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Table L Coch sequence identity (%) of the nucleotides and arnino acids, a comparison of the guinea pig, human, Bovine, mouse and rat.

Protein
¢DNA (CDS) Homo sapiens Bos taurus Cavia porcellus Mus muscuhis Rattus norvegicus
Homo sapiens 94.3% 95.0% 93.6% 92.9%
Bos taurus 92.1% 93.3% 92.9% 92.4%
Cavia porcellus 91.6% 89.5% 93.3% 93.6%
Mus musculus 89.0% 87.6% 87.4% 98.2%
Rattus norvegicus 88.1% 87.2% 86.9% 94.3%

human, Bovine, mouse, and rat, respectively. This
high degree of homology, which is mamntamed among
the sgpecies examined and diswibuted throughout
all domains, including LCCL, vWE-1, and vWFE-2,

suggests that Coc#z is important for inner ear function.
Interestingly, the highest homology was observed
between the guinea pig and human isoforms. In the
present study, the guinea pig Cochlin isoforms are 63,

o
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44, and 40kDa m size, which were identical to the
bovine and human mner ear isoforms, showing the
Cochlin isoform to be well preserved in mammals.

Because the function of the Coch gene is unknown
as yet, study of the gene expression pattern in vitro is
necessary. Exogenous expression of Cochlin in 293T
cells, COS7 cells, and NIH3T3 cells resulted in
production of the full-length (60 kDa) polypeptide
i cell lysates, and two polypeptides of 60 and 50 kDa
that were secreted into the media were attributed to
proteolytic processing of the protein [19]. In Hela
cells, the full-length protein (63 kDDa) was detected in
cell lysate and 69 kDa protein was detected in the
medium [20]. This isoform pattem found in gene
transfection experiments is very different from that
found in the human and bovine samples. This indi-
cates that the proper processing of Cochlin, such as
enzymatic cleavage, may only occur in the case of
native gene expression and/or the unique extracellular
environment of the inner ear.

Therefore, a native Coch gene expression study was
performed on the primary cell culture of SL fibro-
cytes. The immunoreactivity of the cultured fibro-
cytes in this study has representative type I fibrocyte
characteristics, i.e. a positive reaction for caldesmon
and the S-100 protein, and negative for Na*-K*-
ATPase [17]. We detected the expression of Cock
mRNA using RT-PCR and real-time PCR analysis in
cultured fibrocytes. The level of Coch mRNA expres-
sion in the cultured fibrocytes was unexpectedly very
small compared with that of the cochlear lateral wall,
suggesting that Coch gene expression is dependent on
a specific tissue micro-environment. We sought to
identify the culture condition that would up-regulate
Coch gene expression, so we cultured cells in several
conditions under several kinds of cytokine stimula-
tions. However, none of these modified conditions
altered Coch mRNA or Cochlin expression in the
cultured fibrocytes, which confirmed the necessity
and importance of the extracellular micro-environment
of the inner ear in vivo for Cock gene expression.

In addition to the level of mRNA expression, the
isoform formation was different in vivo and in vitro.
Proteins of 66, 60, and 44 kDa were detected in
cultured fibrocytes, which were different from the
isoforms expressed in vivo, i.e. the sizes of 63, 44,
and 40 kDa. The origin of Cechlin isoforms has been
attributed to a variety of mechanisms, including mul-
tiple transcription, glycosylation, and enzymatic pro-
tein processing (5,13,19,20]. Our results suggest that
the mechanisms that contribute to the proper Cochlin
isoform formation are tightly controlled in vivo.

In conclusion, we have cloned guinea pig Coch
cDNA, the sequence for which is conserved in mam-
mals, and the sequence information will be of value

Molecular cloning of the Coch gene of guinea pig 879
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for future molecular studies combined with physio-
logical recordings and surgical manipulation, taking
advantage of the anatomic advantages of the guinea
pig. Coch mRNA is expressed in cultured fibrocytes in
vitro at a very low level, and isoform formation is
different between cultured fibrocytes and the cochlear
lateral wall in vivo, probably due to the lack of the
proper cellular micro-environment. These results
provide msight into Cock gene expression and its
regulation related to isoform formation.
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Abstract
Cochlin, a product of the COCH gene, is a major constituent
of the inner ear extracellular matrix. Type Il collagen, a pro-
tein that contributes to structural stability, is also a compo-
nent of this extracellular matrix, In this study, using the
postembedding immunogold method, we demonstrate the
localization of cochlin and type Il collagen in the cochlear
duct at the ultrastructural level. The immunolabeling of co-
chlinwas observed in the fibrillar substance in the spiral lim-
bus, beneath the inner sulcus cells, and in the basilar mem-
brane, the spiral prominence and the spiral ligament, Inmu-
nolabeling of type Ul collagen was observed in the same
fibrillar substance in the extracellular matrix of the cochlear
duct. This localization of cochlin is consistent with the ex-
pected lacalization of type Il collagen. The localization of co-
chlin and type Il collagen indicates the important roles
played by these proteins in the hearing process.

Copyright ® 2009 5. Karger AG, Basel

Introduction

Cochlin, a product of the COCH gene, is associated
with an autosomal dominant sensorinenral hearing loss
referred to as DFNA9. The symptoms of DFNA9 include
not only hearing loss but also vestibular disorders [Bom
etal, 1999; de Kok et al, 1999; Fransen et al., 1999 Grab-
ski etal,, 2003; Khetarpal, 1993; Manoliset al., 1996; Rob-
ertson et al, 1998; Usami et al,, 2003; Verhagen et al,,
1989, 1992]. On light microscopic analysis, Khetarpal et
al. [1991] and Khetarpal [1993] reported severe degenera-
tion of the cochlea and vestibule in association with the
deposition of an acidophilic ground substance in the spi-
ral ligament, spiral limbus, spiral lamina and basilar
membrane of DFNA9-affected ears. Robertson et al.
[2006] also reported the loss of cellularity and the accu-
mulation of an abundant homogeneous acellular eosino-
philic deposit in the cochlea and vestibule of DENA9-af-
fected ears. They suggested that these extracellularly de-
posited aggregates contain mutated cochlin, and that this
mutated cachlin alters the interactions between cochlin
and other cochlin-associated proteins. Khetarpal [2000]
compared thenormal spiralligamentwith thatin DFNA9-
affected ears at the ultrastructural level, and noted the
absence of major fibrillar type II collagen bundles. We
speculated that the proteins interacting with cochlin
might include type II collagen and have previously re-
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ported that these two extracellular matrix (ECM) pro-
teins coexist in the same fibrillar substance in the sub-
epithelial area of the semicircular canal [Mizuta et al,,
2008). This localization suggests that cachlin plays a role
in structural homeostasis of the vestibule. At present,
however, the exacl role of cochlin, which accounts for
70% of the inner ear proteins [[kezono et al, 2001], re-
mains incompletely understood.

Some clues that may help to elucidate therole of coch-
lin have, nevertheless, been reported. Since the sensori-
neural hearing loss observed in DFNA9 has a late anset
and progresses slowly, the COCH gene has been impli-
cated in this age-related hearing impairment [de Kok et
al,, 1999]. On the other hand, cochlin and type IT collagen
have been implicated in autoimmune hearing loss in hu-
mans [Baek etal., 2006; Yoo et al.,, 1984]. Further, Tkezono
etal. 2009] recently reported that a short 16-kDa cochlin
isoform {cochlin-tomoprotein) is specific to the peri-
lymph and that this isoform could function as a diagnos-
tic marker of perilymphatic fistula, which is related to
hearing loss and vestibular disorder. Thus, we considered
that it wonld be important to investigate the localization
of cochlin in the cochlea, and in the present study we ac-
cordingly expanded our immuno-electromicroanalysis
of cochlin to the cochlea. The role of cochlin in the co-
chlea, particularly in the basilar membrane, is alsa brief-
ly discussed.

Materials and Methods

Antibodies

Cochlin has von Willebrand factor type A (vWEA)ike do-
mains [Robertson et al., 2003). We used a rabbit polyclonal anti-
body that recognizes all three cochlin isoforms. This was raised
against the vVWFA-ike demain 1 of cochlin and has been pre-
viously described by Ikezono et al. [2004]. Briefly, a 19-mer
(KADIAFLIDGSFNIGQRREF) peptide corresponding to residues
163-181 inthe vVWFA-like domain 1 wasusedto generate antibod-
ies. The specificity of these antibodies for the corresponding an-
tigenic peptide was confirmed by dot blot analysis and a peptide
absorption test (data not shown). Antibodies against type IT col -
lagen (Chemicon International acquired by Millipore, Billerica,
Mass., USA) were purchased commercially.

Tissue Processing

Wistar rats (body weight, 100-200 g) were anesthetized with
pentobarbital (50 mg/kg body weight, i.p.) according to our insti-
tution'sethical regulations forthe treatment ofanimals. A fixative
of 4% paraformaldehyde and 0.1% glutaraldehyde in 0.1 M phos-
phate buffer (pH 7.4) was perfised from the left ventricle, and the
temporal bones were then isolated and immediately immersed in
the same fixative. Thereafter, the cochleae were dissected under a
stereomicroscope and further fixed for 2h at 4°C.
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The preparation of samples for embedding in Lowicryl KaM
(Electron Microscopy Sciences, Fort Washington, Pa., USA) was
performed according to a previously published procedure [Mizu-
ta et al,, 2008). Ultra-thin sections were cut using an ultramicro-
tome and mounted onto nickel grids (400 mesh).

Immunogoid Labeling

The grid-mounted sections were immersed in a droplet (25 pl)
of 1% bovine serum albumin (BSA; Sigma, St. Louis, Mo., USA)
in phosphate-butfered saline (PBS, 0.9% NaCl in 6.7 mM phos-
phate buffer, pH 7.2) for 1 h at roem temperature, then incubated
overnightat 4°C in a droplet ofthe optimal concentrations ofrab-
bit antibodies against either cochlin (3.3 pg/ml in BSA/PBS) or
type II collagen (4 pg/ml in BSA/PBS). After rinsing in PBS, the
sections were incubated in colloidal gold-conpgated goat anti-
rabbit [gG secondary antibody (diameter, 15 nm; BB Internation-
al, Cardiff, UK) at 1:50 dilution in BSA/PBS for 1 h at room tem-
perature. Subsequently, the sections were washed with PBS and
distilled water, and counterstained with uranyl acetate for 3 min
and lead citrate for 30 s. These sections were then observed under
aJEOL JEM-1220 electron microscope. Asanegativecontrol, pre-
immune rabbit IgG (4 p.g/ml in BSA/PBS) was used instead of the
primary antibody.

This study protocol was approved by the Hamamatsu Univer-
sity School of Medicine Animal Use Committee.

Results

Immunoreactivity for cochlin and type I collagen was
observed in the spiral limbus, beneath the inner sulcus
cells and the basilar membrane, beneath the epithelial
cells of the spiral prominence and the spiral ligament.

Spiral Limbus

Immunolabeling of cochlin and type II collagen was
observed in the fibrous area of the spiral limbus (fig.
la-c).

Inner Sulcus Cells

Immunolabeling of cochlin and type II collagen was
observed in the fibrous substance beneath the inner sul-
cus cells {fig. 2a-c).

Basilar Membrane

The structures that exhibited immunoreactivity for
cochlin and type II collagen were the fibrous bundles in
the basilar membrane (fig. 3a-c).

Spiral Prominence

The stained fibrils for cochlin and type II collagen be-
neath the epithelial cells of the spiral prominence were
observed to be widely scattered and without orientation

(fig. 4a—c).
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Fig. 1. Immuno-electronmicroscopy for
cochlin and type II collagen expression in
the spiral limbus. a Cochlin: gold particles
in the fibrous substance in the spiral lim-
bus. Bar = 1 pm. b Cochlin: higher mag-
nification of the open square area in a.
Bar = 0.5 p.m. ¢ Type II collagen: gold par-
ticles were seen in the fibrous substance in
the spiral limbus. Bar = 0.5 pm. FC = Fi-
brocytes.

Fig. 2. Immuno-electronmicroscopy for
cochlin and type II collagen expression be-
neath the inner sulcus cells.a Cochlin: im-
munclabeling of cochlin was seen in the
fibrous substance beneath the innersulcus
cells. Bar = 1 pm. b Cochlin: higher mag-
nification of the open square area in a.
Bar = 0.5 pm. ¢ Type II collagen: gold par-
ticles were seen in the fibrous substance
beneath the inner sulcus cells. Bar = 0.5
pwm. FC = Fibrocytes; IS = inner sulcus
cells.

Cochlin in the Cochlea
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Fig. 3. Immuno-electronmicroscopy for
cochlin and type I collagen expression in
the basilar membrane. a Cechlin: the fi-
brillar bundles in the basilar membrane
were immunoreactive for cochlin. Bar =
1 pm. b Cochlin: higher magnification
of the open square area in a. Bar = 0.5 pm.
¢ Type I collagen: gold particles were seen
in thefibrillar bundlesin the basilar mem-
brane. Bar = 0.5 pm. TC = Tunnel of Cor-
ti; BF = tunnel basilar fiber; 8P = support-
ing cells of the sensory cells; MC = meso-
thelial cells.

Fig. 4. Immuno-electronmicroscopy for cochlin and type I collagen expression beneath the epithelial cells of
the spiral prominence. a Cochlin: gold particles in the fibrous substance beneath the epithelial cells of the spi-
ral prominence. Bar = 1 pm. b Cochlin: higher magnification of the open square areain a. Bar = 0.5 pm. ¢ Type
1I collagen: gold particles were seen beneath the epithelial cells of the spiral prominence. Bar = 0.5 pum. SP =
Epithelial cells of the spiral prominence; FC = fibrocytes; ES = endolymphatic space.
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Fig. 5. Immuno-electronmicroscopy for
cochlin and type IT collagen expression in
the spiral ligament. a Cochlin: gold parti-
cles were also observed in the banded bun-
dles, which have a parallel array in the area
of the fibrocytes in the spiral ligament.
Parallel cut of the fibrous bundles (ar-
rows). Vertical cut of the fibrous bundles
(arrow heads). Bar = 1 pm. b Cochlin:
higher magnification of the open square
area ina. Bar = 0.5 pm. ¢ TypeII collagen:
gold particles were seen on the fibrillar
* bundles in the spiral ligament. Bar = 0.5
pm. FC = Fibrocytes.

B

Fig. 6. Control. No gold particles were observed in the fibrillar
substance in the basilar membrane. SP = Supporting cells of the
sensory cells. Bar = 0.5 pm.

Spiral Ligament

Immunolabeling of cochlin and type IT collagen was
observed in the fibrous bundles in the spiral ligament
(fig. 5a-¢).

Confrol

When pre-immune IgG was used as a negative control,
the fibrillar substance of the basilar membrane exhibited
no immunoreactivity (fig. 6).

Cochlin in the Cochlea

Discussion

Immunoreactivity for cochlin and type Il collagen was
observed in the same ECM areas of the cochlear duct,
particularly in the following sites: the fibrous substance
in the spiral limbus, beneath the inner sulcus cells, in the
basilar membrane, beneath the epithelial cells of the spi-
ral prominence and in the spiral ligament. The present
study is the first report to demonstrate the localization of
cochlin in these structures at the ultrastructural level
Localization of cochlinin the basilar membrane was not
detected in our previous studies using the same anti-co-
chlin antibody at the light microscopic level [Robertson
etal,, 2006; Shindo et al., 2008]. This might be due to the
different tissue processing and staining in the applica-
tions of light and electron microscopy. Interestingly, an-
other antibody, which recognizes a different peptide of
cochlin (residues 337-355) than the one targeted here
(residues 163-181), was reactive to cochlin in this area
under light microscopy [Kommareddi et al., 2007].

Our findings for type II collagen at the basilar mem-
brane and the spiral ligament are consistent with previ-
ous ultrastructural studies [Dreiling et al., 2002; Kaname
et al,, 1994]. At the electron microscopic level, we previ-
ously localized cochlin and type II collagen on the fi-
brous structures beneath the epithelial cells and support-
ing cells in the ratsemicircular canal [Mizutaetal., 2008].
Cochlin appears to localize with type II collagen in the
fibrous structures in the ECM of the cochlea as well as in
the vestibule. Nagy et al. [2008] recently demonstrated
that the second vWFA-like domain of cochlin has an af-
finity for type II collagen. This report supports the

Audiol Neurotol 2010;15:247-253 251
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hypothesis that these two proteins interact with each
other.

Several types of collagen have been detected in the
ECM of the inner ear [Yoo et al., 1988; Slepecky et al.,
1992; Usami et al., 2008]. Of these subtypes, type II col-
lagen is responsible for the fibrous structure and appears
to play a critical role in maintaining structural stability
in the cochlea and vestibule [Slepecky et al., 1992]. Local-
ization of these two proteins in the same fibrous sub-
stance of the ECM in the cochlear duct indicates that co-
chlin may play a role in the structural homeostasis of the
cochlea by cross-linking to the fibrillar type II collagen
bundles.

Kommareddi et al. [2007] showed that a prominent
64-kDa band of cochlin co-immunoprecipitated with
choline transporter-like protein 2(CTL2). CTL2 is amul-
titransmembrane protein expressed on inner ear sup-
porting cells that was discovered as a target of antibody-
induced hearingloss [Nair et al., 2004]. The present find-
ings, together with the fact that cochlin co-immuno-
precipitates with CTL2, indicate that these proteins may
interact with other proteins. Indeed, cochlin and type IT
collagen have also been implicated as a disease-causing
antigen in autoimmune hearing loss in humans [Baek et
al., 2006; Yoo et al., 1984]. The association of these three
proteins may therefore have very interesting implications
with regard to DFNA9 pathogenesis.

In DENA9 pathogenesis, Robertson et al. [2006] hy-
pothesized that mutated cochlin accumulates acellular
eosinophilic deposits and that this accumulation leads to
degeneration of other cochlin-associated proteins. Our
findings suggested that type Il collagen is one of the can-
didates of the cochlin-associated proteins. To clarify this
hypothesis, it will be interesting to analyze chronalogi-
cally the ultrastructural pathology and immunohisto-
chemistry of a mutant mouse model of DENA9 which
exhibited progressive age-related hearingloss [Robertson
etal, 2008].

The late-onset progressive sensorineural hearing loss
in the DENA9 ear also suggests a relationship between
cochlin and presbycusis, an impairment of hearing char-
acteristic of elderly individuals [de Kok et al, 1999]. Rob-
ertson et al. [2008] suggested that COCH might play im-
portant roles in presbycusis, and that cochlin is a major
target antigen for autoimmune sensorineural hearing
loss. The histopathologic correlates of age-related hear-
ing loss suggest several categories for this type of audi-
tory impairment: sensory-neural, strial, cochlear-con-
ductive, mixed, and indeterminate [Schuknecht and
Gacek, 1993]. In these categories, cochlear-conductive

252 Audiol Neurotol 2010;15:247-253

hearing loss may be related to pathologic change in the
basilar membrane. Several studies have shown that thick-
ening of the basilar membrane in aged animals may un-
derlie presbycusis [Ishii et al., 1994; Shimada et al., 1998].
The basilar membrane is responsible for the mechano-
electrical transduction exhibited by sensory cells, which
enables them to absorb stress and withstand traveling
waves. This explains why changes in these mechanical
properties can cause hearing impairment. Buckiova et al.
[2006] have shown a reduction in type II collagen immu-
noreactivity at the light microscopic level in the spiral
ligament, but not in the basilar membrane, of aged Fi-
scher 344 rats (an animal model of strial presbycusis).
However, the reduction of type II collagen in the spiral
ligament led us to consider that degeneration of type II
collagen might occur in the basilar membrane of the ag-
ing ear. The pathology of the DFNA9-affected ear in-
cludes degeneration of the basilar membrane [Khetarpal
etal, 1991; Khetarpal, 1993]. At present, however, the re-
lationship between cochlin and the age-related pathology
of the inner ear remains unknown. For thin structures
such as the basilar membrane, ultrastructural analysis
can reveal more detailed pathology than light microsco-
py> and may be a better tool for determining age-related
pathology. Accordingly, in the near future weplan to con-
duct an ultrastructural analysis of age-related changes in
type II collagen and cochlin in the basilar membrane as
well as in the spiral ligament.

In conclusion, the present study suggests that cachlin
could cross-link to type II collagen fibers in the spiral
limbus, beneath the inner sulcus cells, the basilar mem-
brane, the spiral prominence and the spiral ligament in
the cochlear duct, and that it is responsible for the struc-
tural integrity of this organ, in particular by enabling the
structure to withstand the stress associated with travel-
ing waves, Further studies, however, will be needed in
order to determine the nature of the interaction between
cochlin and type II collagen.
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Abstract

Background: Perilymphatic fistula (PLF), defined as an ab-
normal communication between the inner and middle ear,
presents with a symptomatology of hearing loss and ves-
tibular disorder that is indistinguishable from a number of
other inner ear diseases. Methads of diagnosis remain con-
troversial. We have previously shown that Cochlin-tomopro-
tein (CTP)is selectively detected in the perilymph. To estab-
lish a definite diagnostic test for PLF using CTP as a
biodhemical marker, we examined the diagnostic perfor-
mance of the CTP detection test. Methods: CTP detection
test was performed by Western blot using recombinant hu-
man CTP (thCTP) as a spiked standard. We evaluated the
spedcificity of the CTP detection test by testing non-PLF cas-
es. To describe the limitations of the test, we tested samples
from patients with middle earinfection, We also studied the
stability of CTP protein by storing the samples at room tem-
perature (25°C) or 4°C for 55 days. The effects of repeated
freezing and thawing were also evaluated. Serially diluted

peritymph was tested to find out the detection limit of CTP.
Findings: We have established a standardized (TP detec-
tion test using high (0.27 ng) and low (0.13 ng} spiked stan-
dards of thCTPin Western blotting. Middle ear lavages (MEL)
from 54 of 55 non-PLF cases were negative in the CTP detec-
tion test, i.e. the specifidty of the test is 98.2%. MEL from 43
out 0f46 cases with chronic suppurative otitis media or mid-
dle ear cholesteatoma were negative for CTP. CTPis a stable
protein and detection was not affected by the storage, or
freezing and thawing. The detection limit of perilymph was
0.161 pl/lanein anaverage of 5samples. Interpretation: CTP
is a stable perilymph-spedfic protein, and this CTP detection
could be the first dinically established diagnostic tool to de-
tect PLF with a high spedficity. PLF is surgically correctable
by sealing the fistula. Appropriate recognition and treat-
ment of PLF can improve hearing and balance in afflicted
patients. Copyright @ 20095, Karger AG, Basel

Introduction

Perilymphatic fistula (PLF) is defined as an abnormal
communication between perilymph in the labyrinth
and the middle ear. Representative symptams of PLF are
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sudden onset and/or progressive hearing loss with epi-
sodic attacks of vertigo; however, reports in the litera-
ture have suggested PLF to be putatively involved in a
broad spectrum of hearing loss symptoms and balance
disorders. PLF can be congenital ar acquired, and in the
latter it is associated with a traumatic or barotraumatic
event resulting in labyrinthine fracture, iatrogenic arti-
facts (ear surgery), or a disruption of the membranes of
the round and/or oval window(s) [Goodhill, 1971; House
et al,, 1991; Fitzgerald, 2001; Minor, 2003; Weber et al,
2003],

Unlike other causes of sensorinenral hearing loss, PLF
is surgically correctable by sealing the fistula. Appropri-
ate recognition and treatment of PLF can improve hear-
ing and balance, and hence the quality of life of the af-
flicted patients. However, despite extensive efforts to es-
tablish definitive methods for PLF detection, such as
audiometry, electrocachleogram, electronystagmogram
and radiological examination, there is as yet no widely
accepted specific test for diagnosing PLF [Podoshin et al,,
1994; Wall and Rauch, 1995; Nomunra, 1994; Black et al.,
1992]. The conventional definitive diagnosis of PLF de-
pends on the direct visualization of the perilymphatic
leak and fistula, but this is both difficult and highly sub-
jective, The difficulty of making a definitive diagnosis of
PLF has cansed a long-standing debate regarding its prev-
alence, natural history; management, and even its very
existence [Hughes et al., 1990; Schuknecht, 1992; Fried-
land and Wackym, 1999].

Previously, by proteomic analysis of inner ear pro-
teins, we found very unique properties of cachlin (en-
coded by the COCH gene and mutated in DFNA9 - a he-
reditary form of hearing loss), which is expressed abun-
dantly in theinner ear {Robertson et al., 1998; Ikezona et
al, 2005; Robertson et al.,, 2006; Shindo et al,, 2008]. We
detected 3 cochlin isoforms, p63s, p44s and p40s, in the
inner ear tissue and a short 16-kDa isoform named Co-
chlin-tomoprotein (CTP) in the perilymph [Ikezono et
al., 2001, 2004]. Since cochlin was found to be highly spe-
cific to the inner ear [Robertson et al, 1994; Abe et al.,
2003; Li et al, 2005], we tested the expression specificity
of CTP in perilymph; CTP was indeed selectively ex-
pressed only in the perilymph, and not in CSF, saliva or
serum [Ikezono et al., 2009]. In addition, we reported the
molecular mechanisms that regulate the perilymph-spe-
cific expression of CTP [Sekine et al., 2009].

In order to establish CTP as a diagnostic marker of
PLF, we standardized the CTP detection test using spiked
standards of recombinant human CTP (thCTP) in West-
ern blatting. We evaluated the specificity of the CTP de-

Performance of CTP Detection Test in
PLF

tection test by testing samples from non-PLF cases. To
describe the limitations of the test, we evaluated the in-
fluence of middle ear infection on thetest results. Wealso
studied the stability of CTP protein when samples were
stored at room temperature (25°C) or 4°C for as long as
55 days. The effects of repeated freezing and thawing
were also evaluated. Serially diluted perilymph was tested
to find ont the detection limit of CTP. The present study
showed that CTP could be the first clinically established
biochemical marker to allow a definitive diagnosis of
PLF-related hearing loss.

Methods

Standardization of the CTP Detection Test by Western Blot

For Western blot analysis, the rabbit polyclonal anti-CTP an-
tibody (formerly anti-LCCL-C Ab) wasprepared as previcusly de-
scribed (Tkezonoet al., 2004]. Inbrief, a 14-mer peptide (LSRWSA- -
SFTVTKGK)corresponding to residues 114-127 in the LCCL do-
main wasused to generate the antibody. Rabbits were immunized
by repeated subcutaneous injections of the KLH-coupled pep-
tides. The serum was purified by a protein A column, followed by
peptide-affinity chromatography. The specificity of the antibod-
ies for the corresponding antigenic peptides wasconfirmed by dot
blet analysis and a peptide absorption test {data not shown). The
thCTP was used as a spiked standard in the Western blot. The
exact N- and C-terminal sequence of CTP is not yet known. How-
ever, a putative CTP sequence predicted from our previous study
[Tkezono et al., 2004], located at peositions 101-403 of the cDNA
and corresponding to amino acid residues 32-132, was amplified
by PCR from a human-expressed sequence tag clone, Image ID
27789 (Kurabo); thCTP was produced using pCR/T7/ TOPO/TA
expression kits (Invitrogen).

Samples wereloaded onto 15% polyacrylamide gels and trans-
ferred onto polyvinylidene fluoride membranes. Membranes
were blocked overnight at 4°C in 5% skimmed milk and 0.2%
polyoxyethylene sorbitan (Tween-20) dissolved in PBS (pH 7.5).
Membranes were then incubated in PBS containing 1% skimmed
milk and 0.1% Tween-20 for 2 h at room temperature with the
primary antibody (anti-CTP antibody) diluted at 1:1000. After
washing with 0.1% Tween-20 in PBS, membranes were incubated
for 1h at room temperature with horseradish peroxidase-labeled
goat anti-rabbit IgG antibody (Dako) diluted at 1:1000 in the same
buffer used for the primary antibody reaction. They were washed
again, and the reaction was developed with a chemiluminescence
reaction kit (ECL advance, Amersham) and then analyzed by an
image analyzer LAS-3000 (Fuji Film). Tests were performed and
analyzed by well-trained personnel who did not have any infor-
mation on the clinical background of the patients, to avoid any
biased judgments. Test results were expressed as positive or nega-
tive by the presence or absence of the anti-CTP antibody reacting
protein with the molecular weight that exactly matched the mo-
lecular weight of native CTP (16 kDa} on Western blotting,
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Methed of Sampling

In our previous study, we showed that CTP is selectively ex-
pressed in the perilvmph, and not in samples of the body fluids,
serum, CSF orsaliva. The ultimate purpose of this testis to be able
to detect the presence of leaked PLF in the middle ear cavity pre-
operatively in the outpatient clinic. We aimed at establishing an
easy-to-perform sampling method. Samples were collected by la-
vaging the middle ear cavity 3-4 times with the same bolus of 0.3
mlsaline and recovering the fluid, and these were defined as mid-
dle ear lavage (MEL). MEL was collected from non-PLF cases and
those with suppurative otitis media or middle ear cholesteatoma.
Samples were centrifuged at 1250 g for 1 min, and the superna-
tants were frozen and stored at -80°C until use; 16 pl MEL was
mixed with 8 pl of 3 times concentrated sample buffer (0.188 1
Tris buffer, 2.39 mn SDS, 30% glycerol, and 15% of 2-mercapto-
ethanol) for Western blot analysis.

To test the stability and detection limit of CTP, perilymph was
collected from 5 cases of cochleostomy for cochlear implant sur-
gery. We collected the leakage from the cochleostomy using a 27-
gauge (0.22 mm internal diameter) blunt-end fine needle. All pa-
tients gave their full informed consent, and the study was ap-
proved by the Ethics Committee of Nippon Medical School.

No#n-PLF Cases

In order to evaluate the specificity of the CTP detection test,
we examined MEL from non-PLF cases. In this study, we defined
‘non-PLE" as those cases with otosclerosis (which had undergone
stapedectomy), profound deafness (cochlear implant surgery) or
conductive hearing loss (exploratory tympanotomy). We took
MEL prior to the stapedectomy or cochleostomy, or prior to sur-
gical treatment for conductive hearing loss. These cases did not
have any symptoms or test results suggestive of PLF (including
high-resclution temporal bone target CT scans and intraopera-
tive findings, such as microscopic visualization of perilymph
leakage and/or fistula). Patients who had revision stapedectomy,
revision cochlear implantation, ossified cochlea or infection of
the middle ear were excluded.

Effect of Middle Ear Infection on CTP Deteciion Test

Tt is well known that protein-rich samples, such as pus, can
cause nonspecific signals on a Western blot. Therefore, we further
clarified the influence of the infection in the middle ear on the
testresults. The MEL from surgically treated chronic suppurative
otitis media cases (n = 12) and middle ear cholesteatoma cases
(n = 34) were evaluated. None of these cases had any symptoms
or test results suggestive of PLF.

Testing the Stability of CTP

In everyday clinical settings, collected samples may not be fro-
zen immediately. We therefore evaluated if the results of the CTP
detection test were affected by storage conditions that could lead to
proteindegradation. We tested diluted perilymph (1:20 with saline)
keptat room temperature (25°C) or in a refrigerator at 4°C for 1, 2,
6,8,9,12,13,15,16, 19, 20, 23,27, 34,41, 48 or 55 davs; 4 p.l diluted
saline was mixed with sample buffer (24 pl total volume) and 22 pl
sample, i.e. 0.18 pl of perilymph/lane, was loaded on to the gel. In
addition, MEL could be tested multiple times by Western blotting
or by an alternative method to confirm the test results. We per-
formed the CTP detection test of diluted perilymph after repeat-
edly freezing (-70°C) and thawing (25°C) for 10 times.

170 Audiol Neurotol 2010,15:168-174

thCTP (ng) Perilymph (ul)
Lane 1 2 3 4 6 7 B 9
Sample: 027 013 1.832 0.917 0458 0229 0.115 0.057 0.02¢
Lane Sample Amount of
sample/lane
i rhCTP 0.27 ng
25 rhCTP 0.13ng
3 perilymph 1.833 pl
4: perilymph 0.917 pl
5: perilymph 0.458 pl
6: perilymph 0.229 pl
7s perilymph 0.115 pl
‘ 8: perilymph 0.057 pl
9: perilymph 0.029 pl

Fig. 1. The detection limit of serially diluted perilymph samples
using a standardized CTP detection test to define spiked stan-
dards. We loaded rhCTP as high and low spiked standard (lanes
1,2) andserially diluted perilymph samples (lanes 3-9). When the
intensity of the band in samples tested was below the high stan-
dard signal, the result was considered to be negative. The inten-
sity of the band in lane 8 is below the high spiked standard (lane
1); thus, lane 8 was considered to be negative. The detection limit
of CTP in the diluted perilymph (0.115 pl/lane; lane 7) is shown.

Detection Limit

Five serially diluted perilymph samples were tested indepen-
dently to establish the detection limit of CTP. We mixed 4 pl peri-
lymph with 28 p.lsaline and 16 ] of 3 times concentrated sample
buffer. This mixture was serially diluted with sample buffer. Di-
luted sampleswere heated to 100°C for L0min. Then 22 pl of these
samples were loaded onto the gel and the volume of loaded peri-
lymph samples was calculated as follows: 1.833, 0.917,0.458,0.229,
0.115, 0.057, 0.029 (pl/lane).

Results

Standardized CTP Detection System

As previously reported, the detection limit of the seri-
ally diluted rhCTP was between 0.27 and 0.13 ng/well.
These 2 amounts of rhCTP were set as the high and low
spiked standards, respectively, and were the amounts
electrophoresed each time when we tested the samples

Ikezono/Shindo/Sekiguchi/Morizane/
Pawankar/Watanabe/Miura/Yagi
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Case A CaseB
§ 5, § =
s £EF 5 £B
hcP(ng) ©e T+ ©e o=
= =3 o.% =3 av
Lane 1 2 3 4 ) 6
Sample: 027 013 16 pl 2pl 16 pl 24l
Lane  Sample Amount of
sample/lane
1: rhCTP 027 ng
2; rhCTP 0.13ng
3: Case A: MEL pre-fenestration 16 pl of MEL
4 Case A: Perilymph leakage 2 pl of perilymph
5: Case B: MEL pre-fenestration 16 pl of MEL
6: Case B: Perilymph leakage 2 pl of perilymph

Fig.2. The result of CTP detection from non-PLF cases and the
perilymph (samples from 2 cochlear implantsurgery cases). MEL
taken prior to the fenestration and the perilymph leakage from
the cochleostomy were subjected to the CTP detection test. MEL
taken before fenestration did not have any signal, whereas CTP
was detected at 16 kDa in perilymph samples.

Table 1. CTP detection in non-PLF samples

Total CTP CTP
positive  negative
Prior to stapedectomy 35 1 34
Prior to cochleostomy 12 0 12
Exploratory tympanotomy 8 0 3
Total 55 1 54

Table 2. Effect of middle ear infection on CTP detection test

Total CTP CTP
positive  negative
Chronic suppurative otitis media 12 1 11
Middle ear cholesteatoma 34 2 32
Total 46 3 43

Performance of CTP Detection Test in
PLF

{fig. 1). When a high standard was detected, we accepted
the result; otherwise, samples were re-evalnated. When
the intensity of the band in samples tested was below the
high-standard signal, the result was considered to be neg-
ative. Low spiked standard was used to estimate of the
protein transfer efficiency. The molecular weight of
rhCTP exactly matched that of native CTP (16 kDa) on
Western blot. Inter-assay and intra-assay reproducibility
was tested and confirmed (data not shown).

CTP Detection from non-PLF Cases

MEL from 34 of 35 cases prior to stapedectomny, 12 of
12 cases prior to cochleostomy, and 8 of 8 cases during
exploratory tympanotomy were negative for CTP. In to-
tal, 54 MEL from 55 non-PLF cases were negative for C'TP
(table 1); therefore, the specificity of the C'TP detection
test for the diagnosis of PLF is 98.2%.

Figure 2 shows the results of G'TP detection from non-
PLF cases and the perilymph. Samples of MEL taken pri-
or to fenestration and the perilymph leakage from the
cochleostomy of 2 cochlear implant surgery cases were
subjected to the CTP detection test. MEL taken before
fenestration did not have any signal, whereas CTP was
detected at 16 kDa in perilymph samples.

Effect of Middle Ear Infection on the CI'P Detection

Test

MEL from 11 out of 12 cases with chronic suppurative
otitis media and 32 of 34 cases of middle ear cholestea-
toma were negative for CTP (table 2). Thus, the specific-
ity of the CTP detection test is 93.5%.

Stability Test of CTP

We tested samples stored at 25°C or 4°C for 1,2, 6, 8,
9,12, 13,15, 16, 19, 20, 23, 27, 34, 41, 48, 55 days. In the
Western blot, CTP was detected in all 34 samples tested.
The intensity of CTP signals did not change remarkably.
After repeated freezing and thawing (10 times), the inten-
sity of CTP signals did not change (data not shown).
These results suggest that CTP is a stable protein, and the
results of CTP detection test by Western blotting would
not be altered by storage conditions within this rage.

Detection Limit of CTP

Five serially diluted perilymph samples were tested to
show the detection limit. Detection limits were 0.229 pl/
lane (2 samples) and 0.115 pl/lane (3 samples), which
gives an average of 0.161 pl/lane (fig. 1). This detection
limit could be useful in the clinical application of CTP as
a diagnostic marker of PLE.
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Discussion

We previously analyzed the expression of CTP in var-
ious human bodily fluids, including the serum, CSF, sa-
liva and perilymph [Ikezono et al., 2009]. All bodily fluid
samples, except the perilymph, were negative for CTP.
These results strongly suggest that CTP is expressed spe-
cifically and exclusively in the perilymph, from amongst
these 4 kinds of bodily fluids that may be present in a
healthy or diseased middle ear, and that CTP can be con-
sidered to be a specific biochemical marker for PLF. Re-
cently, we reported the molecular mechanisms that regu-
late the perilymph-specific expression of CTP [Sekine et
al., 2009]. We performed RNA ligation-mediated ampli-
fication of cDNA ends (RLM-R ACE) using RNA isolated
from the inner ear and spleen of rats, which are known to
express abundant cochlin mRNA, We detected a novel
shortmRNA (a spliced variant), which includes the LCCL
domain, This short mRNA was detected in the inner ear,
and notin spleen.

The conventional gold standard of PLF detection isthe
intraoperative microscopic visualization of perilymph
leakage and fistula, which ostensibly confirms the exis-
tence of PLF. If the patient does not have PLF, leakage will
not be detected. However, since the surgical procedure
itself can induce seepage that accumulates in the con-
cave-shaped round and oval window niches, thiscouldbe
misinterpreted as perilymph leakage [Nomura, 1994;
Friedland and Wackym, 1999]. The difficulty of making
a definitive diagnosis of PLF has caused a long-standing
debate regarding PLP [Hughes et al, 1990; Schuknecht,
1992; Friedland and Wackym, 1999].

The apprapriate recognition and treatment of PLF
can improve hearing and balance in the afflicted pa-
tients, Our ultimate goal has been to establish a clinical
test to allow a definitive diagnosis of PLF using CTP as
a biochemical marker. It shounld be a clinically useful
and specific test for the ‘preoperative’ diagnosis of PLF,
in order to avoid unnecessary exploratory surgery. At
the same time, this method hasto be applied to a variety
of clinical scenarios in PLF, wherein the leakage could
take place in the oval or round window, fractured bony
labyrinth, or minor fissures [Kohut et al,, 1986]. More-
over, the leakage could be intermittent, ongoing or could
have ceased with the leaked perilymph pooled in the
middle ear. Therefore, we used MEL for collecting the
samples from the middle ear in which the sampling was
easily performed in an outpatient setting, only by the
conventional method of myringotomy under local anes-
thesia. Saline lavage should include all the perilymph
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from wherever the perilymph leaked out or became
pooled.

Detection of the target protein in a Western blot is af-
fected by the efficiency of protein transfer. Transfer effi-
ciency depends on factors such as the composition of the
gel, complete contact of the gel with the membrane, the
pasition of the electrodes, the transfer time, size and
composition of proteins, field strength and the presence
of detergents. In the present study, we have standardized
the CTP detection test through defining high and low
spiked standards as 0.27 and 0.13 ng thCTP, respectively.
When a high standard was detected, we accepted the re-
sult; otherwise, samples were re-evaluated. When the in-
tensity of the band in samples tested was below the high
standard signal, the result was considered to be negative.
The average detection limit of CTP in 5 serially diluted
perilymph samples was 0.161 l/lane. This means that
the test can detect CTP if there is 3.3 i perilymph in 0.3
m] MEL (amount of perilymph contained in the diluted
sample of the detection limit: 0.161 x 24/22 = 0.176 p.l;
perilymph in the total MEL: 0176 X 300/16 = 3.3 pl).
This detection limit could be used in the clinical applica-
tion of CTP as a diagnostic marker of PLF.

MEL should contain middle ear mucosal secretion
and other substances normally expressed in the middle
ear cavity. Since these substances may cause false-posi-
tive reactions to the antibody, we tested MEL from non-
PLF cases. In this study, we defined ‘non-PLF’ as those
cases with otosclerosis (who had undergone stapedecto-
my), profound deafness (cochlear implant surgery), or
conductive hearing loss (exploratory tympanotomy). We
took MEL prior to the stapedectomy or cochleostomy, or
prior to surgical treatment of conductive hearing loss.
None of these cases had any symptoms or test results sug-
gestive of PLF (including high-resolution temporal bone
target CT scans and intraoperative findings). We detect-
ed anti-CTP antibody reacting protein at 16kDain 1 oto-
sclerosis case. The diagnostic performance of CTP detec-
tion test for the diagnosis of PLF was found to have a
specificity of 98.2%. We are now trying to evalnate the
sensitivity of the test by performing the CTP detection
test in ‘definite PLF cases’, such as traumatic stapes in-
jury.

There are limitations to this test. Analysis of MEL col-
lected from patients with middle ear infections can give
a false-positive result (as in this study), where the high
protein concentration of the thick pus was the most like-
ly cause. Specificity of CTP detection test decreases to
93,5% when lesting infected ears. We have reported that
CTP was not detectable in 28 serum samples [Ikezono et
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al., 2009], and was not detected in multiple hemaolyzed
samples (data not shown). However, to ensure the accu-
racy of the test, MEL samples should ideally be kept fro-
zen after removing the cells or tissue debris by the centri-
fuge to provide the minimum protein concentration,

Protein markers such as CTP may become degraded
through the pracess of starage prior to the detection test
or during the handling of the samples. The result of the
test may vary if the marker is easily degradable protein.
We have tested the stability of CTP by storing the diluted
sample (1:20 with saline) at room temperature or at 4°C
for 17 time points maximum of 55 days. CTF was detect-
ed in all 34 samples tested, without remarkable changes
in the intensity of CTP signals. In addition, CTP was sta-
ble after repeated freezing (-70°C) and thawing (25°C)
tor 10 repetitions. CTP hasenough stability in the various
storage conditions in hospitals, and it is responsive to
multiple measurements after thawing.

Condusion
CTP is a stable perilymph-specific protein, for which
we have established a standardized CTP detection test.

This is the first clinically established diagnostic tool for
the detection of PLF with a high specificity. In PLF, inner
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Subjective visual vertical in patients with ear surgery

YASUO OGAWA, MAMI HAYASHI, KOJT OTSUKA, SHIGETAKA SHIMIZU,
TARO INAGAKI, AKIRA HAGIWARA, TETSUYA YAMADA & MAMORU SUZUKI

Deparmment of Orarhinolaryngology, Tokyo Medical University, Fapan

Abstract

Conciusion: Dysequilibrium is one of the most important side effects of ear surgery. The subjective visual vertical canbe usedasa
good indicator forthe evaluation of otolithic function in patients with earsurgery. Objective: Toinvestigate the influence of various
types of ear surgery on the otohthic organs. Mezhods: Seventy-one patients underwent ear surgery. Subjective visual vertical (SVV)
test was performed before and after ear surgery. We investigated the directional changes of SVV before and after the ear surgery.
Resules: Thepostoperative SVV of twopatients whounderwent translabyrinthineremoval of vestibular schwannomashifted toward
the operated side, but following other surgical procedures the SVV tended to shift toward the healthy side.

Keywords: Utricidus, subjective visual horizontal, SVH, vestibular, tympanopiasty, otoliths

Introduction otolithic fumctions before and after the various types
of ear surgery.

It is known that the perception of vertical not only

depends on visual information but is also affected by

the head position relative to the direction of gravity. Material and methods
Measurement of the subjective visual vertical (SVV) is
used clinically as a method to assess the degree of We investigated SVV in 71 patients with unilateral ear
otolithic dysfunction, primary vestibular nerves, and disease. They underwent various types of ear surgery
central graviceptive pathways [1]. Significant tilts of in our hospital from 2006 to 2008. There were 38
the SVV have been described in patients with peri- women and 33 men; their mean age was 44 years,
pheral vestibular disorders and patients who have ranging from 5 to 81 years. The operated side was the
undergone labyrinthectomy, as well as in patients right ear in 32 patients and the left in 39. All surgery
with brainstem and cerebellar lesions [2 6]. Patients was carried out under general anesthesia. Four sur-
with various unilateral vestibular lesions, mcluding geons performed ear operations on a total of 71
vestibular neurectomy and labyrinthectomy, consis- patients. Surgical procedures were as follows: tympa-
tently tilt the SVV towards the side of the lesion [2 6]. noplasty in 48 patients, cochlear implants in 11,
Tribukait and Bergenius [7] reported that patients stapes surgery in 4, exploratory tympanotomy in 3,
with stapedotomy showed significant deviations of the translabyrinthine remowval of vestibular schwannoma
subjective visual horizontal (SVH) toward the healthy in 2, canal plagging in 1, partial removal of temporal
ear and it contrasts with the consistent deviation of bone in 1, and removal of external ear osteoma in 1
the SVV toward the affected ear in acute vestibular (Table I). Types of tympanoplasty were type I, 11
lesions such as vestibular neurectomy and labyr- cases; type III, 26 cases; type IV, 8 cases; and first-
imthectomy [2 6]. The goals of this study were to stage operation, 3 cases. A surgical bur was used for

measure the SVV and to defime the influence of the all surgical procedures.
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