activity and matrix environment are interdependent.16 Therefore,
COL4A6 depletion in ovarian extracellular matrix may alter normal
steroidogenesis even in the ovary and have been possibly the cause of
POE, especially in case 1. So far, there have been at least eight POF
genes registered in OMIM: FMRI at Xq27.3 (POF1, OMIM no.
311360), DIAPH2 at Xq22 (POF2A, OMIM no. 300511), POFIB at
Xq21 (POF2B, OMIM no. 300604), FOXL2 at 323 (POF3, OMIM no.
608996), BMP15 at Xp1l.2 (POF4, OMIM no. 300510), NOBOX
at 7g35 (POF5, OMIM no. 611548), FIGLA at 2p12 (POF6, OMIM
no. 612310) and NR5AI at 9¢33 (POF7, OMIM no. 312964).
Furthermore, XPNPEP2 at Xq25,7 DACH?2 at Xq21.2!® and CHM
(Xq21.2)'? have also been described as being disrupted by transloca-
tions. COL4A6 may possibly be an additional X-linked gene related
to POE

Two autosomal genes were disrupted: a gene encoding IGFBP7 at
4q12 and CI4orf159 on 14q32.12. IGFBP7 (also known as IGFBP-rP1
or MAC25) is a secreted 31-kDa protein, belonging to the IGFBP
superfamily. IGFBP7 is involved in proliferation, senescence and
apoptosis. Recently, it is reported that IGFBP7 loss has a functional
role in thyroid carcinogenesis.2’ C140rf159 is a hypothetical protein
with unknown function. Both disrupted genes were relatively
expressed in ovary based on the GeneCards database (http://www.
genecards.org/). We could not find any sequence aberrations in either
gene among other POF patients. Further analysis might be necessary
in relation to POE.

According to the precise breakpoint locations in all the cases
reported here, COL4A5 and IRS4 (case 2), NXF2 (case 3) and
KLHL13 (case 4) were localized near to breakpoints (within less
than a 100-kb distance). All the adjacent genes except for KLHL13
are shown to be expressed in human ovary in the GeneCards database.
Interestingly, it was suggested that IRS4 protein expression was
decreased in theca cells of polycystic ovary syndrome?! and IGFBP7
protein suppressed estrogen production in granulose cells.22 Reduced
expression of these genes owing to the position effects by transloca-
tions could affect to.normal ovarian function.

On the basis of the breakpoint sequences, two translocations (in
cases 2 and 4) had microhomology (defined as the presence of the
same short sequence of bases) of a few nucleotides and the other two
(in cases 1 and 3) showed insertion of 3-8 nucleotides of unknown
origin, suggesting that non-homologous end-joining is related to the
formation of all the translocations in our patients.??

In conclusion, we could determine four t(X;autosome) breakpoints
at the nucleotide level. We found that only one X-linked gene,
COL4A6, was disrupted, resulting in functionally null status. All the
four translocations are formed by non-homologous end-joining.
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