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Cellular oxygen consumption is a determinant of intracel-
lular oxygen levels. Because of the high demand of mitochon-
drial respiration during insulin secretion, pancreatic f-cells
consume large amounts of oxygen in a short time period. We
examined the effect of insulin secretion on cellular oxygen
tension in vitro. We confirmed that Western blotting of
pimonidazole adduct was more sensitive than immuno-
staining for detection of cellular hypoxia in vitro and in vivo.
The islets of the diabetic mice but not those of normal mice
were hypoxic, especially when a high dose of glucose was
loaded. In MING cells, a pancreatic 3-cell line, pimonidazole
adduct formation and stabilization of hypoxia-inducible fac-
tor-lae (HIF-1a) were detected under mildly hypoxic condi-
tions. Inhibition of respiration rescued the cells from becom-
ing hypoxic. Glucose stimulation decreased cellular oxygen
levels in parallel with increased insulin secretion and mito-
chondrial respiration. The cellular hypoxia by glucose stim-
ulation was also observed in the isolated islets from mice. The
MING cells overexpressing HIF-1a were resistant to becom-
ing hypoxic after glucose stimulation. Thus, glucose-stimu-
lated B-cells can become hypoxic by oxygen consumption,
especially when the oxygen supply is impaired.

Hypoxia is a common challenge for living organisms that
depend on oxygen (1). Although each organism has evolved to
adapt to this challenge, hypoxia is closely related to various
pathological conditions (2). Cellular oxygen tension is deter-
mined by the balance between supply and demand of oxygen. In
mammals, oxygen is delivered by the circulatory system and is
consumed by the cells, especially by oxidative phosphorylation
in mitochondria. Although hypoxia due to poor oxygen supply
by factors such as impaired perfusion has been intensively stud-
ied, hypoxia as a consequence of an imbalance between oxygen
demand and supply has not been well recognized.

Cellular oxygen consumption is one of the determinants of
intracellular oxygen levels (3, 4). Hagen et al. (3) reported that
inhibitors of mitochondrial respiration, such as nitric oxide,

* This work was supported in part by a grant-in-aid for scientific research from
the Japan Society for the Promotion of Science.

ElThe on-line version of this article (available at http://www.jbc.org) contains
supplemental Figs. 1-6. ‘

'To whom correspondence should be addressed. Fax: 81-6-6973-5691;
E-mail: inoue-ma2@mc.pref.osaka.jp.
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prevent the stabilization of hypoxia-inducible factor (HIF)*
during hypoxia. HIF-1a is a transcription factor that regulates
gene expression under hypoxic conditions (5). HIF-1a protein
is constitutively synthesized but degraded under normoxic
conditions by the ubiquitin/proteasome system, whereas it is
stabilized under hypoxic conditions because of the requirement
for molecular oxygen in the degradation machinery. Once sta-
bilized, HIF-1a binds to HIF-1p to form heterodimers and acts
as a transcription factor. Thus, expression levels of HIF-1a are
sensitive to intracellular oxygen levels. Inhibition of mitochon-
drial oxygen consumption increases intracellular oxygen levels,
and consequently HIF degradation is maintained even under
extracellular hypoxic conditions (3). In addition, Doege et al. (4)
showed that at an intermediate oxygen concentration (3% O.,),
the formation of pimonidazole adduct can be detected,
although pimonidazole is supposed to form adducts with cellu-
lar macromolecules only under severely hypoxic conditions (6).
The presence of pimonidazole adducts was diminished by inhi-
bition of mitochondrial respiration (4).

Under conditions of high oxygen demand, cells can become
hypoxic due to high oxygen consumption (7-9). For example,
neurosecretory cells require high mitochondrial activity,
mostly due to the requirement of ATP to re-establish the rest-
ing membrane potential and to maintain intracellular Ca**
equilibrium by ion pumps (7). In working skeletal muscle cells
(8), in which increased cellular ATP demand is facilitated by
mitochondrial biogenesis, elevated oxygen demand stimulates
the expression of a cohort of hypoxia-inducible genes (9).

The insulin secretion from pancreatic B-cells is critical for
the homeostasis of systemic glucose metabolism. How glucose
triggers insulin release from pancreatic 3-cells has been inten-
sively studied (10 -12). Glucose is metabolized in the cytoplasm
via the glycolytic pathway to pyruvate, which is rapidly
degraded in the mitochondrion to produce ATP by oxidative
phosphorylation. A rise in the cytoplasmic ATP/ADP ratio trig-
gers the closure of the ATP-sensitive potassium (K,-p) chan-
nels, which leads to depolarization of the plasma membrane
and the opening of voltage-sensitive Ca>* channels. Conse-
quently, Ca®* influx into a cell triggers Ca®" -dependent exocy-
tosis, resulting in insulin release from B-cells. Thus, B-cells
require large amounts of oxygen to produce ATP for the insulin

?The abbreviations used are: HIF, hypoxia-inducible factor; CCCP, car-
bonyl cyanide 3-chlorophenylhydrazone; KRBH, Krebs-Ringer-bicar-
bonate HEPES; CA, constitutively active.
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secretion process. Insulin secretion and mitochondrial func-
tions are tightly linked because insulin secretion is impaired in
patients with mitochondrial DNA mutations as well as in cells
in which mitochondrial DNA is artificially removed (13).

We undertook a series of studies to examine the effect of
insulin secretion on cellular oxygen tension. Considering the
formation of pimonidazole adducts and also the elevated
expression levels of HIF-1a proteins, B-cells can be hypoxic
after high glucose loads due to high oxygen consumption under
mildly hypoxic or at physiological oxygen tension. Response to
the cellular hypoxia might play a role in 3-cell function.

EXPERIMENTAL PROCEDURES

Reagents—Antimycin A, rotenone, carbonyl cyanide 3-chlo-
rophenylhydrazone (CCCP), and bovine serum albumin (BSA)
were purchased from Sigma-Aldrich.

Cells and Cell Culture—The mouse insulinoma cell line,
MING6, was a gift from Dr. ]. Miyazaki (Osaka University) (14).
MING6 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen) containing 450 mg/dl glucose,
10% fetal bovine serum, penicillin, and streptomycin, 50 um

' B-mercaptoethanol at 37 °C under 5% CO,, 95% air conditions.
A human pancreatic cancer cell line, PANC-1, was obtained
from ATCC. PANC-1 cells were cultured in DMEM, contain-
ing 450 mg/dl glucose, 10% fetal bovine serum, penicillin, and
streptomycin. Hypoxic culture was performed in a Multigas
incubator (ASTEC, Fukuoka, Japan) or an Invivo,400 hypoxia
workstation (Ruskinn, Leeds, UK). Anoxia (0% O,) was
achieved by the AnaeroPack system (Mitsubishi Gas Chemical,
Tokyo, Japan).

Measurement of Oxygen Consumption—MING6 cells were
trypsinized to prepare single cells and preincubated with
Krebs-Ringer-bicarbonate HEPES (KRBH) buffer containing 4
mg/dl glucose for 1 h. The cells (5 X 10° cells) and the medium
were added to a small closed chamber and incubated at 37 °C
for 30 min. Oxygen tension was measured using a Clark-type
oxygen electrode system (model 203, Instech Laboratories,
Plymouth Meeting, PA). After injection of 400 mg/dl glucose,
MING cells were incubated for 30 min. The oxygen tension was
constantly recorded before and after glucose stimulation. Oxy-
gen consumption was calculated as previously described (15).

Measurement of Insulin Concentration—Insulin secretion
into the culture medium from MING6 cells was measured by
Mesacup Insulin ELISA (MBL, Nagoya, Japan) according to the
manufacturer’s protocol. For details, see the supplemental
material.

Immunocytochemistry—Immunocytochemistry was per-
formed as described previously (16). The details are described
in the supplemental material. The fluorescein isothiocyanate
(FITC)-labeled Hypoxyprobe-1 monoclonal antibody (mAb1)
(NPI, Belmont, MA ) was used.

Flow Cytometric Analysis—The cells were treated with
pimonidazole in the same manner as in the immunocytochem-
istry assays. The cells were dispersed with trypsin/EDTA for 15
min at 37 °C. Cells were washed with phosphate-buffered saline
(PBS) once, fixed with 2% formalin overnight, and washed in
PBS twice. The cells were permeabilized with 0.5% Triton, 0.5%
BSA in PBS for 10 min at room temperature. The cells were
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FIGURE 1. Pimonidazole binding under mildly hypoxic conditions was
greater in MING cells than in PANC-1 cells. g, pimonidazole immunocyto-
chemistry of the cells. MING cells and PANC-1 cells were incubated at various
oxygen tensions as indicated in the presence of pimonidazole (10 um) for 3 h.
Green, pimonidazole; blue, DAPI. b, the MING cells in a were subjected to flow
cytometric analysis of pimonidazole staining. ¢, MIN6 cells and PANC-1 cells
were incubated at various oxygen tensions as indicated for 6 h. The cell
lysates were subjected to Western blotting for HIF-1a and HIF-1. Blotting of
B-actin is shown as a control.

then incubated with the Hypoxyprobe-1 mAb1 (1:1000 in 0.5%
BSA in PBS) in the dark for 30 min, washed once, passed through
a 40-um filter, and subjected to flow cytometric analysis. Stained
cells were analyzed using a FACSCaliber apparatus (BD Biosci-
ences) with FlowJo software (Tomy Digital Biology, Tokyo,
Japan). The data were reported as percentage of maximum,
which is the number of cells in each bin divided by the number
of cells in the bin that contains the largest number of cells.

Western Blotting Analysis—Western blotting analysis was
done as described previously (17) (see the supplemental mate-
rial). The primary antibody against HIF-la (NB100-105,
NB100-479) was purchased from Novus Biologicals (Littleton,
CQ), HIF-1« (clone 54) from BD, B-actin (A5060) from Sigma,
HIF-18 (clone 29) from BD Biosciences, and pimonidazole
{Hypoxyprobe-1 Mab1) from NPI (Belmont, MA).

Plasmids—The construction of pMX-HIF-1a CA5 is de-
scribed in the suppleimental ial. Retroviral transfection
was carried out as described previously (18). After selection
with puromycin for 1 week, the cells were subjected to further
experiments.
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FIGURE 2. Western blotting was useful for detecting pimonidazele adduct in vitro and in vivo. g, cell lysates from the cells in Fig. 1a were subjected to
Western blotting, and pimonidazole-adducted proteins were detected in MING cells and in PANC-1 cells. Blotting of -actin is shown as a control. A, anoxia.
b and d, Western blotting of pimonidazole adducts (Pimo) in the pancreatic islets of KK-Ay mice, 13 weeks of age (b), and ob/ob mice, 12 weeks of age (d),
compared with age-matched C57BL/6 mice (Control) injected with saline (Glc load —) or 2 g/kg glucose (Glc load +), respectively. Blotting of HIF-13 is shown
as a loading control. Representative results are shown. ¢ and e, relative intensity of pimonidazole in KK-Ay mice (n = 6) (c) and ob/ob mice (n = 3-5) (),
compared with control mice under the same conditions as in b and d. Each value from a pool of the islets of a mouse is plotted as a dot, and the mean of values

is shown as a bar (*, p < 0.05; **, p < 0.01).

Animal Studies—The animal studies were approved by the
animal care committee of Osaka Medical Center for Cancer
and Cardiovascular Diseases. C57BL6/J] mice and leptin-defi-
cient (ob/ob) male mice were purchased from Charles River
Laboratories Japan Inc. (Yokohama, Japan). KK-Ay female mice
were from Japan CREA (Tokyo, Japan). Mice were maintained
on a 12-h light/12-h dark cycle with free access to water and
normal chow and housed in specific pathogen-free barrier facil-
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ities. To detect tissue hypoxia, pimonidazole (60 mg/kg body -

weight) was intraperitoneally injected to the mice fed ad libi-
tum. At the same time, glucose (2 g/kg body weight) or saline
was intraperitoneally injected into both control and diabetic
mice. After 2 h, the islets were isolated as described below,
lysed, and subjected to further analysis. Pimonidazole adduct
formation was evaluated by Western blotting. The image of the
Western blotting film was captured by an image scanner,
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GT-9300UF (EPSON, Tokyo, Japan), and the intensity of the
bands from 50 to 150 kDa was measured using Photoshop
(Adobe Systems Inc., San Jose, CA). The pimonidazole/HIF-18
ratio was calculated to standardize the protein loading. The
lysate of the MING6 cells cultured at 15% oxygen tension for 3 h
was included in each experiment and used as an internal con-
trol for standardization.

Pancreatic Islet Isolation Studies—Pancreatic islets of
Langerhans were isolated by collagenase digestion as described
previously (19). The isolated islets were cultured overnight in
RPMI1640 (Invitrogen) medium containing 200 mg/dl glucose,
10% fetal bovine serum, 10 mm HEPES, 1 mm sodium pyruvate,
penicillin, and streptomycin, at 37 °C under 5% CO,, 95% air.
All islets were preincubated in KRBH buffer containing 40
mg/dl glucose for 30 min and divided into two groups. One
group was maintained in KRBH buffer containing 40 mg/dl
glucose and pimonidazole (10 um) for 2 h, and the other was
stimulated in KRBH buffer containing 400 mg/dl glucose and
pimonidazole for 2 h. For immunocytochemistry, islets were
embedded in collagen gel using Cell Matrix Type 1A (Nitta
Gelatin, Osaka, Japan) and fixed with formalin for paraffin sec-
tions. The isolated islets were divided into three groups by their
diameters: small (<50 wm), intermediate (50-100 wm), and
large (>100 pwm). The pimonidazole staining patterns were
divided into three groups: positive staining, where islets were
stained overall by pimonidazole; central staining, where the
central region, occupying less than 50% of total area, was
stained by pimonidazole; and negative staining, where no
pimonidazole staining was observed. These samples were also
subjected to Western blotting.

Statistical Analysis— Statistical analysis was performed with
GraphPad Prism 4 (GraphPad Software, La Jolla, CA). The sta-
tistical significance of the results was tested with the unpaired ¢
test. A value of p < 0.05 was considered to be statistically
significant.

RESULTS

Pimonidazole Adduct Was Detected under Mildly Hypoxic
Conditions in MIN6 Cells—Because it is difficult to measure
accurate oxygen tension inside a living cell with current tech-
nology, we estimated oxygen tension within a cell by pimonida-
zole staining, which has been widely used to detect cellular and
tissue hypoxia (4, 20). Although pimonidazole forms adducts
with intracellular biomolecules only in severe hypoxia, it can
also detect the decrease of cellular oxygen tension when the
cells were cultured under moderately hypoxic conditions (4).

Because pancreatic islet and $-cell lines are known to con-
sume substantial amounts of oxygen when the cells secrete
insulin in response to glucose stimulation (21-23), the cultured
B-cell line would also show severe cellular hypoxia under mod-
erately hypoxic culture conditions upon the secretion of
insulin.

We examined the pimonidazole staining pattern in MIN6
cells in comparison with non-endocrine cancer cells, PANC-1,
by immunocytochemistry (Fig. 1a). We detected pimonidazole
staining in PANC-1 cells only under anoxic conditions but not
at 3% oxygen tension. In striking contrast, MING cells showed
positive pimonidazole staining even at 7% oxygen tension.
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FIGURE 3. Mitochondrial oxygen consumption contributed to cellular
hypoxia in MING cells. g, the effect of respiratory inhibitors and an uncoupler
on oxygen consumption of MING cells. The cells were incubated with the
indicated reagents (antimycin A (10 nm), rotenone (100 nm), and CCCP (5 pm))
for 30 min. Oxygen consumption of the cells were measured, and the
means * S.D. of values from each group are shown (¥, p < 0.001). The exper-
iments were repeated at least three times. b, immunocytochemistry of
pimonidazole staining (green) of MING cells treated with antimycin A, rote-
none, and DMSO asa control for 3 h at 20 or 3% oxygentension. The cell nuclei
were stained with DAPI (blue). ¢, the effect of respiratory inhibitors on HIF-1¢
protein levels. Western blotting of HIF-1« in the MING cells cultured under the
indicated conditions for 6 h is shown. d, immunocytochemistry of pimonida-
zole staining (green) of MING cells treated with CCCP or with DMSO as a con-
trol for 3 h at 7% oxygen tension. The cell nuclei were stained with DAP! (blue).

Intensity of the staining was higher in MING6 cells than in
PANC-1 cells at each oxygen tension examined below 7%. Fur-
thermore, pimonidazole staining was examined by flow cytom-
etry (Fig. 1b). Consistent with the observations by immunocy-
tochemistry, the fluorescence was inversely correlated with the
oxygen tension. The shift of the peak was observed at 7% oxygen
tension in MING cells.

We next examined the protein levels of HIF-1a (Fig. 1¢). In
several cell lines, HIF-1a levels were stabilized at oxygen ten-
sions below 5% (24, 25). Indeed, in PANC-1 cells, HIF-1a was
detected at oxygen tensions below 5% but only weakly in cells
exposed to 7% oxygen tension (Fig. 1c). In striking contrast, in
MING cells, HIF-1a was detected even at 10% oxygen tension,
whereas no change was observed in HIF-18 levels (Fig. 1c). The
increased mRNA levels of HIF-1a target genes, including
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