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Abstract Hepatocyte nuclear factor 13 (HNF1f3) abnormal-
ities have been recognized to cause congenital anomalies of
the kidney and urinary tract (CAKUT), predominantly
affecting bilateral renal malformations. To further understand
the spectrum of HNF1f3 related phenotypes, we performed
HNFIB gene mutation and deletion analyses in Japanese
patients with renal hypodysplasia (n=31), unilateral multi-
cystic dysplastic kidney (MCDK; n=14) and others (n=5).
We identified HNFIB alterations in 5 out of 50 patients
(10%). De novo heterozygous complete deletions of HNFIB
were found in 3 patients with unilateral MCDK. Two of the
patients showed contralateral hypodysplasia, whereas the
other patient showed a radiologically normal contralateral
kidney with normal renal function. Copy number variation
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analyses showed 1.4 Mb microdeletions involving the whole
HNFIB gene with breakpoints in flanking segmental
duplications. We also identified | novel truncated mutation
(1007insC) and another missense mutation (226G>T) in
patients with bilateral hypodysplasia. HNFIB alterations
leading to haploinsufficiency affect a diverse spectrum of
CAKUT. The existence of a patient with unilateral MCDK
with normal renal function might provide genetic insight into
the etiology of these substantial populations of only
unilateral MCDK. The recurrent microdeletions encompass-
ing HNFIB could have a significant impact on the
mechanism of HNFIB deletions.

Keywords Hepatocyte nuclear factor 13 - Congenital
anomalies of the kidney and urinary tract - Copy number
variation - Heterozygous microdeletion - Unilateral
multicystic dysplastic kidney

Introduction

Congenital anomalies of the kidney and urinary tract
(CAKUT), developmental abnormalities of the kidney, occur
with a frequency of 1 in 500 neonates and lead to major
causes of chronic renal failure in infancy and childhood
[1, 2]. To date, several gene mutations have been identified
as a cause of human CAKUT, probably affecting the
molecular pathogenesis of these disorders [3, 4].
Hepatocyte nuclear factor 1 3 (HNF1p) is a homeodomain-
containing transcription factor that binds DNA and trans-
activates transcription [5]. HNF13 was initially described as
liver-enriched transcription factors, but it was subsequently
revealed that this protein is predominantly expressed in renal
and pancreatic epithelia. HNF1f3 is the essential factor for
embryogenesis in the kidney, pancreas, and liver, and is
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expressed in the Wolffian duct and the Miillerian duct from
very early developmental stage of the kidney [6]. In human
metanephros, the transcript is strongly detected especially in
the fetal medullary and cortical collecting ducts [7].

Alteration of the HNFIB gene, which is also known as
TCF2 and encodes HNF1p, originally known to be a gene
responsible for the maturity-onset diabetes of the young
type 5 (MODYS5), has been recognized as a cause of renal
structural abnormalities [8]. While a number of HNFIB
mutations have been identified in individuals with CAKUT,
whole-gene deletion of HNFIB is the most frequent
molecular alteration observed in patients [9]. HNFIB gene
abnormalities have been reported in a variety of individuals
with renal malformations, such as renal hypodysplasia,
multicystic dysplastic kidney (MCDK), cystic kidney
disease, single kidney, and oligomeganephronia [9-12],
suggesting the broad role this transcription factor plays
throughout development.

Systematic mutational analyses of HNFIB in CAKUT
have been carried out in Western countries. However, there
have been no such analyses in Japan to date; thus, we have
no information on the frequency and characteristics of
HNFIB mutations in CAKUT in Japan. To address these
questions, we analyzed the HNFIB gene in 50 children in a
Japanese cohort who presented with CAKUT. We found
that HNFIB alterations involve a diverse spectrum of
CAKUT. We also identified HNFIB alteration in 1 out of
10 patients with unilateral MCDK and a radiologically
normal contralateral kidney resulting in normal renal
function, which may provide genetic insight into the
etiology of unilateral MCDK. Moreover, using copy
number variation (CNV) analyses, we confirmed that the
recurrent microdeletions of 17q12 encompassing HNF/B
could have a significant impact on the etiology of whole
exonic deletions of HNFIB.

Materials and methods
Patient recruitment

We recruited 50 Japanese individuals with renal abnormal-
ities based on ultrasound findings during the postnatal
period or with onset of renal disease in early childhood.
Patients selected for this study had at least one of the
following renal phenotypes: uni- or bilateral renal hypo/
dysplasia with or without cysts, unilateral multicystic
dysplasia, single kidney, and uni- or bilateral cystic
kidneys. Renal hypoplasia was defined as a kidney length
of <2 standard deviations (SD) for age [13]. Renal
dysplasia was considered when poor corticomedullary
differentiation and/or diffuse hyperechogenicity were
found. Patients were excluded if they had other known
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genetic anomalies, such as autosomal recessive polycystic
kidney disease, autosomal dominant polycystic kidney
disease, and syndromic forms of renal abnormalities related
to mutations of paired-box 2 (P4X2), eye-absent homolog 1
(EYAI) and sine oculis homeobox homolog 1 (SIXT).
Written informed consent was obtained from the patients
or their parents. The Institutional Review Board of the
National Center for Child Health and Development ap-
proved this study.

Laboratory assessment

We performed blood tests for characterizing general
biochemical parameters, including liver enzymes and
fasting blood glucose levels. Serum creatinine levels were
measured with an enzymatic assay when patients were in a
stable condition. Glomerular filtration rate (GFR) was
estimated from the value of serum creatinine levels and
height, according to the Schwartz formula. We used the
Modified Diet in Renal Disease (MDRD) Study equation
for Japanese adult patients. The lower limit of normal
estimated GFR was defined as 80 ml/min/1.73 m’.

Molecular analysis

Genomic DNA was extracted and purified from peripheral
leukocytes in whole-blood samples using a QIAamp DNA
blood kit (Qiagen, Tokyo, Japan). To detect //NFIB gene
deletions, we performed semiquantitative polymerase chain
reaction (PCR) amplification using capillary electrophoresis
(Agilent 2100 Bioanalyzer with DNA 1000 Lab Chips;
Agilent Technologies, Palo Alto, CA, USA), as previously
described [14]. We applied this method to exons 2, 4, and 9
of the HNFIB gene. Probable identified deletions were
confirmed by multiple ligation-dependent probe amplifica-
tion (MLPA) assays [15] using an MLPA kit (SALSA
MLPA P241-B1 MODY, Lot 0408; MCR-Holland, Amster-
dam, The Netherlands), which contains all 9 exons of
HNFIB. For patients with whole gene deletion of HNFIB,
we subsequently performed genome-wide DNA screening
for CNVs using deCODE-Illumina CNV chip (57K, i-select
format; deCODE genetics, Reykjavik, Iceland) and array-
based comparative genomic hybridization (array CGH)
analysis (Early Access 400K CNV array; Agilent Technol-
ogies, Santa Clara, CA, USA), to identify the boundaries of
the deleted region involving HNFIB. We identified CNVs
by the deCODE-Illumina CNV chip by using DosageMiner
software developed by deCODE genetics and loss-of-
heterozygosity analysis [16]. For array CGH, we used
Agilent Human Whole Genome CNV microarray, consist-
ing of 487,008 probes, which include 392,824 CNV probes.
Array CGH experiments were performed according to the
manufacturer’s instructions [17].
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Patients without HNFIB deletions were screened for
mutations by direct sequencing of all 9 exons and exon—
intron boundaries, as previously described [18, 19]. We
collected DNA samples from 100 healthy individuals as
controls for mutation analysis.

When probands had HNFIB alterations, genetic studies
were extended to family members whenever possible. For
an affected relative whose blood sample was unavailable,
we obtained a PCR-ready DNA sample from the autopsy
liver tissue embedded in paraffin using a DNA extraction
kit (DEXPAT; Takara Bio, Shiga, Japan).

Results
Patient characteristics

We studied 50 patients with renal structural abnormalities
who were diagnosed with renal hypodysplasia (n=31),
unilateral MCDK (n=14), single kidney (n=4), and
glomerulocystic kidney disease (n=1). The mean age at
genetic analysis was 10.4 years old (age range, 0.9-
31 years) and the ratio of male to female patients was 37
to 13. Cortical cysts were observed in 20 out of 50 patients
(40%); 3 patients had unilateral hypodysplasia, 14 patients
had unilateral MCDK, and bilateral hypodysplasia, single
kidney, and glomerulocystic kidney disease occurred in 1
patient each. Twenty patients (40%) had progressed to non-
diabetic end-stage renal disease. Ten out of 14 patients with
unilateral MCDK showed radiologically normal or com-
pensatory hypertrophy of the contralateral kidney. Two
probands had positive family histories of renal disease. All
patients showed normal liver function, except for 1 patient.
None of the patients had evidence of diabetes.

HNF 1B molecular analysis

We identified HNFIB alterations in 5 out of 50 patients
(10%); 2 out of 31 patients (7%) had hypodysplastic
kidneys and 3 out of 14 patients (21%) had unilateral
MCDK. No HNFIB alterations were detected in patients
with single kidney and glomerulocystic kidney disease.
Table 1 shows the clinical findings and HNFIB mutations
of 5 patients and 2 family members (K7188f and K718s).

De novo heterozygous deletions of HNFIB were found
in 3 patients with MCDK by semiquantitative PCR (Fig. 1).
All deletions were confirmed and found to be complete
deletion of HNFIB by repeated MLPA analyses in all 3
patients. Two out of 3 patients (S710, S746) showed
contralateral renal dysplasia, whereas the other patient
(S708) showed a radiologically normal length and appear-
ance of the contralateral kidney with normal renal function.
CNV analyses with a deCODE-Illumina CNV chip and
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array CGH showed 1.4 Mb deletions at 17q12 in all 3
patients with HNFIB deletions. Interestingly, the micro-
deletions found in the 3 patients were flanked by segmental
duplications on both sides. The regions flanking the
microdeletions in 2 unaffected individuals were poly-
morphic in copy number. The deleted regions involved
HNFIB and 14 adjacent genes (Fig. 2).

One frameshift mutation and one missense mutation
were identified in patients with bilateral renal hypodyspla-
sia by direct sequencing (K718, S440). These mutations
were not detected in 100 healthy controls or in the healthy
mother of the affected patient.

A novel frameshift mutation (1007insC) found in a male
patient (K718) resulted in a truncation at the transactivation
domain. Absence of the vas deferens was discovered at the
time of surgery for inguinal hernia. The frameshift mutation
identified in the proband was observed in the patient’s
father (K718f) with a unilateral simple kidney cyst and
normal contralateral kidney, and also in a sibling (K718s).
The patient’s father (K718f) was found to have a high urate
level (urate 618 pmol/l, reference range: 220-416 pmol/l).
The sibling was diagnosed with bilateral MCDK and the
Potter sequence, and was aborted at 21 weeks’ gestation.
The autopsy specimen showed enlarged kidneys occupied
by multiple cysts of various sizes, whereas no abnormalities
were observed in the other organs including liver, pancreas,
and genital organs.

A heterozygous missense mutation (226G>T) located
between the dimerization domain and the DNA binding
domain was detected in a male patient (S440). The resulting
amino acid change (Gly76Cys) affects a residue highly
conserved in the HNF1B sequence of different species. This
HNFIB mutation has also been reported in patients with
MCDK [9]. Our patient was diagnosed with bilateral
hypodysplastic kidneys at 11 months old, developing end-
stage renal disease at the age of 4 years. He received living-
related renal transplantation at the age of 10 years. His
healthy mother did not carry the same mutation.

Discussion

This study demonstrated, to the best of our knowledge for
the first time, the frequency and characteristics of HNFIB
mutations in CAKUT in Japan, and also in Asian countries.
In this study, we identified HNFIB alterations comprising 3
whole deletions, 1 truncated mutation, and 1 missense
mutation in patients with CAKUT. All of the cases who had
whole HNFIB deletions presented with unilateral MCDK
with/without contralateral hypodysplasia, whereas 1 famil-
ial case with a truncated mutation of HNF 1B presented with
various phenotypes between the proband and his family
members. Our current study provides compelling evidence
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Table 1 Clinical findings and mutation analyses

Patient number  Gender ~ Age at examination (years)  HNFIB gene abnormality ~ Renal phenotype eGFR (ml/min/1.73m?)

S708 Male 2.8 Complete deletion Right MCDK 96.4
De novo Left radiologically normal

S710 Female 2.1 Complete deletion Right MCDK 83.5
De novo Left dysplasia

S746 Female 5.6 Complete deletion Left MCDK 94.3
De novo Right dysplasia

K718 Male 4.0 1007insC Bilateral hypodysplasia 70.3

K718f Male 32 1007insC Right simple renal cyst 45.7

K718s Female - 1007insC Bilateral MCDK -

Potter syndrome
S440 Male 13 226G>T Bilateral hypodysplasia ESRD

Post-transplantation

eGFR, estimated glomerular filtration rate; f, father; s, sibling; ins, insertion; MCDK, multicystic dysplastic kidney; ESRD, end-stage renal

disease

that the clinical spectrum of HNF'[B abnormalities consists
of a wide range of phenotypes with various renal severities
[20, 21].

We found that the frequency of HNFIB alterations was
10% (5 out of 50 patients), which is similar to that of
previous studies (8.9-29%) of CAKUT [9, 12]. This
finding indicates that HNF /B alterations are a major cause
of CAKUT in Japan, as well as in Western countries.
Interestingly, with the wide phenotypic variation found in
recruited patients, HNFIB alterations were clustered in
patients with renal cystic malformation including MCDK.
Review of all of the individuals with HNFIB alterations
showed that 5 out of 7 individuals shared a common feature
of renal cystic malformation, suggesting that renal cysts
seem to be the most trequent outcome when HNFIB
haploinsufficiency occurs. These findings are in accordance
with previous reports showing that HNFIB alterations are
associated with bilateral renal cysts [9]. These results
suggest that patients with renal cysts are good candidates
for systematic HNF'IB screening.

Control S710 father mother
400 — HNF1B exon 4
300 - internal control
HNF1Bexon 4\25\ o1 o2
o E 0 g oF o
internal . & !
control /:}\J_ _.}.\“.J%... - _JL_..t..&
HNF1Blintemal control 1.0 0.54 0.84 0.90

Fig. 1 Semiquantitative polymerase chain reaction (PCR) amplifica-
tion of HNFIB exon 4. Representative result of semiquantitative PCR
amplification shows heterozygous deletion of HNF/B exon 4 in
patient S710. Peak concentration ratio of the patient’s PCR product
was compared with those of her parents and the normal control,
indicating heterozygous deletion of the appropriate exon
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In this study, we showed that HNFI[B abnormalities
encompass a wide clinical spectrum with various severities.
Three out of 5 patients with HANFIB alterations presented
with unilateral MCDK, with various phenotypes of contra-
lateral kidney. Interestingly, we identified whole HNFIB
deletion in 1 patient with unilateral MCDK and a
radiologically normal contralateral kidney resulting in
normal renal function. While previous studies have reported
that HNFIB anomalies were only found to be associated
with bilateral renal abnormalities [9, 12], various pheno-
types in renal diseases also had distinct diagnoses, ranging
from bilateral MCDK in autopsy samples [22, 23] to
unilateral MCDK with normal renal length in single
remaining kidney [24]. Recently, we examined HNFIB
alterations in an additional 2 patients showing unilateral
MCDK with a radiologically normal contralateral kidney
and normal renal function. One of the patients showed a
whole HNFIB deletion detected by MLPA analysis
(personal communication (2010), Dr. Kaneko, Kansai
Medical University, Japan and Drs. Nozu and Iijima, Kobe
University Graduate School of Medicine, Japan), suggest-
ing that HNFIB alterations are not rare in this common
condition. Further studies are needed to confirm the
contribution of HNFIB alterations in patients with unilat-
eral MCDK and normal renal function.

Renal function in our affected individuals ranged from
normal to dialysis-dependent, which required a renal
transplant. A similar variability in renal function has been
reported in individuals with HNFIB abnormalities [20, 21].
Furthermore, renal function was considerably poorer in one
affected family member (K718ft), despite the renal mor-
phology of a unilateral simple cyst on repeated ultrasound
scans, which was predicted to be the mildest phenotype.
Although examination of renal histology was not undertak-
en in this case, it is reasonable to consider that HNFIB
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Fig. 2 Recurrent microdeletion

at chromosome 17q12 involving CGhromosomal position

the HNFIB gene. Agilent array 17q12
comparative genomic hybridiza- <
tion (CGH) profile shows a

heterozygous 1.4-Mb deletion Array CGH

in 3 patients with multicystic Log, ratio
dysplastic kidney (MCDK). 2
Green plots represent the deleted ]
region and red dots indicate the S708 _c: -
flanking segmental duplication. 2
This region includes HNFIB
and 14 further genes 5
+1
S710 o T
2
2 |*
1
S746 1
-1
2

CNV chip makers

Genes

dysfunction pathologically affected renal function, which
was not detected on renal ultrasound screenings. An
important implication from this case is that screening for
HNFIB alterations for those individuals may provide a
better understanding for prognosis of renal function.

One male patient (K718) in our series with HNFIB
mutation presented with an absence of vas deferens that
was incidentally detected. The vas deferens is derived from
the Wolftian duct during embryogenesis and is part of the
excurrent duct system responsible for the transport, storage,
and maturation of sperm. Congenital bilateral absence of
the vas deferens is an important cause of male infertility in
adulthood. Since the HNFIB gene is expressed in the
Wolffian duct and Miillerian duct in the mouse embryo, it is
possible that HNFIB alterations are associated with the
genital tract malformation. To date, there have been 5 male
patients with anomaly of the genital tract, including 1 case
of bilateral agenesis of vas deferens [25, 26]. Although the
frequency of male genital abnormalities is reported to be
lower than that in females [21], there might be a certain
number of potential male individuals carrying congenital
genital malformation.

The frameshift mutation and the missense mutation that
we found in our study are believed to be pathogenic. The
frameshift mutation 1007insC is a novel mutation, which

P17

rs7217637 cnvGap_CNV_5055.1p6
EZNHIT3 ElAATF Bl HNF1B
EMYO19 | ACACA
BrPIGW B C170rf78
BGGNBP2 H TADA2L
EMGC4172 BDUSP14
EMRM1 Il AP1GBP1
BLHX1 l DDX52

leads to truncation at the transactivation domain, probably
affecting HNF1{ function. In our study, the position of the
missense mutation Gly76Cys was located between the
dimerization domain and the DNA binding domain, and
this amino acid change affects a residue highly conserved in
the HNFIB sequence of different species. This HNFIB
mutation has also been reported in patients with MCDK [9].
Finally, the absence of the same mutation in 200 chromo-
somes of unrelated Japanese control subjects or in the
healthy mother of the affected patient would also support
the pathogenetic role of this mutation.

In our present study, screening of HNFIB deletions by
semiquantitative PCR amplification and MLPA analysis
revealed that all 3 cases with HNFIB deletions were found
to show deletions of whole exons. This tendency toward
complete exonic deletions as a major pattern for heterozy-
gous HNFIB deletions is similar to that found in previous
reports [9, 12, 20]. Furthermore, subsequent CNV analyses
of these 3 cases showed that the microdeletions at 17q12
extended to the 1.4-Mb region, including the entire HNFIB
gene. High resolution mapping of the deleted region by the
array CGH showed microdeletions with breakpoints in
flanking segmental duplications, indicating that the micro-
deletions were mediated by flanking segmental duplica-
tions. The same mechanism was proposed in patients with
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congenital renal abnormalities with or without mental
retardation or MODY'5 [22, 27], suggesting that recurrent
non-allelic homologous recombination occurs in region
17q12. Collectively, this recombination possibly explains
the high rate of de novo HNFIB deletions detected in
previous studies [9, 20], and thus evaluation of this
microdeletion by conventional gene dosage analysis should
be considered in individuals suspected of having HNFIB
alterations.

The recurrent microdeletion in the 17q12 region identi-
fied in 3 patients in this study involved HNFIB and 14
adjacent genes, which is predicted to result in haploinsufti-
ciency of these affected genes. One of the genes in this
region is LHX/, a limb homeodomain gene important for
renal development in mouse studies [28, 29]. It has been
proposed that the microdeletion of LMX/ is associated with
an earlier onset of renal pathology, suggesting that
haploinsufficiency of LHXI as well as HNFIB influence
this onset variability [22]. In the current study, however,
although all 3 patients with microdeletions showed the
shared phenotype of unilateral MCDK, no apparent
difference was observed in the renal phenotype, severity
of renal function or onset of disease between patients with
HNFIB deletion and those with mutations. Our results
suggest that heterozygous deletions of the affected adjacent
14 genes do not seem to influence the core phenotype. It is
possible that HNFIB is the predominant gene among
deleted regions contributing to the renal phenotype. Further
studies are needed to confirm our findings.

Copy number variations can be an important source of
genetic variation among human populations of different
ethnic groups as well as among individuals. It is likely that
different location and frequency spectra of CNVs exist for
different populations, especially different ethnic groups,
such as occurs in cases of single nucleotide polymorphisms
and insertion—deletion polymorphisms [30, 31]. It is
possible that there are interpopulation differences in the
copy number due to non-allelic homologous recombination
mediated by flanking segmental duplications [32]. This
study demonstrated, for the first time to our knowledge, the
existence of the CNV resulting in the 1.4-Mb microdeletion
encompassing the HNFIB gene in Japanese patients, which
has already been shown in several reports performed in the
USA and European countries [9, 20, 22, 27].

In conclusion, the current study provides further evi-
dence that HNF'IB alterations leading to haploinsufficiency
affect a wide variety of renal disease spectrum. The
existence of an affected patient with unilateral MCDK and
a radiologically normal contralateral kidney resulting in
normal renal function might provide genetic insight into the
etiology of the substantial population of unilateral MCDK.
Identifying HNF B deletions and mutations in patients with
heterogeneous phenotypes should provide a better under-
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standing of renal function, as well as early detection of
extrarenal manifestation related to this gene.
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