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Fig. 4 Comparing gender
differences from the coronal
view, female ACL-injured
subjects demonstrated
significantly more external hip
rotation and knee valgus in both
the injured and uninjured legs
than male subjects

Male

Uninjured side

participating sports. However, the results were compatible
with the study by Zeller et al. [27], which showed that
female healthy subjects demonstrated more hip flexion than
male healthy subjects despite greater rectus femoris muscle
activation during single leg squatting. They discussed how
quadriceps muscle could not be seen as the culprit in the
lack of knee control and concluded that the activation
patterns of the hip musculature were necessary. Thus, the
effect of selection bias of the female controls was not
clearly demonstrated in the current study.

The uninjured leg of male ACL-injured subjects did not
exhibit any significant characteristics except for less
external knee rotation compared to that of the male
controls. The kinematic differences in the ACL-injured
subjects shown in the study indicate the features of the
ACL-injured leg.

In comparison with the ACL-injured and -uninjured
side, the kinematics of the ACL-injured leg exhibited more
knee varus than the uninjured leg in both male and female
ACL-injured subjects. These results suggest that an ACL-
injured knee could be maintained in balance more easily by
maintaining a more varus position. The link between knee
valgus loading and resultant increases in ACL strain has
been demonstrated previously in vivo as well as in
cadaveric studies [32, 33]. Therefore, for ACL-injured
subjects, maintaining the knee position with more varus in
ACL may have the potential for stabilizing an injured knee
by reducing ACL dependency while maintaining the knee’s
position. This fact suggests that additional .varus load
stresses the ACL-injured knee.

In comparison with gender differences. the kinematics
of female subjects exhibited more external hip rotation and
knee valgus than male subjects in both the injured and
uninjured legs. During landing, females often display val-
gus knee positioning. This position is defined as “dynamic
valgus” and incorporates the movement of internal hip

Male

Female
Injured side

Female

rotation and adduction [14]. By studying the mechanism of
non-contact ACL injuries, it was reported that there is a
“position of no return”, described as a loss of control at the
hip and pelvis [7]. Hip and trunk-pelvis-hip control is
assumed to be lost before ACL rupture. ACL rupture
reportedly results from internal hip rotation and adduction,
knee valgus, and extemal tibial rotation on a pronated,
externally rotated foot. These gender differences in joint
kinematics suggest that increased dynamic knee valgus
contributes to ACL non-contact injury risk in women and
that the hip plays an important role in controlling knee
valgus.

With regard to hip adduction, no statistically significant
difference was found between female and male subjects,
even though females exhibited more knee valgus in com-
parison with males. This result raises the possibility that
the female pelvis is inclined to the squatting leg side in
order to adjust for the dysfunction of hip abductors.
Therefore, the relative angle of hip adduction correspond-
ing to the pelvis may have exhibited no statistical differ-
ences for male subjects.

Single leg squatting is considered to be a simple and
safe clinical examination in comparison with single leg
landing: therefore. it could be possible to perform it on
many subjects at an out-patient clinic. In future studies,
collecting kinematics data and comparing data of ACL-
injured subjects from various kinds of sports and sports
levels will be needed to establish the differences of knee
kinematics during single leg half squatting and to develop
an ACL-injury prevention method based on the results. The
measurement setup can be also indicated to reveal the
kinematic change in ACL-reconstructed knees. Such a
study would reveal different kinematic characteristics of
the ACL-reconstructed knees. Developing an adequate
training regiment for each patient based on kinematics data
will be important as rehabilitation immediately after ACL
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Table 4 Comparison between uninjured and injured knees at angle of unified knee flexion in ACL-injured subjects during single leg squatting

Motion Mean joint angle (°)
Male Female
Uninjured Injured P values Uninjured Injured P values
Knee
Flexion® 63.9 £ 18.3 65.1 £ 17.9 66.5 £ 13.3 66.1 + 12.2
Varus 13.6 £ 10.5 20.7 + 11.1 0.0052° 5.0 £ 122 7.2 £ 125 0.0486"
External rotation 12.1 &£ 32.0 0.7 & 36.8 0.0057° 21.4 + 289 34+ 348 0.1142™*
Hip
Flexion 299 + 14.0 350 £ 17.1 0.6185™* 28.1 £ 15.6 324 £ 16.8 0.2973%*
Varus 9.7+ 7.7 104 + 8.6 0.8681™* 103 £ 79 126 £ 7.5 0.0984™
External rotation 27+ 84 1.0£9.3 0.0419° 85+76 7576 0.4347™

# An approximation of the ACL-injured leg's knee flexion angle was extracted from the data of the uninjured leg

® Level of significance (o < 0.05)

reconstruction. Additional studies are needed to evaluate
the relationship between hip morphology, general joint
laxity, and other factors in female ACL-injured subjects.
Regarding study limitations, the first limitation of this
study is that the knee flexion angle was not able to be
controlled in either injured subjects or control subjects. An
approximation of the injured leg’s knee flexion angle was
needed for extracting the knee flexion angle of the unin-
jured leg for unifying the knee flexion angle. We compared
all the joint angles except the knee flexion angle in both the
injured and uninjured legs. Comparing the injured and
uninjured knees, the exact same results as shown in Table 4
were measured from the data at maximum knee flexion.
Therefore, we considered the results to be valid for this
study that evaluated hip and knee joint angles at maximum
knee flexion while performing the single leg squat. The
second limitation is that the physical activity of the female
control group is higher than that of the male control group,
and the sport item is very limited to the case of playing
volleyball. This difference of physical activity and differ-
ence of sport item may have affected the results of kine-
matics of single leg squatting in the female control group.

Conclusion

Comparing the ACL-injured subjects with the healthy
controls, female ACL-injured subjects demonstrated sig-
nificantly more external hip rotation and knee flexion, and
less hip flexion than the female controls during single leg
half squatting, while male ACL-injured subjects did not
exhibit any significant characteristics except for knee
rotation.

The ACL-injured leg demonstrated more knee varus than
the uninjured leg in both male and female ACL-injured
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subjects. With regard to gender differences in ACL-injured
subjects, female subjects demonstrated significantly more
external hip rotation and knee valgus in both the injured and
uninjured legs than male subjects.

The single leg half squat was a reproducible way to
simplify the single leg landing position, and it was per-
formed repeatedly and safely. Therefore, a large amount of
data collection could be performed on many subjects.
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Abstract Articular cartilage injury remains one of the
major concerns in orthopaedic surgery. Mesenchymal stem
cell (MSC) transplantation has been introduced to avoid
some of the side effects and complications of current
techniques. The purpose of this paper is to review the lit-
erature on MSC-based cell therapy for articular cartilage
repair to determine if it can be an alternative treatment
for cartilage injury. MSCs retain both high proliferative
potential and multipotentiality, including chondrogenic
differentiation potential, and a number of successful results
in transplantation of MSCs into cartilage defects have been
reported in animal studies. However, the use of MSCs for
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cartilage repair is still at the stage of preclinical and phase 1
studies, and no comparative clinical studies have been
reported. Therefore, it is difficult to make conclusions in
human studies. This requires randomized clinical trials to
evaluate the effectiveness of MSC-based cell therapy for
cartilage repair.

Keywords Mesenchymal stem cells - Cartilage repair -
Cell transplantation - Chondrocytes

Introduction

Cartilage defects have very limited intrinsic healing
capacity. Partial thickness defects that do not penetrate the
subchondral bone do not usually repair spontaneously [25].
while repair of full thickness cartilage defects that pene-
trate the subchondral bone depends on the circumstances,
such as age, defect size and location {[7]. Small defects can
repair spontaneously with production of hyaline cartilage.
whereas larger defects will only repair with production of
fibrous tissue or fibrocartilage which are biochemically and
biomechanically different from normal hyaline cartilage.
As a result, degeneration subsequently occurs which may
progress to osteoarthritic change in some cases [91].
Various surgical methods have been proposed to
regenerate articular cartilage. However, they all have
inherent problems, leaving many patients with inade-
quately treated cartilage lesions. Recently, mesenchymal
stem cells (MSCs) have been suggested as a source of cells
for cell-based treatment of cartilage lesions. MSCs are
known to play important roles in development, post-natal
growth, repair and regeneration of mesenchymal tissues.
They are easily isolated, and retain high expansion poten-
tial and multipotentiality that includes chondrogenic
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differentiation potential. Based on these properties, MSCs
are potentially an attractive cell source for cartilage
regenerative medicine. With regard to in vivo studies,
transplantation of MSCs into full thickness articular carti-
lage defects has been attempted under various conditions.
Although many successful results have been reported, a
number of questions, such as from which tissue MSCs are
suitable or what conditions are appropriate for cartilage
repair, still exist, limiting clinical applications for cartilage
injury. Currently, very few clinical studies of MSC trans-
plantation for cartilage repair have been reported.

This paper briefly describes some of the problems
associated with currently used methods for repair of
cartilage lesions, followed by a review of the existing lit-
erature on MSC-based cell therapy for articular cartilage
repair. We focus on three major parts in the process;
transplanted cells, scaffolds and growth factors, and their
differential performance in vitro and in MSC-based cell
therapy in animal studies. Finally we review clinical
studies on MSC therapy for cartilage repair, and discuss
MSC therapy compared with autologous chondrocyte
implantation (ACI), which is an established procedure
worldwide [7, 10, 59, 62, 73]. The intention of this paper is
to review whether MSC-based cell therapy can be an
alternative for treatment of articular carttlage injury.

Current surgical treatment for articular cartilage
injury

Bone marrow stimulation

Bone marrow stimulation is a technique in which sub-
chondral bone is penetrated. One of the expectations for the
penetration is to induce bone marrow-derived chondro-
progenitors into the cartilage lesion. The procedure may
also enhance the expression of cytokines to promote car-
tilage repair [57]. This technique includes drilling [75].
abrasion {41] and microfracture [61, 93]. At present, these
techniques are preferred by the majority of orthopaedic
surgeons as they are easy to perform. need no special
surgical instruments and are more cost effective than others
[103]. However, cartilage defects only repair with fibrous
tissue or fibrocartilage by these methods, probably because
the number of chondroprogenitors induced from bone
marrow is too small to promote repair with hyaline carti-
lage, and the results are often followed by degeneration in
the repaired tissue [93].

Mosaicplasty

Mosaicplasty is a procedure whereby autologous osteo-
chondral plugs are transplanted into the cartilage defect. By
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this method, the repaired tissue is predominantly composed
of hyaline cartilage [33, 60]. However, donor site mor-
bidity [78] and the limited availability of autologous
osteochondral plugs limit the usefulness of this method,
particularly for repair of large lesions.

Autologous chondrocyte implantation

The clinical use of ACI was first reported by Brittberg et al.
in 1994 [10], following animal studies which had shown its
effectiveness [29]. In this method, chondrocytes are
obtained from a biopsy taken from a non-weight bearing
part of the cartilage of the patients, and are expanded in
vitro, followed by the injection of a suspension of expanded
chondrocytes into cartilage defects, covered with autolo-
gous periosteal flap. Although clinical results of the original
ACI were reported as promising [62, 73], this procedure has
some potential disadvantages, such as leakage of trans-
planted cells, invasive surgical method, hypertrophy of
periosteum [32, 50] and loss of chondrogenic phenotype of
expanded chondrocytes in monolayer culture [§]. Second-
generation ACI was introduced to improve these problems.
and biomaterials such as collagen type I gel [69]. hyaluro-
nan-based scaffold [S9] and collagen type I/III membrane
[7] were applied to secure cells in the defect area, to restore
chondrogenic phenotype by way of three-dimensional cul-
ture [28] and to replace the periosteum as defect coverage.
At present, only two prospective studies comparing the
original and second-generation ACI are available [7, 59]
and both studies showed no significant differences in the
short term clinical outcomes. As for the first generation
ACI. the newly regenerated cartilage often consists of
fibrous tissues [35, 96] possibly due to limited number of
chondrocytes and their low proliferation potential. Bony
overgrowth which causes thinning of the regenerated car-
tilage and violation of the tidemark is also of concern [1].
Moreover, this method still sacrifices healthy cartilage.
These aspects limit ACI in the treatment of large defects and
may increase the long-term risk of developing osteoarthritis.

Comparison of treatments currently in use
for cartilage repair

Jakobsen et al. [40] evaluated quality and outcome of
69 clinical cartilage repair studies using microfracture,
autologous osteochondral transplantation (mosaicplasty),
autologous periosteal transplantation or ACIL Data from
3,987 surgical procedures in these studies were assessed.
More than half of the studies were retrospective, and only
four studies were prospective, randomized and controlled
trials [35, 44]. No significant differences in outcome were
found between the four techniques. and large variations in
the reported outcomes were seen within each treatment
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modality. The low-methodological quality found in these
studies indicates that caution is required when interpreting
results after surgical cartilage repair. It was concluded that
firm recommendations on which procedure to choose
cannot be provided at this time.

Mesenchymal stem cells

Friedenstein [23] first established the existence of MSCs
and showed that bone marrow contains cells that can dif-
ferentiate into bone and cartilage. His initial work has been
extended by a number of investigators and it has been
reported that MSCs isolated from bone marrow have self-
renewal potential and multilineage differentiation potential
including chondrogenesis [42, 74, 76, 81]. MSCs can be
isolated from a variety of adult mesenchymal tissues, have
extensive proliferation potential and are easily expanded
without loss of their multilineage differentiation potential
within several passages. Therefore, MSCs are perceived as
an attractive cell source for regenerative medicine for
cartilage injury.

Chondrogenesis of MSCs

Chondrogenesis of MSCs was first reported by Ashton
et al. [5] and a defined medium for in vitro chondrogenesis
of MSCs was first described by Johnstone et al. {42], who
used micromass culture with transforming growth factor-
beta (TGF-f) and dexamethasone. Sekiya et al. [85, 88]
reported that addition of bone morphogenetic proteins
(BMPs) enhanced chondrogenesis under the conditions
employed by Johnstone et al. [42]. Currently, the micro-
mass culture is widely used to evaluate chondrogenic
potential of MSCs in vitro.

However, this in vitro chondrogenesis does not mimic
cartilage formation during development. During micromass
culture, MSCs increase expressions of both collagen type 11
(chondrocyte marker) and type X (hypertrophic chondro-
cyte marker) [6, 39]. Furthermore, MSCs continlie to
express collagen type I [94]. Other cytokines such as
insulin-like growth factor (IGF) [71] and parathyroid hor-
mone-related peptide (PTHrP) {43] have been wied for
better differentiation cocktails, but it is still difficult to
obtain in vitro MSC-based cartilage formation comparative
with native cartilage tissue.

When bone marrow-derived mesenchymal cells were
subcutaneously transplanted in special diffusion chambers,
some cells differentiated into cartilage ectopically [S].
Also, MSCs implanted into osteochondral defects differ-
entiated into chondrocytes [99]. On the other hand. after
cartilage pellets differentiated from MSCs in vitro were

transplanted subcutaneously, these pellets disappeared [19]
or calcified with vascular invasion [72]. This indicates the
importance of signals from the microenvironment to induce
cartilage formation of MSCs and to maintain its pheno-
types [15, 47, 99].

MSCs from various mesenchymal tissues

Although bone marrow is considered to be a well-accepted
source of MSCs, stem cells are present in a variety of
mesenchymal tissues other than bone marrow and can be
isolated from them, such as synovium [18], periosteum
[24], skeletal muscle [[1], adipose tissue [110], trabecular
bone [82] and umbilical cord blood [55]. These MSCs are
similar irrespective of their origin in that they have colony-
forming ability and in vitro chondrogenic, osteogenenic
and adipogenic potentials {20, 30]. Recently, there are
increasing number of studies describing the specific
properties of MSCs, including chondrogenic potential,
dependent on their origin [16, 37, 48, 56, 70, 77, 79, 83, 86,
105, 109].

Some comparative studies showed that MSCs from bone
marrow had more in vitro chondrogenic potential than
those from adipose tissue [16, 37, 56, 77. 79, 86, 105].
Sakaguchi et al. [83] harvested human bone marrow, syn-
ovium, periosteum, muscle and adipose tissue, and isolated
and expanded MSCs in a similar condition. They demon-
strated that MSCs derived from synovium had higher
chondrogenic potential than those from other mesenchymal
tissues. Yoshimura et al. [109] also demonstrated higher
chondrogenic differentiation potential of MSCs from syn-
ovium in rats in a similar way.

One drawback of these studies is that the evaluation of
in vitro chondrogenesis may not represent the chondro-
genic potential of MSCs transplanted into cartilage defects.
Park et al. [70] showed that MSCs from bone marrow and
periosteum were superior to cells isolated from fat with
respect to forming hyaline cartilaginous tissue when
transplanted into cartilage defect in rats. Koga et al. [48]
compared in vivo chondrogenic potential among various
MSCs in rabbits and demonstrated that MSCs from syno-
viem and bone marrow had a higher potential to repair
cartilage defect than those from skeletal muscle and adi-
pose tissue.

Which is a better MSC source for cartilage regeneration,

_ bone marrow or synovium? Nimura et al. [67] reported that

MSCs from synovium expanded much faster than those
from bone marrow when cultured with autologous human
serum. This is an advantage of MSCs from synovium.
However, bone marrow is easier to harvest than synovium,
which is a reason why bone marrow is more widely
accepted as an MSC source.
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Suitable conditions for cartilage repair with MSCs
Cell density

In ACI, chondrocyte density used for clinical treatment was
10° cells/ml or less when they chondrocytes embedded in a
gel [7, 59, 69]. In MSC transplantation, higher density
appears to be required. Koga et al. reported that 5 x 107
MSCs/ml embedded in collagen type I gel repaired carti-
lage defect successfully whereas 10° MSCs/ml resulted in
failure in rabbit [48]. MSCs divided sparsely during in vitro
[38, 87] and in vivo [47] chondrogenests, whereas viable
MSCs were decreased by apoptosis [38].

Growth and differentiation factors

Growth and differentiation factors including members of
the TGF- superfamily, IGF-1 or FGF have been shown
to stimulate the chondrogenic differentiation of MSCs.
Although some studies have reported that transplantation of
undifferentiated MSCs into cartilage defects provided good
results [1, 47, 99], these factors such as TGF-f§ [31, 54],
BMPs [66]. IGF-1[26] and, particularly, a combination of
TGF-$ and BMPs (881 have been shown to enhance cartilage
repair in combination with MSCs in vitro and in animal
studies. Such stimulations could be achieved by direct
administration of recombinant growth and differentiation
factors or by transfer of the respective genes, and each study
showed that cartilage defects transplanted with enhanced
MSCs led to better repair than those with untreated MSCs.
These results suggest that the use of appropriate differenti-
ation factors could improve cartilage repair by MSC
transplantation. Presently, the differentiation factors can-
not be ranked according to efficiency. There are some
disadvantages with the use of growth factors. Direct
administration into the injured site requires high dosages or
repeated injections due to relatively short half-lives of these
proteins in vivo. This technique is very expensive and may
lead to unanticipated adverse effects 3, 98]. Gene therapy
has been suggested as an alternative method by which these
proteins can be provided for a prolonged period of time
directly at the site of cell transplantation [27]. However. a
large amount of work still has to be carried out to prove that
gene therapy is sufficiently safe to allow clinical use [22].
Even if the growth factors are used only during in vitro
differentiation, there are problems regarding availability of
good manufacturing practice format, price and the fact that
no combination of differentiation factors has been able to
turn off collagen type I and collagen type X genes [6, 39. 94].
A better strategy might be to construct scaffolds which are
able to deliver differentiation factors directly to the cells
embedded in the scaffold. Currently some bioscaffolds exist
that can elicit a controlled action and reaction to the
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surrounding tissue environment (bioactive), and others that
exhibit a controlled chemical breakdown and resorption
with ultimate replacement by regenerating tissue (resorb-
able). New generation biomaterials are also being designed
to stimulate regeneration of living tissues using tissue
engineering and in situ tissue regeneration methods. These
materials will lead to limitless possibilities for cartilage
regeneration [34, 108]. However, they require further
investigations for clinical use.

Culture serum

MSCs have been expanded with foetal bovine serum (FBS)
for research as well as for clinical use [36, 99]. However,
supplementation with FBS has several risks, such as disease
transmission and immune reaction [58, 89, 104]. Increasing
the safety of MSC transplantation requires the use of safe and
effective substitute for FBS. Autologous human serum has
been investigated as a substitute for FBS. Several studies
have compared the proliferative effects of autologous human
serum and FBS on MSCs from bone marrow with variable
results. Some reported that FBS was superior to human
serum [52]. Others reported that their proliferative effects
were similar [92, 106]. and still others demonstrated that
MSCs proliferated more in human serum than in FBS [45, 64,
90, 95). The discrepancies among them may be from serum
dose difference, from variations among donor sera, from
differences in sample numbers and also from differences in
harvested sites [2]. For other MSCs, Nimura et al. [67]
reported that MSCs from synovium expanded more in human
serum than in FBS through platelet-derived growth factor
signalling, while opposite results were obtained with MSCs
from bone marrow. As for chondrogenic potential, MSCs
from bone marrow [90] and synovium [67] precultured in
autologous human serum showed lower in vitro chondro-
genic potential than in FBS, whereas in vivo chondrogenic
potential of rabbit MSCs from synovium was similar [67].

Human platelet lysate (hPL) has also been reported as a
substitute. Some reports showed that MSCs from bone
marrow proliferated more in hPL than in FBS and retained
their differentiation potentials including chondrogenesis.
while there is a disadvantage that the amount of hPL
obtained from a patient is less than half that of human
serum [12, 13, 21, 53, 84]. Although there is no compar-
ative study between human serum and hPL, they might be
an effective and more beneficial substitute for FBS.

Clinical studies on MSC transplantation for cartilage
repair

Presently only one prospective clinical study of MSC
transplantation for cartilage repair has been published, in
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Table 1 Clinical studies on

No. of patients

Results and comments

MSC transplantation for Authors Year

cartilage repair Wakitani etal. 2002 24
Wakitani et al. 2004 2
Wakitani et al. 2007 3
Kuroda et al. 2007 1

Prospective, randomized study

Bone marrow MSC versus cell-free scaffold

No significance in clinical results

Better arthroscopic and histological score in MSC group
Case reports transplanted in patellar defects

Bone marrow MSC

All are clinically improved

Three case reports involving nine defects in five knees
Bone marrow MSC

All are clinically improved

A case report

Bone marrow MSC

Clinically improved

which bone marrow-derived MSCs were resuspended in
a collagen type I gel and transplanted with autologous
periosteal flap [100]. In this study, patients with knee
osteoarthritis who underwent a high tibial osteotomy were
treated with a cell-containing scaffold with a periosteal flap
transplanted into a cartilage defect in the medial femoral
condyle and compared with patients who were transplanted
with cell-free scaffold with a periosteal flap transplanted
into a similar lesion. Although the cell-treated group
showed no significant improvement clinically compared
with the control group, the arthroscopic and histological
score was better in MSC-transplanted group. There were
also three case reports from the same group which reported
that patients’ clinical symptoms had improved [51, 101,
102] (Table 1). However, there is still no comparative
clinical study with other surgical methods.

Comparison of chondrocyte and MSC transplantation
for cartilage repair

As mentioned before, MSC transplantation has some
advantages in cartilage repair over ACL. MSCs can be
isolated from various tissues without harvesting healthy
articular cartilage and are easily expanded without loss of
their chondrogenic potential at early passages. Therefore,
MSCs are an attractive alternative cell source not only for
patients with focal cartilage lesion but also for those with
osteoarthritis [65, 68]. However, there are also some dis-
advantages and risks to use MSCs for cartilage repair.
Some reports showed that MSCs-derived chondrocytes
expressed hypertrophy-related genes leading to cell death
or calcification followed by vascularization when implan-
ted subcutaneously or intramuscularly, whereas articular
chondrocytes resisted calcification and vascular invasion
[19]. When MSCs were transplanted into cartilage defects,
while they could differentiate into chondrocytes according

to local microenvironment in articular joints, the thickness
of the regenerated cartilage became thinner than the ori-
ginal thickness and the tidemark was violated [1, 47, 99].
Transformation of MSCs is also one of the concerns. It has
been reported that MSCs can undergo spontaneous trans-
formation after long-time culture [80, 971, although they
can be managed safely during the standard ex vivo
expansion period and such transformation is considered to
be very rare [9]. Further investigation to solve these
problems is required.

A few animal studies have been published comparing
ACI and MSC transplantation for cartilage repair. In these
studies, no significant differences were observed in histo-
logical score between the group transplanted with
chondrocytes and with MSCs [1, 107], although repaired
tissue with MSCs appeared better in cell arrangement,
subchondral bone remodelling, and integration with sur-
rounding cartilage [107].

Less invasive technique for MSC transplantation

Treatment with MSCs (and chondrocytes) requires the
transplantation of a cell and scaffold composite. If perios-
teal coverage is needed, the method is quite invasive
as it requires harvesting the periosteum and fixation with
suturing to the neighbouring cartilage. Moreover, hyper-
trophy and ossification are of concern {32, 50, 69]. Without
periosteum, a scaffold is needed to keep the cells at the
injured site; the scaffolds are derived from animals, thereby
increasing the risk of disease transmission and immune
reaction [14]. The easiest and the least invasive method
might be intra-articular injection; however, with this tech-
nique, most of the injected cells adhered to synovial tissues
[63], which might increase the risk of adverse effects such
as synovial proliferation, and only a small portion of the
cells adhered to the cartilage defects [49]. Recently. some

@ Springer

— 198~



Knee Surg Sports Traumatol Arthrosc

papers reported less invasive methods without scaffolds to
adhere transplanted cells effectively [4, 46, 491. If clinically
successful, such methods may extend the indications for
MSC-based cell therapy for cartilage repair.

Conclusions

As articular cartilage defects have very limited intrinsic
healing capacity. development of new methods for treatment
for cartilage defects is of major importance for orthopaedic
surgeons. Although various surgical methods have been
attempted, including bone marrow stimulation technique,
mosaicplasty and ACI, each of them has some disadvan-
tages. MSC-based cell therapy is expected to be an
alternative for cartilage repair because MSCs are easily
isolated from a variety of mesenchymal tissues, have high
proliferative potential and have chondrogenic potential. In
animal studies, transplantation of MSCs into cartilage
defects has been attempted under different circumstances,
and a number of publications exist on cell source, cell den-
sity, growth and differentiation factors, culture serum and
scaffold. Recently, less invasive techniques for MSC trans-
plantation into cartilage defects have also been developed,
and the clinical use of MSCs may well have a bright future.
However, the technique is still in the state of preclinical and
phase I studies, and there is no comparative clinical study
with other surgical methods. Moreover, some concerns still
exist about the chondrogenesis and genetic stability of
MSCs. Randomized clinical trials are needed to evaluate the
effectiveness of MSC-based cell therapy for cartilage repair.
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ABSTRACT: To evaluate the pharmacokinetics of topical drugs, in vitro permeation studies are
performed using sacrificed pig skin or human tissues resected at surgery; however, these methods
have their limitations in in vivo pharmacokinetics. This study examined the usefulness of Mexican
hairless pigs for in vivo pharmacokinetic study, especially the drug concentration in the tissues.
A ketoprofen patch was applied on the back of Mexican hairless pigs for 24h, followed by
sequential collection of blood specimens from 0 to 36h (1 =3). Also, the skin, subcutaneous fat,
fascia and muscle from the center of the site of application were excised at 12 h after the application
{n = 4). Ketoprofen was first detected in the plasma at 8h, the concentration increasing up to 24 h;
the plasma concentration began to decrease after the removal of the ketoprofen patch. Ketoprofen
concentrations in the tissues decreased with increasing depth of the tissues, but the values in the
deep muscles, being the lowest among the tissues examined, were still higher than those in the
plasma. While the data of drug concentration in human tissue are difficult to test, the Mexican
hairless pig model appears to be attractive for in vivo pharmacokinetic studies of topically apphed
ketoprofen. Copyright @ 2009 John Wiley & Sons, Ltd.
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Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs)
are used widely for pain relief in musculoskeletal
disorders [1]. Although oral formulations of
NSAIDs are currently popular, they are asso-
ciated with a high incidence of adverse effects,
including stomach irritation, hepatotoxicity and
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kidney failure [2,3]. In order to minimize the
incidence of systemic events related to oral
formulations of NSAIDs, topical forms of the
drugs have been developed and the ketoprofen
patch is one such product [4].

To evaluate the pharmacokinetics of topically
applied drugs, in vitro permeation studies [5,6] and
in vivo pharmacokinetic studies have been per-
formed using small animals [7]; however, the
results obtained from such studies may not be
directly applicable to humans. There have
been several reports describing the NSAID con-
centrations in human tissues after transdermal
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application [8-11], but the information from these
studies remains limited. Larger animals will be
preferable for in vivo pharmacokinetic studies for
obtaining results applicable to humans.

Miniature pigs are used widely for medical
research because of their easy handling and
raising [12]. Among miniature pigs, it was
considered that hairless pigs might be highly
suitable for the evaluation of topical drugs,
because the structure of the hairless pig skin is
similar to that of human [13]. This study
evaluated the in vivo pharmacokinetics of keto-
profen applied topically on the back of Mexican
hairless pigs. The results demonstrated the
usefulness of the Mexican hairless pig for the
study of NSAID patches.

Materials and Methods

Animals

To collect sequential blood specimens, three
Mexican hairless pigs [14] (National Livestock
Breeding Center, Ibaraki, Japan) aged 12 months
old and weighing 23.1-38.0kg were used.
To obtain en bloc tissue specimens from the
back, four Mexican hairless pigs aged 5-22
months old and weighing 9.8-30.8kg were used.
All Mexican hairless pigs used were bred under
specific pathogen-free (SPF) conditions. All the
pigs had free access during the study period to
food and water in a postoperative care cage
which was 40cm in width, 121 ¢cm in depth, and
109cm in height. The schemes of the animal
experiments had been investigated and per-
mitted by The Judging Committee of Experi-
mental Animal Ethics of Jichi Medical University.

Topical application of ketoprofen

The sparse hairs on the back of the animals were
shaved with an electrical clipper and the applica-
tion area was swept with dry cotton. The
ketoprofen patch (10cm x 7 cm; Hisamitsu Phar-
maceutical Co., Inc., Tokyo, Japan) containing
20 mg of ketoprofen was applied on the back of
the Mexican hairless pigs. The medial margin of
the patch was located at 3cm to the left of the
spinous processes of the thoracic vertebrae.

Copyright © 2009 John Wiley & Sons, Ltd.

Plasma preparation

One day before the experiment, a central venous
catheter was placed in the right medial cervical vein
in all the animals under general anesthesia for blood
sampling. Five milliliter blood samples were col-
lected in heparinized syringes at 0, 1, 2, 4, 6, 8, 12
and 24h, after which the ketoprofen patch was
removed; thereafter, blood samples were collected
again at 28, 32 and 36 h. The collected blood samples
were immediately centrifuged at 3000rpm for
15min. Plasma was separated and the plasma
samples were cryopreserved at —20°C until analysis.

Tissue sampling

The ketoprofen patches were applied on the
backs of the animals for 12h. Immediately after
removal of the patches and wiping off of the drug
remaining on the skin surface with wet cotton,
the skin, subcutaneous fat, fascia and muscle at
the center of the patch application site were
excised en bloc (2cm x 2cm x 3am) under an-
esthesia induced by intramuscular injection of
10mg/kg of ketamine, 2mg/kg of xylazine and
0.02mg/kg of atropine. The specimens were then
divided into five sections; skin, subcutaneous fat,
fascia, superficial muscle up to 5mm thickness,
and the remaining deeper muscle. All specimens
were cryopreserved at —20°C until the analysis.

Ketoprofen concentration analysis

Fifty milligrams of tissues were homogenized in
methanol. Ketoprofen in the homogenates and plasma
(025 ml) was acidified and extracted by liquid-liquid
extraction with diethyl ether. After evaporation of the
organic phase, the residue was dissolved in a
methanol/water mixture and transferred into vials.
Ketoprofen extracted from the plasma and tissues
was assayed by high-performance liquid chromato-
graphy with positive ion spray ionization tandem
mass spectrometry detection (LC-MSMS; 2695
separation module (Waters) and API-4000 (Applied
Biosystems/MDS SCIEX).

Results and Discussion
Mexican hairless pigs are descendants of Iberian
pigs. The name ‘hairless’ derives from its main

Biopharm. Drug Dispos. 30: 204-208 (2009)
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characteristic, namely, the absence of hair (or
sparse hair) on the skin (Figure 1A).

A topical patch containing 20 mg of ketoprofen
was applied to the back of Mexican hairless pigs
for 24 h (Figure 1B). Blood was collected at 0, 1, 2,
4, 6, 8,12, 24 (prior to patch removal) 28, 32 and
36h after the patch application. Ketoprofen was
first detected in the plasma at 8h, and the
concentration increased steadily up to 24h
(Figure 2). After removal of the ketoprofen patch,
the plasma concentration decreased, but the drug
could still be detected until the 36 h time-point.

Next, the ketoprofen concentrations in the
tissue specimens were measured. Ketoprofen
patches were applied on the back of Mexican
hairless pigs for 12 h. Immediately after removal
of the patch, the skin, subcutaneous fat, fascia
and muscle at the center of the patch application
site (Figure 3A) were excised en bloc
(2cm x 2cm x 3cm). The muscle was divided
into superficial muscle up to 5mm thickness
and the remaining deep muscle. The highest
ketoprofen concentration was obtained in the
skin, followed by that in the subcutaneous fat,
fascia, superficial muscle and deep muscle, in
that order (Figure 3B). Interestingly, ketoprofen
concentrations in the tissues decreased with
increasing depth of the tissues, even though the
composition of the tissues, tissue permeability to
ketoprofen and the vascularity in the layers are
totally different. The ketoprofen concentration in
the deep muscle was the lowest among the
tissues examined, but it was still higher than
that in the plasma. There was no marked
difference in ketoprofen concentrations in the

(A) (B)

Figure 1. Mexican hairless pig. (A) Typical appearance of a
12-month-old Mexican hairless pig. (B) Ketoprofen patch
(arrow) applied on the back of the Mexican hairless pig

Copyright © 2009 John Wiley & Sons, Ltd.
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tissues and plasma between small and big
animals in this study.

In our previous research conducted in humans,
the ketoprofen concentrafions in the plasma
reached their maximum at 13h and decreased
thereafter when a 20mg ketoprofen patch was
applied on the back of humans for 24 h (data not
shown). The pharmacokinetics of ketoprofen in
the plasma was thus different in between hu-
mans and Mexican hairless pigs. One of the
possible explanations is that the difference in the
thickness of the stratum corneum, which repre-
sents a rate-limiting factor for percutaneous
absorption. Since the stratum corneum in Mex-
ican hairless pigs is thicker than that in humans,
the percutaneous absorption rate in the Mexican
hairless pig could be expected to be slower.

At 12h after the application, even though the
ketoprofen concentrations in the plasma did not
reach their peak levels, the ketoprofen concentra-
tions in the tissues under the patch application
site decreased with increasing depth of the
tissues. Furthermore, the concentrations in the
deep muscles were still higher than the plasma
concentrations at this time-point. These findings
indicate that ketoprofen may be directly deliv-
ered to the deep tissues without passing through
the blood stream.

At present, in order to evaluate the pharmaco-
kinetics of topically applied drugs, in wvitro
permeation studies are often performed using
the skin from the sacrificed mouse, rat [7] or pig
[5,15]. Our study has the advantage of being able
to obtain the living animal data that include the
effect of blood flow.

The percutaneous absorption of ketoprofen
from topical application is known to be influ-
enced by differences in skin structure at various
regions of the body [16]. In a clinical situation,
ketoprofen patches are applied not only to the
back, but also to varied positions of the entire
body in humans. In this study, the ketoprofen
patches were applied only to the back of the pigs.
When investigating the abdominal site or leg of
large four-footed animals previously, some fail-
ures were experienced. For example, the patches
peeled off or slipped from the abdominal site
from kicks of the hind legs, and the abdominal
sites became dirty from the feces or urine.
In order to avoid these technical failures, only

Copyright € 2009 John Wiley & Sons, Ltd.

the back skin of large four-footed animals was
investigated.

It is difficult to obtain data of drug concentra-
tions in tissues from non-human primates. The
FDA recommends having a pre-clinical model in
pigs (personal communications). Based on the
results of our study, the Mexican hairless pig may
serve as a suitable model for in vivo pharmaco-
kinetic analysis of topically applied drugs,
especially ketoprofen, in solid tissues, which is
difficult to obtain in humans.

Implications

This study evaluated the in vivo pharmacoki-
netics of ketoprofen applied topically in Mexican
hairless pigs. Peak plasma levels were observed
24 h after the ketoprofen patch application on the
back and the ketoprofen concentrations in the
tissues decreased with increasing depth of the
tissues. Mexican hairless pigs are attractive
models for the pharmacokinetic study of topi-
cally applied ketoprofen.
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Methylation Status of CpG Islands in the Promoter Regions
of Signature Genes During Chondrogenesis of
Human Synovium-Derived Mesenchymal Stem Cells

Yoichi Ezura, Ichiro Sekiya, Hideyuki Koga, Takeshi Muneta, and Masaki Noda

Objective. Human synovium-derived mesenchy-
mal stem cells (MSCs) can efficiently differentiate into
mature chondrocytes. It has been suggested that DNA
methylation is one mechanism that regulates human
chondrogenesis; however, the methylation status of
genes related to chondrogenic differentiation is not
known. The purpose of this study was to investigate the
CpG methylation status in human synovium—derived
MSCs during experimental chondrogenesis, with a view
toward potential therapeutic use in osteoarthritis.

Methods. Human synovium—derived MSCs were
subjected to chondrogenic pellet culture for 3 weeks.
The methylation status of 12 regions in the promoters of
10 candidate genes (SOX9, RUNX2, CHMI, FGFR3,
CHAD, MATN4, SOX4, GREMI, GPR39, and SDF1) was
analyzed by bisulfite sequencing before and after differ-
entiation., The expression levels of these genes were
analyzed by real-time reverse transcription—pelymerase
chain reaction. Methylation status was also examined in
human articular cartilage.

Results. Bisulfite sequencing analysis indicated
that 10 of the 11 CpG-rich regions analyzed were
hypomethylated in human progenitor cells before and
after 3 weeks of pellet culture, regardless of the expres-
sion levels of the genes. The methylation status was
consistently low in SOX9, RUNX2, CHMI, CHAD, and
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FGFR3 following an increase in expression upon differ-
entiation and was low in GREMI and GPR39 following a
decrease in expression upon chondrogenesis. One ex-
ceptional instance of a differentially methylated CpG-
rich region was in a 1-kb upstream sequence of SDFI,
the expression of which decreased upon differentiation.
Paradoxically, the hypermethylation status of this re-
gion was reduced after 3 weeks of pellet culture.

Conclusion. The DNA methylation levels of CpG-
rich promoters of genes related to chondrocyte pheno-
types are largely kept low during chondrogenesis in
human synovium—-derived MSCs,

The mechanisms underlying human articular
chondrogenesis are largely unknown. Chondrogenesis
per se is a complex multistep process. In humans. this
mainly occurs in the developing skeleton and during the
healing of fractures. It begins with recruitment, prolifer-
ation, and condensation of mesenchymal progenitor
cells at predetermined embryonic sites, which leads to
the formation of a precartilaginous primordium (1).
Commitment of primordial progenitors to partially dif-
ferentiated chondrocytes proceeds to serial prolif-
eration/differentiation of the early chondrocytes, result-
ing in organization of typical columnar structures with
layers of differentiating chondrocytes (1). Importantly,
these processes are conducted entirely by multiple cel-
lular interactions and are believed 1o be programmed in
genomic sequences at various rates. However, epigenetic
regulation may also be involved, since epigenetic control
of gene expression appears to be an important aspect of
general embryonic development as well as the differen-
tiation processes of somatic cells (2-3).

Genomic DNA methylation, modification of nu-
cleosome histone tails, and chromosome remodeling are
essential contributors to the mechanisms of epigenetic
control (2.6). Among these mechanisms, genomic DNA
methylation is the most fundamental process. It occurs

—208—
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as a heritable modification during cellular replication
and lineage differentiation, and it is essential for early
embryonic development. DNA methylation consists of
the addition of a methyl group to the 5’ cytosine in a
CpG dinucleotide, which favors genomic integrity and
ensures proper regulation of gene expression, largely
contributing to gene silencing (3). The important roles
of DNA methylation in X chromosome inactivation,
genomic imprinting, as well as early embryonic develop-
ment have been clearly delineated {4,5). Indeed, a recent
report of a comprehensive analysis of embryonic stem
cells subjected to neurogenesis indicated that CpG
methylation at a specific locus may have an important
function in regulating the lincage commitment of pro-
genitor cells (7,8). Its potential roles during late-stage
development, however, have been examined in only a
limited number of investigations concerning some spe-
cialized types of cells (3,7-11).

Articular chondrocyte maturation, or aging. has
been one topic of interest with regard to regulation
through DNA methylation. However, only a few in vitro
studies have indicated some possible involvement of
DNA methylation in the maturation of cultured primary
chondrocytes (12) and growth plates (13) or in the
progression of degenerative joint diseases (14,15). Thus,
it has not been determined whether epigenetic control is
indeed involved in the in vivo process of chondrogenesis
during normal development, and in particular, no data
from human studies have been reported.

Chondrogenic processes have been investigared
in vivo by means of 2 well-known methods of culturing
mesenchymal cells: so-called “chondrogenic pellet cul-
ture” (16,17) and “micromass culture” (18,19). Both
methods efficiently produce cartilaginous structures
within 2-3 weeks from undifferentiated mesenchymal
cells isolated from embryonic limb buds or wing buds
(16-18). The established murine cell line C3H10T1/2
has also been used in these analyses (19). More recently.
the chondrogenic pellet culture method has frequently
been used in analyses of pluripotent mesenchymal pro-
genitor cells from adult human tissues, which are also
referred to as mesenchymal stem cells (MSCs) (20,21).
Our previous studies of the therapeutic use of MSCs in
degenerative articular joint diseases showed that among
the various MSC types we examined, human synovium-—
derived MSCs appeared to be most potent for chondro-
genesis (22). Since these differences were detectable
even in analyses of cells harboring the same genetic
makeup, the results indicate that differences other than
genomic sequences contribute to the divergent differen-
tiating potentials for cellular lineage specifications.
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In the present study, we examined whether epi-
genetic controls would be diverse among different sets of
MSCs. To examine the question of whether promoter
sequences of genes that are critical in lineage specifica-
tion differ in their epigenetic status, we investigated the
DNA methylation status of 10 candidate genes in chon-
drogenic pellet cultures of human synovium-derived
MSCs. Candidate genes included both chondrogenic and
nonchondrogenic genes. This study is the first to per-
form bisulfite sequencing analyses of DNA methylation
(23) in freshly isolated human MSCs and in differenti-
ated populations of MSCs cultured by in vitro chondro-
genic assay.

MATERIALS AND METHODS

Tissue sampling and isolation of huinan mesenchymal
cells. Knee joint synovial tissues were obtained from 3 volun-
teer donors undergoing therapeutic orthopedic surgery at the
University Hospital of Tokyo Medical and Dental University.
Informed consent was obtained from each patient, and the
study was approved by the Institutional Review Board. Knee
joint articular cartilage samples were obtained from an addi-
tiona! patient with osteoarthritis (OA), who gave informed
consent. All of the patients were undergoing knee surgery for
OA or trauma, and DNA methylation status was examined in
all 4 specimens.

Human synovium-derived MSCs were obtained as
described previously (22). Briefly, synovial tissues were
minced, digested with collagenase, separated with a nylon
filter, and the cells were plated at a clonal density in complete
a-minimum essential medium containing 10% fetal bovine
serum and antibiotics. After 14 days of expansion, cells were
replated at a density of 50 cells/om” (passage 1). Half of the
cells were harvested for DNA isolation at this point, and the
remainder were trypsinized for use in the chondrogenesis
assay. We used 3 lines of human synovium—derived MSCs from
3 individual patients in the present study.

In vitro chondrogenesis assay. Chondrogenic pellet
culture was performed according to the protocol described
clsewhere (22). Briefly. a suspension of 8 X 10° human
synovivm—derived MSCs was placed into a 15-ml conical-
bottom BD-Falcon polypropylene test tube (BD Biosciences,
San Jose, CA) and centrifuged at 1,500 revolutions per min-
ute for 10 minutes. The culture medium was replaced with
“chondrogenesis medium,” which consisted of 500 ng/ml of
recombinant human bone morphogenetic protein 2 (Asteras
Pharmaceutical, Tokyo, Japan), 10 ng/ml of transforming
growth factor B3 (R&D Systems, Minneapolis, MN), 107'M
dexamethasone (Sigma-Aldrich Japan, Tokvo. Japan), and
50 mg/mi of ITS+ (insulin-transferrin-selenium) Premix (BD
Biosciences), and the pellets were cultured at 37°C in a CO,
incubator. Pellets prepared in the same way were placed in
6—12 test tubes on standing Styrofoam, and the medium was
changed every 3-4 days until day 2], and genomic DNA was
then isolated {rom each pellet. Chondrocytic differentiation
was ascertained both by histologic analysis and by real-time
reverse transcription—polymerase chain reaction (RT-PCR)
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Table 1. Down-regulated genes examined for CpG sites in the promoters

CpG site densityt

Size of

TSS-containing Upstream No. of satellite TSS Upstream Satellite

Gene CpG island, bp inclusion CpG islands* islands regions islands

BCLX 375 ~-100 bp 3 M MitoL HtoM
c4P2 678 =30 bp 0 HtoM M -
CNN!I 134 Exon 1 only 0 M L -
DDAH1 1.229 Includes upstream 0 H H -

DIPA 1256 -110 bp 3 H M HtoM
FGF3 480 =700 bp 3 H H M
FZD2 . 1.227 ~150bp 3 H HioM M
GPR39 103 150 bp 10 TSS 2 L LtoM H
GREM]1 1.766 =700 bp 0 H H -
ITGA3 1.137 ~800 bp 2 HiwoM HtoM M
KiAA41199 753 500 bp 0 H H -
KTRS 749 =200 bp 0 HtoM M -
PODXL 1.280 500 bp 2 H H M
SDF14 1.346 ~800 bp 3 H H H
SOX4 132 Exon 1 only 0 M L -
1imp2 1,282 <500 bp 1 H H M

* Numbers of satellite CpG islands estimated within the 2-kb upstream region.
+ Classified according to the percentage of CpG ratios in the island, as high (H), medium (M), or low (L). TSS = transcription start site.

analysis of pellets cultured in parallel, as described previously
(22,24).

Candidaie gene selection and primer design. As pos- .

sible targets for epigenetic regulation through DNA methyl-
ation, 10 candidate genes were selected from 3 categories:
genes encoding transcription factors important for chondro-
cvte lineage commitment, genes up-regulated in chondrogenic
pellet cultures, and genes down-regulated in chondrogenic
pellet cultures.

For the genes encoding transcription factors important
{or chondrocyte lineage commitment, we first examined the
promoter methylation status of 6 genes encoding key transcrip-
tion factors for chondrogenesis: runt-related transcription fac-
tor 2 (RUNX2), zinc-finger protein osterix (OSTERIX), natural
killer 3 homeobox 2 (NKX3-2), sex-determining region Y-type
high mobility group box 5 (SOX3), SOX6, and SOXY. Since the
expression of these factors is tightly regulated in most cells,
these genes would be expected to be important targets of
epigenetic control. Examination of the number and size of
CpG islands and the density of CpG sites in upstream and
downstream flanking sequences of the transcription start sites
of OSTERIX, NKX3-2, SOX5, and SOX6 was eliminated from
the study targets, since they had no CpG islands within the
regions. We therefore selected SQX9 and RUNX2, which had
CpG islands containing transcription start sites.

For genes up-regulated in chondrogenic pellet cultures
and genes down-regulated in chondrogenic pellet cultures, we
reexamined the gene expression profile data previously re-
ported by one of us (IS) (25). After considering 40 represen-
tative signature genes whose expression changed significantly
during 3 weeks of pellet culture (Tables 1 and 2) and after
evaluating CpG site densities in the promoter regions of these
genes, we selected 7 candidate genes that were possibly
important for epigenetic regulation through DNA methylation.
These were chondremodulin 1 (CHMI), fibroblast growth
factor receptor 3 (FGFR3), and chondroadherin (CHAD) for

genes up-regulated in chondrogenic pellet cultures, and for
genes down-regulated in chondrogenic pellet cultures, these
were SOX4, Gremlin | (GREM1I), G protein—coupled receptor
3% (GPR39), and stromal cell-derived factor 1 (SDFI). We
also added matrilin 4 (MATN4) for genes up-regulated in
chondrogenic pellet cultares, although its promoter CpG is-
lands were awav from transcription start sites. This promoter
sequence was used as a reference for a region with low CpG
density. Target sites for bisulfite sequencing analysis (23) were
determined according to the prediction calculated with
MethPrimer software (26) (available at www.urogene.org/
methprimer/indexl.html). Primer sets were designed to be
basically within 1 kb upstream of the transcription start sites.
The gene symbols shown in Tables | and 2 are
consistent with the National Center for Biotechnology Infor-
mation Entrez Gene style. Sizes of transcription start site-
containing CpG islands and adjacent CpG islands are given in
basepairs. CpG site densities within the regions were estimated
from the diagram provided by MethPrimer software output.
DNA isclation and bisulfite sequence analysis.
Genomic DNA was isolated from human synovium-derived
MSCs before (dav U; control) and after 21 days of pellet culture
(day 21). At least 3 pellets per patient were analyzed sepa-
rately. No significant differences between the pellets were
detected. For DNA isolation, ~5 million undifferentiated
human synovium—derived MSCs or pellets were directly di-
gested with 1 mg/mi of proteinase K (Sigma-Aldrich Japan) at
50°C for 16 hours, and the extracted DNA was purified using
a QlAamp Micro DNA kit (Qiagen, Tokvo, Japan). Sample
concentrations were calculated from the absorbance at 260 nm,
as measured with an ND-1000 instrument (NanoDrop Tech-
nologies, Wilmington, DE). As a reference sample, genomic
DNA was isolated from the articular cartilage of a patient with
OA. Cartilage from the posterior condvle of the distal femur
was placed on the viewing platform of a stereomicroscope and
was dissected with a scalpel into 4 layers: the tangential
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