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Molecular mechanism of urate reabsorption and excretion in humans
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We have previously identified two urate reabsorption transporters, URAT1/SLC22A12
and GLUTS/SLC2AS, through the studies on hypouricemia patients. The loss-of-
function mutations in these transporter genes cause renal hypouricemia type 1 and
type 2, respectively. These findings, together with their renal expression patterns,
showed that URAT1 and GLUTS physiologically mediated renal urate reabsorption in
humans. We also found that ABCG2 is a high-capacity urate secretion transporter and
demonstrated that its common variants reduce their urate excretion function and
consequently increase serum urate levels. ABCG2 shows apical expression in kidney,
liver and intestine. We then propose a molecular madel of urate reabsorption and
excretion in humans as well as an impaired model as in hyperuricemia patients; urate
is reabsorbed by URAT1 and GLUTS in kidney and excreted by ABCG2 in kidney
(renal excretion) and in liver and intestine (gut excretion, or extra-renal excretion),
while impaired these functions cause hyperuricemia and gout

<GLUTS>

Renal hypouricemia (MIM 220150) is a common inherited disorder that is characterized by
low serum uric acid (urate) levels and impaired renal urate transport; it is typically
with severe such as induced acute renal failure and

nephrolithiasis. We have previously reported that a causative gene for renal hypouricemia
is URATT, also called SLC22A12 However, the fact of renal hypouricemic patients
without URAT1 mutations implies the existence of another urate transporter. Recent
genome-wide association studies have revealed that the most significant single-nucieotide
polymorphisms (SNPs) associated with urate concentrations map within GLUTS, also
known as SLC2A9 We then decided to investigate those cases with a large human
database.

<ABCG2>
Gout based on hyperuricemia is a common disease with a genetic predisposition
A genome-wide linkage study reported that the ABCG2 Iocates in a gout locus on
chromosome 4q. Besides its transport of nucleotide analogs that are structurally similar to
urate, we have reported that ABCG2 is an exporter that has polymorphic reduced
functionality variantsor nonfunctional variants. These findings suggest that ABCG2
could be a urate secretion transporter gene and thus be a promising candidate
gene for gout.

| Materials and methods |

<GLUTS>
Clinicogenetic analysis of hypouricemia
We surveyed the health examination database of about 50,000 personnel of Japan
Maritime Seif-Defense Force (JMSDF). 50 JMSDF persons and 20 outpatients who had
urate levels of < 3.0 mg/dl (178 mM) with written consent was selected. Among them, 23
person who had no mutation in URAT1 was analysed to find mutation in GLUTS

Mutation analysis
Functional mutant analysis of GLUT9 mutants were performed using Xenopus oocyte
expression system as described elsewhere

<ABCG2>
enetic analysis of go icemi
Mutation analysis of all coding regions and intron-exon boundaries of the ABCG2 gene was
performed for 90 Japanese hyperuricemia patients. For QTL analysis of SUA
concentrations, genotyping of Q141K in 739 Japanese individuals was performed.
i I

Vesicles studies were performed for wild-type and mutation ABCG2 with [4C] |abeled urate.

228 Japanese male hyperuricemia cases (inciuding 181 gout cases) as well as 871
Japanese male controls (SUA<7 Omg/dl) were genotyped.
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Fig.1. GLUT9 mutations in patients with renal hypouricemia.
Mutation positions in a predicted human GLUT9 membrane topology
model.
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Fig.2. Urate transport activity in oocytes was markedly reduced both in
GLUTSL mutants (R380W and R198C) (a) and in GLUT9S mutants
(R351W and R169C, which correspond to R380W and R198C in
GLUTSL) (b)
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Fig.4. Urate transport of mutated ABCG2

ATP-dependent transport of urate was reduced by approximately half
(48.7%) in Q141K and was nearly eliminated in Q126X, G268R, S441N,
and F508SfsX4 mutants.

V12M, Q126X, and Q141K are common variants.

Table 1. Association analysis of ABCG2 genotype
combinationin gout patients.

Estmated Ganolyos Namber

tmnscot Q128X Q141K Gout Control Posi: OF - SN0
114 tunction 18 ] 33107 258 103648
172 tunction 37 10 228x10% 434 261724
374 fanction c ) 229x107 302
full function cic cIc 34 435

Haplotype frequency analysis revealed that there is no simultaneous presence
of the minor alleles of Q126X and Q141K in one haplotype.

ABCG2 is then estimated as shown above from these two common variants.OR
is obtained by comparing with non-risk genotype combination C/C (Q126X) and
C/C (Q141K)

Normal control
UA = 7.0 mg/dl

(n=865) (n=161)

Fig.5. Relation between ABCG2 transport dysfunction and gout

Genotype combinations of Q126X and Q141K are divided into several
groups based on estimated ABCG2 transport functions. The Q126X

h us and jons were identified in up to 13.5%
of total gout patients (n = 161). Up to 10.1% of total gout patients have
genotype combinations resulting in <25% function, whereas the
asymptomatic carriers of these genotype combinations, who would have
possible risk of gout, were only 0.8% of the normal population (n = 885)

<GLUTS>
Fig.6. Proposed model of
2 physiological model renal urate reabsorption in
Prosimal tubular el humans.

(a) Based on our findings, we
propose a physiological model
of renal urate transport via
human GLUTS molecules. Here,
GLUT® mediates renal urate
reabsorption on both sides of

"~
= Lu-‘» Nl s
=/

Apical Basolateral the proximal tubular cells.
{uive side) (blood side) URAT1 is expressed only on
e -, the apical side and is indirectly
| mm“m* ;m coupled with Na*-anion
| GLUTeS misac. Rastw) | Cotransporters such as sodium-

dependent monocarboxylic acid
transporter1/2 (SMCT1/2). (b)
An impaired urate reabsorption
model. Pathogenic mutations in
GLUTSL and GLUTSS markedly

b Impaired urate reabsorption

-

urein > mm reduce urate reabsorption and
- —-‘>‘ = 2 R Aot
) Pyrazinecarboxylic acid (PZA),

a metabolite of pyrazinamide is
used for loading test of
hypouricemic patients

Fig.7. Proposed model of renal and gut urate excetion in human
Proposed model of the renal and gut urate excretion. In the “impaired
urate excretion model," ABCG2 variant proteins with common

SNPs on the apical side markedly reduce the urate excretion

and elevate SUA. In proximal tubular cells, other urate transporters
(URAT1 and GLUTS) mediate renal urate reabsorption as shown in the
previous figure ."GLUTSL" represents GLUT9 isoform 1 (long isoform)
and “GLUTOS" represents GLUTS isoform 2 (short isoform)
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Renal hypouricemia (MIM 220150) is a hereditary disease characterized by low urum
uric acid (SUA) levels, and has severe such o

renal failure and nephrolithiasis. We have previously reported that URATVSLC?ZAYE
encodes a renal urate-anion exchanger and its mutations cause renal hypouricemia type
1. With a large health examination database of Japan Maritime Salf Defense Force, we
searched hypouricemia patients and identified two heterozygous mutations in
GLUTS/SLC2A9. We found that GLUT9 encodes another renal urate-anion exchanger
and that its mutations cause renal hypouricemia type 2. R380W and R198C (mutation
sites in GLUTSL) are highly conserved amino acid motifs in *sugar transport proteins
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signatures” which are observed in GLUT family transporters. The corr

mutations in GLUTY (R333W and R153C) are known to cause GLUT1 deficiency
syndrome. Arginine residues in this motif are reported to be an important determinant of
membrane topology of human GLUT1, and the same may be true in GLUTS on the basis
of membrane topology. Their mutants showed markediy reduced urate transport in oocyte
expression study, which would be the result of loss of positive charges of those amino
acid motifs. We additionally performed mutational analysis of GLUT9 in another 50
hypouricemia patients, and identified a new hypouricemia patient who have R380W
mutation in GLUTY gene. Our findings, together with previous reports on GLUTS
localization, suggest that these GLUT9 mutations cause renal hypouricemia by their
decreased urate reabsorption on botn sides of the renal proximal tubules. These findings
also enable us to propose a physiological model of the renal urate reabsorption and can
be a promising therapeutic target for gout and related cardiovascular diseases

Introduction

Renal hypouricemia is a common inherited disorder that is characterized by low serum ‘
uric acid (urate) levels and impaired renal urate transport; it is typically associated with
severe ications such as exer d acute renal failure and nephrolithiasis
(1,2). We have previously reported that a causative gene for renal hypouricemia is URATT,
also called SLC22A12 (3). However, the fact of renal hypouricemic patients without
URAT1 mutations (4,5) implies the existence of another urate transporter Recent
genome-wide association studies have revealed that the most significant single-

(SNPs) with urate map within
GLUTY, also known as SLC2A9 (8-8). Because neither the physiological role of GLUTS in
vivo nor human cases with functional GLUT9 deficiency has been reported previously, we
decided to investigate those cases with a large human database.

Materials and methods

Mutation analysls and construction of mutant cDNA: For the GLUTY sequence
determination, we used primers described by S. Li with slight modification (Table 1).
Some primer sequences were newly selected according to the genomic structure of the
human GLUTS (see fig S3). High molecular weight genomic DNA was extracted from
peripheral whole blood cells (3, 4), and was amplified by PCR. The PCR products were ‘
sequenced in both directions using a 3130xI Genetic Analyzer (Applied Biosystsms)
Functional mutant analysis of GLUT9 mutants were performed using Xenopus oocyte
expression system as described elsewhere (3)

[ analysis of with GLUT9 mutations: The following
flowchart was used forchmcoganeﬁc analysis (Fig.1).
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Table.1 Frequency of hypouricemia of the Japan Maritime Self-Defense Force ‘
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Fig.2 Genomic structure of the human GLUTS gene.
The structure of the GLUT9 gene and cDNAs. The alternative splicing results in two
transcripts: GLUTY isoform 1 (GLUTSL) and isoform 2 (GLUTSS)

S

Fig.3 Topology model of GLUTY and its mutation sites
Mutation positions in a predicted human GLUTS membrane topology model

xnwvr DTy o,  Extracellular
& £ *hiy
£ ¢ :
e
= 3 S TE bs [
i & % R i
it S e |
&y W B2
} i ft Wb M|
% —r—t
: )
Loatbah §
H
: P
v : ¢
{ H i
o inal GxaovaoEvEEVLADSAVOR ¢“'FHA‘~K“’A4§
e
P
S
Intracellular [Rertemomy ‘

€ @ 88
=, w0d LY

v f/

IRCR

Fig.4 GLUT9 mutations in patients with renal hypouricemia.
(a, b) Heterozygous mutations (1138C>T [R380W] and 532C>T [R198C]; magenta

arrows) in the renal
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by restriction enzyme

pi
analysis (BtsC! and Alwl). The response of PZA loading test targeting URAT 1 was

normal in these patients.
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P i in Oocytes that

Express Mutant GLUT9 Isoforms
Urate transport activity in cocytes was markedly reduced both in GLUTSL mutants

| (R380W and R198C) (a) and in GLUT9S mutants (R351W and R169C, which
‘ correspond to R380W and R198C in GLUTSL) (b)

ST

Cormasacs gt 1)

'

Eormmcsus st 5

e

Comsarsn ot 2 LN 5 HIVUFAN 5P o) AV} EC o
Fig.6 Amino acid conservation in the GLUT family transporters.
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Loss of positive charges
result in the perturbation of
the membrane topology (GLUT1)

(Sat2 473 Museic. J B0l Crwm, 274, 24721, 1939)

and p
(3) Topology model of GLUTSL. Both mutahons are at equivalent positions within the
cytoplasmic loops, which cause a loss of positive charge. (b) Three-dementional
model of GLUTSL. The pathogenic mutation sites are shown in green (R380) and in
magenta (R198). Sugar transport proteins signatures 1 and 2 are shown in light green

and pink, respectively.
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We additionally performed mutational analysis
of GLUT9 in another 50hypouricemiapatients,
and identified a new hypouricemia patient
whohave R380W mutation in GLUT9 gene

GLUTS mutations In renal hypouricemia patients may change Its topology

We identified loss-of-function mutations of GLUTS Iin renal hypouricemic patients having
no URAT1 mutations. Mutation sites in GLUT9 (R380W and R198C) are highly
conserved amino acid motifs in *sugar transport proteins signatures”, which is observed
in GLUT family transporters. The corresponding mutations in GLUT1 (R333W and
R153C) is known to cause GLUT1 deficiency syndrome (9). Arginine residues in this
motif are reported to be an important determinant of membrane topology of human
GLUT1 (10), and the same may be true in GLUTS on the basis of membrane topology.

Physliological Importance of GLUTS In human urate transport
The urate metabolism in humans is quite different from that in mice due to the lack of
uricase (11). Therefore, it is a great significance to identify the inactivating human
GLUTY mutations using the large human population. In MDCK cells, GLUTSL and
GLUTBS show and apical i Since inactivating
mutations of either GLUTSL or GLUTSS dramatically reduced the urate transport activity,
‘ renal hypouricemia caused by these mutations may be ascribed to the decreased urate
{ reabsorption on both sides of the renal proximal tubules, where GLUTS expresses.
Based on our findings, we propose a physiological mode! of renal urate transport, in
which GLUTS isoforms play a key

2 prysiological model
Broumal ntuie col

Fig.9 Proposed model of renal
urate transport in humans.

(a) Based on our findings, we
propose a physiological model of
renal urate transport via human
GLUTS molecules. Here, GLUT9
mediates renal urate reabsorption
on both sides of the proximal

spes tubular cells. URAT1 is expressed
(e side) (hicod uch) only on the apical side and is
= indirectly coupled with Na+-anion
such as sodium-
GLUTRL (R19BC, RO dependent monacarboxylic acid

| GLUTES (Ri8iC, RISTHY transporter1/2 (SMCT1/2). (o) An
impaired urate reabsorption model.
Pathogenic mutations in GLUTSL
and GLUTSS markedly reduce
urate reabsorption and cause
hypouricemia. Pyrazinecarboxylic
acid (PZA), a metabolite of
pyrazinamide is used for loading
test of hypouricemic patients.

GLUTS as a novel therapeutic target

Taken together, we have identified GLUT9 as a causative gene for renal hypouricemia
and demonstrated that human GLUTS physiologically regulates serum urate levels in
vivo. Our results indicate that GLUTS can be a promising therapeutic target for
hyperuricemia, gout and related cardiovascular diseases.
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Fig.10 Proposed model of renal and gut urate excetion in human

Recently, we found that ABCG2 is a high-capacity urate secretion transporter and
identified that ABCG2 is a major causative gene for gout (ref.13). We also proposed
model of renal and gut urate excretion in human (ref.13). In the “impaired urate excretion
model," ABCG2 variant proteins with common SNPs on the apical side markedly reduce
the urate excretion and elevate SUA
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Gout based on hyperuricemia is a common disease with a genetic

genome-wide association study also showed that serum uric acid (SUA) levels and gout
relates to ABCG2 gene, which is reported to locate in a gout-susceptibility locus (MIM
138900) on chromosome 4q revealed by a genome-wide linkage study. We previously
reported that ABCG2 is an exporter that has polymorphic reduced functionality variants. As
ABCG2 exports nucleotide analogs structurally similar to urate, these findings suggest that
ABCG2 could be a urate secretion transporter and a cause of gout Mutation analysis of
90 Japanese hyperuricemia patients in ABCG2 revealed six nonsynonymous mutations:
V12M, Q128X, Q141K, G268R, S441N and F508SfsX4 ATP-dependent transport of urate
was reduced by approximately half (46.7%) in Q141K, and was nearly eliminated in
Q126X, G268R, S441N and F508SfsX4 Among these variants, relatively frequent two
dysfunctional SNPs, Q141K (31.9%) and Q126X (2.8%), were then analyzed. Haplotype
frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K
in one haplotype. As Q126X and Q141K are assigned to nonfunctional and half-functional
haplotype, respectively, their six genotype combinations are divided into five functional
groups. Gout risk of 75% function was increased with an OR of 3.02 (95% CI, 1.96-4.65;
P=220x107) and that of 50% function was with an OR of 4.34 (95% CI, 2.61-7.24;
P=2.23x109). Gout risk of 25% function was remarkably increased with an OR of 258
(95% CI, 10.3-64.6; P=3.39x10%'). 10.1% of gout patients had these genotypes of 25%

function, while only 0.9% of control males have the same genotype combinations. In
addition, genotype combinations of full function are detected in 50.8% of the control
subjects but only in 21 4% of gout patients. Our function-based genetic analysis showed
that combinations of dysfunctional variants are major causes for gout, thereby providing
evidence for “a common disease common variant * hypothesis. We will show the Iatest
progress on our study in this meeting

Gout based on hyperuricemia is a common disease with a genetic predisposition. ABCG21is |
reported to locate in a gout-susceptibility locus on chromosome 4q, and is recently identified
to relate to serum uric acid (SUA) and gout by genome-wide association studies. Besides
its transport of nucleotide analogs that are structurally similar to urate, we have reported
that ABCG2 is an exporter that has polymorphic reduced functionality variants. We also
found that ABCG2 is a urate exporter and that its common variants reduce the transport
function. We then hypothesized that common variants of ABCG2 might cause gout

Materials and Methods ‘

nc I |
Urate transport analysis via wild-type and mutated ABCG2 (Fig1a, b, e-g)

Genetic analysis

~Sequencing analysis of all coding regions of ABCG2 gene in 90 Japanese
patients with hyperuricemia (Fig1c, d)

-Additional genotyping of ABCG2 SNPs: 228 hyperuricemia (161 gout)
patients (Fig1k-n, q)

*Haplotype frequency analysis (Fig10)

=Genotype combination analysis (Fig1p, q)
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Fig.3. Results of sequence analysis of ABCG2 gene.

Both heterozygous and homozygous mutations of V12M [(a) c.34G>A], Q126X
[(b) ¢.376C>T] and Q141K [(c) c.421C>A] were identified in hyperuricemia
patients. Heterozygous mutations of G268R [(d) c.802G>A], S441N [(e)
©.1322G>A] and F506SfsX4 [(f) c.1515deIC] were also identified. Mutations
are indicated by magenta arrows.
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The topological model of ABCG2 and six nonsynonymous mutation sites (magenta)
found in hyperuricemic patients. #, N-linked glycosylation site (N596); *, cysteine
residues for disulfide bonds (C582, C603, and C608).

200
180
160
140
120
100
80

N

X X
RN
AN\

& &L
F£S
&) «

IS
Fig.5. Urate transport of mutated ABCG2

Vesicles prepared from HEK293 cells expressing the wildtype or variants of ABCG2
were incubated with 'C-labeled urate with or without ATP. The amount of 4C-labeled
urate was measured after 5 min. Results are expressed as means + SD

Table 2. Association analysis of ABCG2 variants in gout patients
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Genotype combinations of Q126X and Q141K are divided into several groups based on
estimated ABCG2 transport functions. The Q126X homozygous and heterozygous
mutations were identified in up to 13.5% of total gout patients (n = 151). Up to 10.1% of
total gout patients have genotype combinations resulting in s25% function, whereas the
asymptomatic carriers of these genotype combinations, who would have possible risk of
gout, were only 0.9% of the normal population (n = 885)
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1. ABCG2 is a high capacity urate secretion transporter.

2. High-frequent SNPs (Q126X: 2.8%, Q141K: 31.9%)
result in loss of and reduced function.
1

Increased serum urate levels due to urate secretion disorder.
3. The combinations of these dysfunctional variants increase gout risk.

4. ABCG2/BCRP is a major causative gene for gout and hyperuricemia.
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its genetic impairment increases serum uric acid levels in humans
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The ATP-binding cassette, subfamily G, member 2 (ABCG2BCRP) gene
encodes a well-known transporter which exports various substrates including
nucleotide analogs such as 3'-azido-3'-deoxythymidine (AZT) ABCG2 is also
reported to be located in a gout-susceptibility locus (MIM 138900) on
chromosome 4q, and is recently identified to relate to serum uric acid (SUA)
and gout by genome-wide association studies. Since urate is structurally

similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate |

exporter. To demonstrate our hypothesis, transport assays were performed
with membrane vesicles prepared from ABCG2-overexpressing cells
Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited
by urate as well as AZT and ES. ATP-dependent transport of urate was then
detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic
analysis revealed that ABCG2 is a high-capacity urate transporter and
maintained its function even under high-urate conditions. The calculated
parameters of ABCG2-mediated transport of urate were a Km of 8.24 =+ 1.44
mM and a Vmax of 8.98 = 0.89 nmol/min per milligram of protein. Moreover,
quantitative trait locus (QTL) analysis was performed in 739 Japanese
individuals and revealed that a dysfunctional variant of ABCG2 increased
SUA as the number of minor alleles of the variant increased (P = 6.60 x 10°5).
Since ABCG2 is expressed on the apical membrane in several tissues
including kidney, intestine and liver, these findings indicate that ABCG2, a
high-capacity urate exporter, has a physi role of urate is in
the human body through both renal and extra-renal urate excretion

Introduction

Gout based on hyperuricemia is a common disease with a genetic predisposition.
ABCG2 s reported to locats in a gout-susceptibility locus on chromosome 4q, and is
recently identified to relats to serum uric acid (SUA) and gout by genome-wide
association studies. Besides its transport of nucleotide analogs that are structurally
similar to urate, we have reported that ABCG2 is an exporter that has polymorphic
reduced functionality variants. We then hypothesized that ABCG2 might be a urate
exporter and affect SUA levels.

Materials and Methods

Eunctional analysis
-Urate transport analysis via wild-type and mutated ABCG2 (Fig 1. a, b, 8-g)

ic an:
*Sequencing analysis of all coding regions of ABCG2 gene in 90 Japanese patients
with hyperuricemia (Fig.1. ¢, d)
*Quantitatve trait locus (QTL) analysis in 739 Japaness individuals (Fig 1. h-j)
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Vesicles prepared from HEK233 calls expressing ABCG2 were incubated
with 500 nM [Hestron-3-suifate (ES) plus the indicated inhibitors or
unlabeled ES with or without ATP. The amount of [*H]ES was measured
after 1 minute Results are expressed as means + S D

Although urate required a higher concentration than did unlabeled ES to
inhibit PHJES transport via ABCG2, the potency of urate was similar to
that of the previously reported substrate, 3-azido-3-deoxythymidine
(AZT)
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Fig.4. ABCG2-mediated urate transport.

ATP-dependent transport of ['“Clurate was detectsd in ABCG2-sxpressing
vesicles but not in control vesicles after indicated periods. Resuits are
expressad as means + S D
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Fig.8. QTL analysis of ABCG2 Q141K and serum uric acid levels.

Quantitative trait locus (QTL) analysis of the high-frequency dysfunctional variant
Q141K in ABCG2 and serum uric acid levels (SUA) was performed in 739
Japanese individuals from a random sample of Japaness population, including
245 male and 494 famale subjects. “C/C," “C/A," and “A/A" indicate wild-type
subjects, heterozygous mutation carriers, and homozygous mutation carriers of
Q141K, iy Results asmeans = SE
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Fig.5. ABCG2 transports urate with high cap

Concentration dependence of ABCG2-mediated transport of ["4Clurate was

detected with 5-minute incubation. Resuits are expressed as means + S.D.

Kinetic analysis revealed that ABCG2 mediated the high-capacity transport of
urate, remaining their function evan under high-urats conditions. Calculated
parameters of ABCG2-mediated transport of urate were a Km of 8.24 * 1.44
mM and a Vmax of 696 = 089 nmol/min/mg protein. The calculated Km

valus excesded the highest concentration in the experimental conditon. This
is due to the low-solubility limitation of urate, a property related to the
monosodium urate crystal formations in gout patients.

Exraceivisr

. .
FIIPRDITIIAGIL, 00 P T

- 2y,

DR

By

o 5
4
O LER0LS!

VUL O RLR Ty
% %

S SRR

I OO AN OO IO VIS IEDERDNS My

azsx Fonrey 1% 2

B e, TR e DR IT TR
i ke A ot

om0 (GO OO RSSO,

iz

DL L ST P SONGLURN D DDA . qnxx\m“r

Fig.8. Topological model of ABCG2.
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Fig.7. Urate transport analysis of mutated ABCG2.

Vesicies prepared from HEK293 calls expressing the wild type or variants of
ABCG2 were incubated with [“Clurate with or without ATP. The amount of
[Clurate was measured after 5 minutes. Results are expressed as means +
sD

ATP-dependent transport of urate was reduced by approximately half (45.7%)
in Q141K and was nearly eliminated in Q128X. The V12M variant did not show
any changes in urate transport relative to wild-typs ABCG2
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Fig.B. Western blot analysis of wild-type and mutated ABCG2.

Western biot analysis showed a band of approximatsly 80 kDa in wild-type
ABCG2 V12M showed a similar ~80 kDa band of almost the same density Half-
reduced expression in Q141K and no expression in Q126X were observed. As a
loading control, the expression of Na*/K*-ATPase « was detected.

The analysis revealed that SUA significantly increased as the number of minar
alisles of Q141K increased (P = 5.60x10%). These findings indicate that ABCG2
controls SUA in vivo, and that there could be great inter-individual differences in
this function bacause of its polymorphic nature
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Fig.10. Proposed model of renal and gut urate excetion in human.

In the “impaired urate excretion model,” ABCG2 variant proteins with common
SNPs on the apical side markedly reduce the urate excretion and elevate SUA.
In proximal tubular cells, other urate transporters (URAT1/SLC22A12 and
GLUTS/SLC2A8) mediate renal urate reabsorption as shown in previous reparts.
"GLUTSL" represants GLUTS isoform 1 (long isoform) and “GLUTSS" represents
GLUTY isoform 2 (short isoform)
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