonist, a-BTX
(Fig. 6). The use of a digital camera and staining with
rhodamine-conjugated o-BTX enabled us to record the
size and optical densities of AChR clusters. The result-
ing images were measured by using NIH image analysis
software.” The areas and intensity of AChR fluores~
cence in muscles of these paretic rabbits were signifi-
cantly reduced compared with those in normal rabbits.
In addition, the structure of NM]J in our paretic rabbits
as well as the size and branching of the motor terminals
were significantly reduced. Electron microscopic obser-
vations of NMJ in rabbits with EAMG induced by in-
jection of MuSK protein showed a significant loss of
complexity in the convoluted synaptic folds but no
destruction. A particularly important observation was
that the EAMG model cited here resembles the pheno-
type of humans with MG and MuSK antibodies (Fig. 7).
In the intricate and convoluted synaptic folds, the high
density of voltage gated sodium channels in the mem-
branes” depths amplify the end-plate current, thus
enhancing neuromuscular transmission and muscle
contraction.® A reduction in the size and branching of
the motor terminals contributes to the reduced ACh
output, and reduced post-synaptic folding increases the
threshold for generation of muscle fiber action poten-
tial. These structural abnormalities in NM]J, including
both pre- and post-synaptic structures, thus impair
neuromuscular transmission in rabbits with EAMG.

Intriguingly, similar abnormalities of NM] structure
were also observed in rats with reduced expression of
MuSK as noted by RNA interference,* in a patient with
congenital myasthenic syndromes (CMS} caused by
MuSK mutations and also in mice expressing the
MuSK missense mutation seen by electroporation
experiments.*’ MuSK knockout mice also displayed pre-
synaptic defects in addition to postsynaptic defects,
indicating that MuSK is required for retrograde signals,
so far unidentified, to maintain the presynaptic struc-
ture in mature NM]J.

Dok-7 is required for the maintenance
of NMJ

In 2006, a MuSK-interacting protein called Dok-7 was
discovered® and identified as a member of the Dok
family of cytoplasmic proteins. Dok-7 is postulated to
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have three main functional domains: (i) a pleckstrin
homology (PH) domain, essential for membrane asso-
ciation; (ii) a phosphotyrosine-binding (PTB) domain
involved in the Dok-7 induced activation of MuSK;
and (iii) a large C-terminal domain containing multiple
tyrosine residues. Dok-7 knockout mice showed a
marked disruption of neuromuscular synaptogenesis
that was indistinguishable from the features found in
MuSK-deficient mice. Thus, Dok-7 is essential for neu-
romuscular synaptogenesis through its interaction with
MuSK.

Mutations in the Dok-7 protein cause the genetic
form of limb-girdle myasthenia called CMS.** Some
clinical features of these patients resemble those in
the severe type of MG accompanied by MuSK anti-
bodies.** Proximal muscles are usually more affected
than those in distal regions, as evident in MuSK MG
patients, and ptosis is often present. However, limb-
muscle weakness is comparatively less severe. Previous
studies showed no reduction of AChR clustering with
significant changes in NMJ of MuSK MG patients,*
but further structural analysis of NM]J is required
in muscles where severe weakness occurs commonly.
The weakness and atrophy are not observed uniformly
in muscles of these patients, although both MuSK
and Dok-7 are essential for the formation of NM]J
during the embryonic stage.** Notably, one of the
major distinctions between acquired MuSK MG and
CMS with the Dok-7 mutation is the timing when
weakness begins. The CMS patients typically have dif-
ficulty in walking after reaching that normal motor
milestone during early childhood, whereas the onset
of weakness of MG patients, in most instances, occurs
in adulthood. Interestingly, AChR clustering and
post-synaptic folds are reduced and have small motor
terminals as observed at NM]J in patients with CMS
and Dok-7 mutations.®® The effect of Dok-7 muta-
tions on post-synaptic structures might also be an
alteration of retrograde signaling to the pre-synaptic
nerve terminals resulting in a reduced NM]J size in
these patients (Fig. 7). Dok-7, along with MuSK, is
also required for the maintenance of NMJ, not only
for synaptogenesis.

MuSK plays important roles in the
maintenance of NM]J

We have shown that MuSK is required for the main-
tenance as well as the generation of NMJ.*% Disrup-
tion of those mechanisms by MuSK antibodies causes
MG in humans. Use of an experimental model for MG
showed that MuSK antibodies mediate the patho-
genesis of this syndrome in rabbits and mice.??’% In
most cases, the symptoms take more than 3 months to
manifest themselves in rabbits and more than 4 weeks
in mice. Furthermore, the symptoms were also induced
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Figure 6 Reduction of the size and density of acetylcholine receptors (AChR) clusters at the neuromuscular junctions (NM])
in paretic rabbits. (a) Cross-sections from the soleus muscles of two paretic (M1 and M2) and three normal rabbits (N1, N2,
and N3) were stained with 10 nM rhodamine-conjugated BTX. Bright crescents of bound BTX, indicative of endplate AChR,
were smaller and less intense in the paretic rabbits’ muscle fibers than in those of the normal rabbits. Arrows indicate the small
angular fibers in M2 soleus muscles (L, left; R, right; bar, SO um). (b) Images of ten AChR clusters at NM]J in the right and ten
in the left soleus muscles of the paretic and normal rabbits were randomly recorded by a digital imaging camera. Quantification
of the area and intensity of AChR clustering in the unprocessed images were measured using NIH Image software. Bars indicate
means + SD. *#**%*P < (.01 versus normal rabbits. J. Clin. Invest. 2006; 116: 1016-1024. Copyright 2009 The American Society

for Clinical Investigation.

experimentally by passive transfer of MuSK antibodies
from MG patients into animal hosts. However, the
injection of a large amount of human MuSK antibodies
into mice can barely induce EAMG.* The mecha-
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nisms used by these antibodies include multiple events
during which MuSK functions stall in their process
of regulating synapse formation and maintenance.*’
MuSK antibodies against compound antigenic
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Figure 7 Schematic appearance of
neuromuscular junctions (NM]J)

observed in normal humans and

myasthenia gravis (MG) patients. (a)

Normal NM]. Acetylcholine receptors

(AChR) are concentrated at the peaks

of abundant and well-preserved, highly

complex convoluted junctional folds.

(b,c) NMJ observed in experimental

animals that model MG was induced

by muscle-specific kinase (MuSK)

antibodies and in patients with the (b)
congenital myasthenic syndrome from
MuSK or Dok-7 mutations. Small
NM]J in both pre- and post-synaptic
structures. (b) Attenuation of AChR
and reduced complexity of synaptic
folds at post-synaptic membranes
without widened synaptic spaces. (c)
Disappearance of post-synaptic folds
with preserved synaptic space. (d) NMJ
in MG patients with AChR antibodies.
The myasthenic junction has a reduced
number of AChR, simplified synaptic
folds and a widened synaptic space
with a normal nerve terminal.

determinants in the extracellular domain might engage
in their pathogenic activities through antigenic modu-
lation and/or restraint of MuSK functions, and the
consequences of these effects range from a partial to
entire loss of MuSK function without the involvement
of complement-mediated damage. The point that
MuSK antibodies in MG patients are mainly of the
IgG4 subclass, which does not activate complement,
might be relevant here. These diverse possibilities
reflect the complexity of clinical features seen in such
patients ranging from typical MG throughout its many
variants.

Aging and NM]J

How can we extend the studies of MG to understand
sarcopenia? The structural changes of NM]J in aged rats
have suggested that active remodeling mechanisms at
the synapse between nerve and muscle might play
crucial roles in the progression of sarcopenia (Fig. 8).%
Our studies of MG with MuSK antibodies showed
that the structure of NM]J is not statically maintained;
rather, the nerve-to muscle and muscle-to-nerve
signals stimulate dynamic assembly and disassembly of
NM]J'’s molecular complexes. A steady flow of molecular
complexes at NM]J sustains both the structures and

© 2010 Japan Geriatrics Society
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functions of the motor system, including motoneurons
and muscles. However, we do not completely under-
stand the molecular mechanisms, although our animal
models of MG showed clearly that muscle-to-nerve
signal transduction requires the maintenance of NM]J.%
We think that studying MG caused by the failure
of NMJ maintenance will facilitate further progress
in resolving the molecular basis of muscle atrophy.
Additional areas of relevance are the many physical
conditions, including aging, injury, cancer or AIDS,
in which muscles shrink or atrophy. Understanding
the molecular basis of NMJ maintenance promises to
provide new targets for innovative therapeutics to create
healthy, enduring muscles.
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Figure 8 Scanning electron micrographs of neuromuscular

junctions (NM]) in extensor digitorium longus muscles of
young and aged subjects. (a) In a 4-month-old rat,
convoluted and winding synaptic gutters with numerous
slit-like junctional folds. (b) In a 22-month-old rat, a
number of cup-like depressions with slit-like junctional
folds link together. A nerve ending, which faces toward the
muscle apparatus, consists of numerous small protrusions
of the terminal axons that might represent individual
depressions (magnification, x3000; bar, 5 pm). Reprinted
from Desaki et al. Virchows Arch. 2000; 437: 388-395.
Copyright 2009 with permission from Springer.
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TWa2, M- THRESEEHE? LTS

(Lik4 X HoI

&, fiﬁ@ﬁ’&i THNIOERE L6 L, FR2 T ANZT DEBL LURER
NOTRIEHITHELZEF L CET S8, tvTidi MERIZHE S TR 4R 0 142 M 0251
Bl - HhoRNE R LR E, FRiE OBBGE)) % I DR ERTEE L LTl sarcopenial H319894E L&Al
LTLEIHIEANLERNCHS. Rah?, EFEBRHOBIE LRI EbLH>TVEE
—MIZOIET 4 7Y FO—A(LF, B3%) PHIERSND LI 5TWD.,
i, EBEHORED-OBIHEIOK ME Kk LEN#E BESV ax=T7TOBRENTEHEE LTLAVLR
REZ o T, BNEREICL 2Bty Tw2bHDND 12& LTI, Baumgartner® D E A
KEZIBEIMETHL. SGEEdITE, WA, R, HbH. TOEFZE, ZEFIFLF— XEUEIUE (dual
MR EOMBRLHBEOREMES I - THELE SN energy x-ray absorptiometry, DXA) A& K 7= Wik
HERTHY, D1 2FBEIIE-TH EFLH ® 5 & (appendicular skeletal muscle mass : ASM) %
T, K (m?) TRk L 7zskeletal muscle mass index (SMI) %
2 TlE, oa2EEH I IR T (sarcopenia) (2 3k L LLDTHL, N aR=TOERHKT, 18~
BOBEANLERE LTEZLNDRIOREZ &) B 40 ADSMIFIE L ) 2SDULFOM& & ST
b, OaxT et rar=7oOMEEPLHBEITIC B, TOEFIIED CHIETIE, 70N OERE T
W EIZHNT 5. 135~24.1%DEM TH 27°, 80ukL FIZ7% D L43.2~

60.0%IZ ERAT2(F1), B, FaR=TDA v
haR A M, SMIAFEYETT7.26 kh/m?, 545 kg/m?&
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it # i il n:tf E K ERT
Baumgartner. et al DEXA ASM/HE, BB A2SD L | 726 5.45
Tanko, et al DEXA ASM/HE, FHER A2SD | * 5.40
Janssen, et al BI t SMI 8.50 5.75
Chien, et al BI - SMIL #HEHA2SD | 887 642
Sanada, et al DEXA ;Aﬁmm%%¢mA%Dl 687 546

ASM (kg) = appendicular skeletal muscle mass estimated by DXA.
SM (kg) =skeletal muscle mass estimated by BL

SMT=SM/Ht* Ht = height.
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MiEf i EThHa. GEICE AL NDHITHRED
KR, o L5, @B, LGk
ELLE, A REELEEIMb - TWE I EAEL
DO ETHBEIN TS,

Rantanen 675, 658 L4 Lo @#bh 7584 2 6 K12
SEMBWRHAL, HITMEENTE L EET 2 ENIZ
DVWTHEH LRI IR, [Hhogdb s >
AREN DT L& ) FEOFRE EEN D)) L3
T ARRIA BT ARG AT, FITRERLE
DfEBEOEmC Lz L (RR=512, 95% Cl=

(CHk 4 X 9 sIHD

2.68-9.80), HATHRAEZ MEFFT A7 OIIZR AW | &N
S ABEDODEHEARLETHLLEBH LTS (H
1)9.

HLORT T ORBEORE

FEZE, KIBABITAEDTSREL. Lo 1 @i ¥
13998 % & R, [P OF A5 & A D 4 v ] [BMI
A [EMEHEG ! 300 IZE YT 254
EH NIRRT EERL, ZNE304%(21.7%) & Rl
L, B E#ANTWE, ZoFRICLUE, Hrax
=7 EEE, FEmE <, FREESEA MM, BMI,
TRA R Z /R & & b ISHEHERE A CET, ENIRY
L MEIHEE L > TV AEDEIE DXLV T
»3. LoL, HHEEESLLVEOBIGIEE % i
L, #nvax=7 LHE S @i s i
<, BTORHEIIHT 2ABKLyBLLTWE2HYS
WEHERITE S, — 7, BHERIC BV, AlE,
HHEE, BIEIFEIISVESERL TV,
SIMUESE, IRERFEREFHEL VW HELRLT
WA EDL, YL IAXRZT EHMEORE, THERE
) BITEREAS S W LRI I T WA (F3).
S5, HaRZTEEGEOBITHEEZ RS 720
W, SmOBKBITERELEUL, yrax=T#E
IFHBERRRELECA, B2IRLEY I, H
aRZ 7 HI2158+034 m/sec, IEH BF1X1.71+0.36
m/seck LT, HIL IR T HEOEITHEEDAZIZK
W EDHEREIN TV AY,
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ZALICHE ) BB REALOER L L TiX, Mg,
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