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Fig. 3 Denaturing high-performance liquid chromatography of the 29th
exon of the NIPBL gene (upper panel: control, lower panel: patient).
Arrow shows the abnormal peak in the translation area (29th exon)
of the NIPBL gene.

analyses in the various multiple malformation syndromes specifi-
cally associated with congenital diaphragmatic hernia are likely to
shed light on which anomalies lead to diaphragmatic hernia.

In the present case, a mutation of C to T (nonsense mutation) at
the 5524th base in the translation area of the NIPBL gene was
identified. As a result, we concluded that this variation was likely to
be the cause of the BDLS with diaphragmatic hernia. The NIPBL
gene is located at 5p13.1 and contains 47 exons, and its transcrip-
tion is thought to be related to Notch signal transmission. There
have been many confirmed gene mutations, including deletion and
insertion mutations, that are associated with BDLS (Gillis er al.
2004: Bhuiyan er al. 2006; Schoumans er al. 2007). Further, Musio
etal. (2006) and Deardorff eral. (2007) have presented reports
relating BDLS to both SMC1 and SMC3 gene mutations.

DNA analysis is important for confirming BDLS diagnosis.
Analysis of gene mutations in genes such as N/PBL also represents
a useful diagnostic method. With the accumulation of cases such as
ours, further description of this disease will be possible.
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A patient with atypical phenotypes of Prader—Willi syndrome
(PWS) was subjected to investigate genomic copy numbers by
microarray-based comparative genomic hybridization analysis.
Severe developmental delay, relative macrocephaly, protruding
forehead, cardiac anomalies, and hydronephrosis were atypical
for PWS. Concurrent deletions of 15q11-13 and 5435 regions
were revealed and identified as paternally derived. The sizes and
locations of the two deletions were typical for both deletions.
Although each deletion independently contributed to the clinical
features, developmental disturbance was very severe, suggesting
combined effects. This is the first report of co-occurrence of
PWS and STS. The co-occurrence of two syndromes is likely
incidental. © 2010 Wiley-Liss, Inc.

Key words: Prader—Willi syndrome; Sotos syndrome; aCGH

INTRODUCTION

Prader-Willi syndrome (PWS; OMIM #176270) is caused by
deficiency of paternally expressed imprinted transcripts within
chromosome 15q11-q13 [Ledbetter et al., 1981]. It is characterized
by obesity, hypotonia, hypogonadism, and behavioral abnor-
malities [Holm et al., 1993]. Most paternal PWS deletions are
bracketed by recurrent breakpoints (BP)1 or BP2 and BP3. Pre-
turbed expression of genes including SNURF-SNRPN and multiple
small nucleolar RNAs (snoRNAs) are associated with the clinical
manifestations of PWS, but the specific contributions of individual
genes are under investigation. Recent analysis revealed that
deficiency of HBII-85 snoRNAs causes the key characteristics of
the PWS phenotype, although some atypical features suggest that
other genes in the region may make more subtle phenotypic
contributions [Sahoo et al., 2008].

Sotos syndrome (STS; OMIM#117550) is an overgrowth syn-
drome characterized by pre- and postnatal overgrowth, macro-
cephaly, developmental delay, advanced bone age, and a distinctive
face including frontal bossing, frontal sparseness of hair, hyper-
telorism, downslanting palpebral fissures, and pointed chin.
Haploinsufficiency of the NSDI gene due to 5935 microdeletions
or intragenic mutations causes STS [Kurotaki et al., 2002]. Miyake
et al. [2003] observed that microdeletions in STS are mostly of
paternal origin. Common deletion breakpoints were located at two

© 2010 Wiley-Liss, Inc.
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flanking low copy repeats (LCR), implying that non-allelic homol-
ogous recombination (NAHR) between LCRs is the major mecha-
nism for the common deletion in STS [Kurotaki et al., 2005; Visser
etal.,, 2005]. Central nervous system anomalies, cardiovascular and
urogenital symptoms are more frequent in the microdeletion group
[Nagai et al., 2003].

In this study, a patient with atypical phenotypes of PWS was
subjected to investigate genomic copy numbers by microarray-
based comparative genomic hybridization (aCGH) analysis. Con-
current deletions of 15q11-13 and 5935 regions were detected and
identified as paternally derived. Although each deletion indepen-
dently contributed to the clinical features, growth and develop-
mental disturbance were very severe, suggesting combined effects.
This is the first report of co-occurrence of PWS and STS.
CLINICAL

REPORT

A 14-year-old male propositus is the first-born child of healthy and
non-consanguineous parents. After uncomplicated pregnancy, he
was born at 39 weeks of gestation by induced delivery with
overgrowth of length with 53 cm (90th centile).
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His birth weight was within a normal limit as 3,010g (25th
centile). He was the first child of a 26-year-old mother and a 30-year
-old father. Since cardiac murmur was found at birth, he was
transferred to the neonatal intensive care unit and ventricular septal
defect (VSD), atrial septal defect (ASD), and patent ductus arterio-
sus (PDA) were revealed by echocardiography. Micropenis and
bilateral cryptorchidism were noticed. He had severe hypotonia and
feeding difficulties in the early infantile period. Until his sucking
improved at 6 months old, nasal tube feeding was required.
Ultrasonography revealed bilateral vesicoureteral reflux and hydro-
nephrosis. He showed a severe developmental delay with
head control at 1 year of age and sitting alone at 6 years of age.
He had generalized seizures at age 6 years. Electroencephalography
revealed sporadic spikes at that time. Brain MRI showed
no significant findings. He developed progressive obesity, as
his weight was 10.0 kg (75th centile) at 9 months old of age and
12.4kg (95th centile) at 1 year old of age. Conventional G-band
chromosome analysis showed a normal male karyotype,
and subsequent conventional FISH analysis for SNRPN revealed
a deletion, indicating a diagnosis of PWS. In spite of that,
relative macrocephaly, protruding forehead, frontal baldness,
and mild overgrowth were atypical for phenotypic features of
PWS (Fig. 1A). Although he was interested in food, hyperphagia
was not prominent because of his restricted locomotive abilities.
Gradually, his height SD scores decreased (Fig. 2). Partial growth
hormone deficiency was found by endocrinological studies. When
he was 14 years of age his bone age was measured at the 11-year-old
level. His parents did not choose GH replacement therapy.

When we examined the patient at the age of 14 years, he showed
severe mental retardation without vocalized words, muscular hy-
potonia, hypopigmentation, scoliosis, and distinctive facial features
including protruding forehead; strabismus; hypertelorism; down-
slanting palpebral fissures; epicanthal folds; full cheeks; micro-
stomia with downturned corners of the mouth; small hands with
tapering fingers; and small feet (Fig. 1B). A wheel chair was required
for him because his hip joint was unstable and he could not stand
alone. His intelligent quotient (IQ) was measured by Kyoto Scale of
Psychological Development as below 10. He was a calm and friendly
boy. His interest in food became obvious, but self-injurious be-
haviors such as skin picking were not observed. Behavioral prob-
lems associated with STS including autistic spectrum disorder,
hyperactivity, and aggression were not present. His weight was
29kg (<3rd centile), and his length was 132 cm (<3rd centile)
(Fig. 2). His head circumference was mean for his age. A compari-
son of typical features of PWS and STS and their clinical presenta-
tion in the patient are shown (Table I).

MATERIALS AND METHODS

After obtaining informed consents based on a permission approved
by the institution’s ethical committee, peripheral blood samples
were obtained from the patient and his parents. Genomic DNAs
were extracted using the QIAquick DNA extraction kit (QIAgen,
Valencia, CA).

Based on the hypothesis that the patient might have an
atypically larger deletion of chromosome 15 or have additional
chromosomal aberrations, aCGH analysis was performed

AMERICAN JOURNAL OF MEDICAL GENETICS PART A

FIG. 1. Facial appearance of the patient at 6 years old (A) and 14
years old (B).

using the Human Genome CGH Microarray 60K (Agilent Tech-
nologies, Santa Clara, CA) as described previously [Shimojima
et al., 2009].

Metaphase nuclei were prepared from peripheral blood lym-
phocytes by mean of standard methods and used for FISH analysis
with human BAC clones selected from the UCSC genome browser
(http://www.genome.ucsc.edu) as described elsewhere [Shimojima
et al,, 2009]. Physical positions refer to the March 2006 human
reference sequence (NCBI Build 36.1).
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FIG. 2. Growth curve of the patient. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

TABLE I. A Comparison of Typical Features of PWS and STS and Their Clinical Presentation in the Current Patient

Prader—Willi Sotos Current patient

Hypotonia + + ++
Mental delay + + ++
Hypopigmentation - — +
Prominent forehead - + +
Strabismus + + ++
Over growth - + _
Growth delay + — ++
Obesity - - +
Epilepsy - + +
Congenital heart disease - + +
Scoliosis + 4 ++
Hydronephrosis - + +
Hypogonadism + - e
+, € f i+

P
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Microsatellite marker analysis was performed using the
ABI Prism Linkage Mapping Set with D1551002 and analyzed
by GeneMapper (Applied Biosystems, Foster City, CA). In
the deletion region of STS, no marker was available for the ABI
Prism Linkage Mapping Set. Thus, the single-nucleotide poly-
morphisms (SNP) typing was carried out. From the STS
deletion region of 5q35, eight SNPs, IMS-]JST038690, IMS-
JST087588, IMS-JST087589, IMS-]ST183486, IMS-]JST172005,
IMS-JST073857, IMS-JST087921, and IMS-JST087922, were
selected using in silico library, Japanese Single Nucleotide

[ V.

AMERICAN JOURNAL OF MEDICAL GENETICS PART A

Polymorphisms (JSNP) database (http://snp.ims.u-tokyo.ac.jp/
index.html). Allelic types were analyzed by PCR-direct sequencing
method using the BigDye terminator (Applied Biosystems, Foster
City, CA).

By aCGH analysis, loss of the genomic copy numbers was
identified in the region of 15q11.2, which is responsible and
typical for PWS (Fig. 3A). The concurrent deletion was

+ 2 Deleted genes
‘Break point 1

Break point2
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MAGEL2
NDN
C150r12
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FIG. 3. aCGH profiles of the patient shown by CGH Analytics in Chromosome view (left) and Gene view (right). A: Typical deletion of PWS
region including SNRPN is shown. B: Typical STS deletion including NSD1 is indicated. The horizontal axis indicates the log 2 ratio of the
genomic copy number. The blue rectangles indicate the regions containing copy number aberrations. The aberration areas are

expanded in Gene view (right). The dots indicate the locations and the corresponding log 2 ratios of the probes. The red circles emphasize SNRPN and

NSD1.
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FIG. 4. FISH analysis to confirm the chromosomal deletion. A: One of the green signals covering SNRPN, RP11-1071C22 (15q11.2;
22601976—22822028), was deleted. Two red signals are the markers of chri5, RP11-48A4 (15q26.3; 99433829-99587322). B: One of the green
signals covering NSD1, RP11-99N22 (5q35.2-5q35.3; 176474586—176655375), was deleted, whereas two red labeled RP11-34J21 (5p15.33;
1377471-1540913) signals were confirmed in all cells. Physical positions are referred to NCBI Build 36.1. White arrows indicate abnormal

chromosomes in each FISH image.

identified in the region of 535, which is also responsible and typical
for STS (Fig. 3B). FISH analyses confirmed the deletion of both
regions (Fig. 4). There were no deletions of PWS region and STS
region in both parents indicating de novo occurrence (data not
shown).

To confirm the parental origin of both deletions, polymorphic
markers were analyzed in the patient and his parents. Regarding
the 15q11.2 region, the patient showed an only allele with 112-bp
common to his mother, indicating the deletion of paternal allele ( Fig.
5A). Among eight analyzed SNPs, only IMS-JST183486 was infor-
mative, The patient showed hemizyogous of T at the SNP position,
whereas the father and the mother showed homozygous of A and T,
respectively (Fig. 5B). From the result, we concluded that both
deletions were derived from the paternal allele.

DISCUSSION

Initially, the patient was diagnosed as PWS due to severe hypotonia,
hypopigmentation, hypoplastic genitalia, and small hands and feet.
It was supported by hyperphagia and obesity which later developed.
However, his facial features including relative macrocephaly, pro-
truding forehead, frontal baldness, strabismus, downslanting pal-
pebral fissures, and pointed chin were atypical for PWS. He also
showed congenital cardiac anomalies, hydronephrosis, and epilep-
sy, which are rare findings in PWS. Severe hypotonia and severe
developmental delay were also atypical for PWS. This was the
reason why we analyzed genomic copy numbers.

To the best of our knowledge, this is the first report of co-
occurrence of PWS and STS. Translocation between chromosomes
5 and 15 was excluded by G-banded analysis. Array CGH demon-
strated that the sizes and locations of the two deletions were typical
for both syndromes. Both of the deletions were derived from the
paternal chromosome. We suspect that co-occurrence of two
deletions is incidental.

His growth curve showed an interesting pattern. He
showed overgrowth in the infantile period. Gradually, his
growth velocity decreased. Now he shows severe growth deficiency.
Although we understand that haploinsufficiency of NSDI
might lead to height gain and patients with STS show advanced
bone age, his growth deficiency was worse compared with
standard PWS patients and his bone age was delayed [Nagai
et al., 2000]. Growth hormone deficiency and severe scoliosis may
explain his growth deficiency. We posit that each deletion contri-
buted independently to the features. Severe growth and develop-
mental delay might be explained by the combined effects of PWS
and STS.

There are some reports of concurrent chromosomal
aberrations in the same patients [Shimojima et al., 2009].
The result of this study indicates that there may be more
frequent co-occurrences of two more deletions than what we
think. When a patient shows atypical or overlapping features
regardless of a previously established diagnosis, we would
recommend investigation of whole genomic copy numbers by
aCGH.
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FIG. 5. Molecularanalysis of the patient’s family. A: GeneMapper analysis using D1551002. The patient shows only one allele with 112-bp common with
his mother, indicating the paternal deletion. B: SNPs analysis of IMS-JST183486. The patient's SNP type as T is only common with his mother,
indicating the deletion of paternal allele.
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Clinical application of array-based comparative
genomic hybridization by two-stage screening for
536 patients with mental retardation and multiple
congenital anomalies
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Recent advances in the analysis of patients with congenital abnormalities using array-based comparative genome hybridization
(aCGH) have uncovered two types of genomic copy-number variants (CNVs); pathogenic CNVs (pCNVs) relevant to congenital
disorders and benign CNVs observed also in healthy populations, complicating the screening of disease-associated alterations by
aCGH. To apply the aCGH technique to the diagnosis as well as investigation of multiple congenital anomalies and mental
retardation (MCA/MRY}, we constructed a consortium with 23 medical institutes and hospitals in Japan, and recruited 536 patients
with clinically uncharacterized MCA/MR, whose karyotypes were normal according to conventional cytogenetics, for two-stage
screening using two types of bacterial artificial chromosome-based microarray. The first screening using a targeted array detected
pCNV in 54 of 536 cases (10.1%), whereas the second screening of the 349 cases negative in the first screening using a genome-
wide high-density amray at intervals of approximately 0.7 Mb detected pCNVs in 48 cases (13.8%), including pCNVs relevant to
recently established microdeletion or microduplication syndromes, CNVs containing pathogenic genes and recurrent CNVs
containing the same region among different patients. The results show the efficient application of aCGH in the clinical setting.
Journal of Human Genetics (2011) 56, 110-124; doi:10.1038/jhg.2010.129; published online 28 October 2010

Keywords: array-CGH; congenital anomaly; mental retardation; screening

INTRODUCTION

congenital anomalies, and more than three minor anomalies can be

Mental retardation {MR) or developmental delay is estimated to affect
2-3% of the population,! However, in a significant proportion of
cases, the etiology remains uncertain. Hunter? reviewed 411 clinical
cases of MR and reported that a specific genetic/syndrome diagnosis

useful in the diagnosis of syndromic MR.>' Although chromosomal
aberrations are well-known causes of MR, their frequency determined
by conventional karyotyping has been reported to range from 7.9 to
36% in patients with MR.* ® Although the diagnostic yield depends

was carried out in 19.9% of them. Patients with MR often have on the population of each study or clinical conditions, such studies
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suggest that at least three quarters of patients with MR are undiag-
nosed by clinical dysmorphic features and karyotyping.

In the past two decades, a number of rapidly developed cytogenetic
and molecular approaches have been applied to the screening or
diagnosis of various congenital disorders including MR, congenital
anomalies, recurrent abortion and cancer pathogenesis. Among them,
array-based comparative genome hybridization (aCGH) is used to
detect copy-number changes rapidly in a genome-wide manner and
with high resolution. The target and resolution of aCGH depend on
the type and/or design of mounted probes, and many types of
microarray have been used for the screening of patients with MR
and other congenital disorders: bacterial artificial chromosome
(BAC)-based arrays covering whole genomes,”'? BAC arrays covering
chromosome X,'"'2 a BAC array covering all subtelomeric regions,'?
oligonucleotide arrays covering whole genomes,'*'> an oligonucleo-
tide array for clinical diagnosis'® and a single nucleotide polymorph-
ism array covering the whole genome.!” Because genome-wide aCGH
has led to an appreciation of widespread copy-number variants
(CNVs) not only in affected patients but also in healthy popula-
tions,'®20 clinical cytogenetists need to discriminate between CNVs
likely to be pathogenic (pathogenic CNVs, pCNVs) and CNVs less
likely to be relevant to a patient’s clinical phenotypes (benign CNVs,
bCNVs).2! The detection of more CNVs along with higher-resolution
microarrays needs more chances to assess detected CNVs, resulting in
more confusion in a clinical setting.

We have applied aCGH to the diagnosis and investigation of
patients with multiple congenital anomalies and MR (MCA/MR) of
unknown etiology. We constructed a consortium with 23 medical
institutes and hospitals in Japan, and recruited 536 clinically unchar-
acterized patients with a normal karyotype in conventional cyto-
genetic tests. Two-stage screening of copy-number changes was
performed using two types of BAC-based microarray. The first screen-
ing was performed by a targeted array and the second screening was
performed by an array covering the whole genome. In this study, we
diagnosed well-known genomic disorders effectively in the first screen-
ing, assessed the pathogenicity of detected CNVs to investigate an
etiology in the second screening and discussed the clinical significance
of aCGH in the screening of congenital disorders.

MATERIALS AND METHODS

Subjects

We constructed a consortium of 23 medical institutes and hospitals in Japan, and
recruited 536 Japanese patients with MCA/MR of unknown etiology from July
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2005 to January 2010. All the patients were physically examined by an expert in
medical genetics or a dysmorphologist. All showed a normal karyotype by
conventional approximately 400-550 bands-level G-banding karyotyping. Geno-
mic DNA and metaphase chromosomes were prepared from peripheral blood
lymphocytes using standard methods. Genomic DNA from a lymphoblastoid cell
line of one healthy man and one healthy woman were used as a normal control for
male and female cases, respectively. All samples were obtained with prior written
informed consent from the parents and approval by the local ethics committee
and all the institutions involved in this project. For subjects in whom CNV was
detected in the first or second screening, we tried to analyze their parents as many
as possible using aCGH or fluorescence in situ hybridization (FISH).

Array-CGH analysis
Among our recently constructed in-house BAC-based arrays,?? we used two
arrays for this two-stage survey. In the first screening we applied a targeting
array, ‘MCG Genome Disorder Array’ (GDA). Initially GDA version 2, which
contains 550 BACs corresponding to subtelomeric regions of all chromosomes
except 13p, 14p, 15p, 21p and 22p and causative regions of about 30 diseases
already reported, was applied for 396 cases and then GDA version 3, which
contains 660 BACs corresponding to those of GDA version 2 and pericentro-
meric regions of all chromosomes, was applied for 140 cases. This means that a
CNV detected by GDA is certainly relevant to the patient’s phenotypes.
Subsequently in the second screening we applied ‘MCG Whole Genome
Array-4500" (WGA-4500) that covers all 24 human chromosomes with 4523
BACs at intervals of approximately 0.7 Mb to analyze subjects in whom no
CNV was detected in the first screening. WGA-4500 contains no BACs spotted
on GDA. If necessary, we also used ‘MCG X-tiling array’ (X-array) containing
1001 BAC/PACs throughout X chromosome other than pseudoautosomal
regions.'2 The array-CGH analysis was performed as previously described.'>>}
For several subjects we applied an oligonucleotide array (Agilent Human
Genome CGH Microarray 244K; Agilent Technologies, Santa Clara, CA, USA)
to confirm the boundaries of CNV identified by our in-house BAC arrays. DNA
labeling, hybridization and washing of the array were performed according to
the directions provided by the manufacturer. The hybridized arrays were
scanned using an Agilent scanner (G2565BA), and the CGH Analytics program
version 3.4.40 (Agilent Technologies) was used to analyze copy-number
alterations after data extraction, filtering and normalization by Feature Extrac-
tion software (Agilent Technologies).

Fluorescence in situ hybridization
Fluorescence in situ hybridization was performed as described elsewhere?® using
BACs located around the region of interest as probes.

RESULTS

CNVs detected in the first screening

In the first screening, of 536 cases subjected to our GDA analysis,
54 (10.1%) were determined to have CNV (Figure 1; Tables 1 and 2).

1%t Screening using GDA

2 Screening using WGA-4500

536 cases 349 cases
Pathogenic CNV Pathogenic CNV
54 cases (10.1%) 48 cases (13.8%) VOUS
6 cases (1.7%)

no CNV
482 cases (89.9%)

Figure 1 Percentages of each screening in the current study.

349 negative cases

Benign CNV
9 cases (2.6%)

no CNV
286 cases (81.9%)
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Table 1 A total of 40 cases with CNV at subtelomeric region(s) among 54 positive cases in the first screening

Position where CNV detected

Gender Loss Gain Corresponding disorder’ OMIM or citation Parental analysis®

M 1p36.33 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1q44 Chromosome 1q43-q44 deletion syndrome #612337

F 2q37.3 2q37 monosomy® Shrimpton et al.?

F 2g37.3 2q37 monosomy© Shrimpton et a/.24

M 3q29 Chromosome 3929 deletion syndrome #609425

F 5p15.33p15.32 Cri-du-chat syndrome #123450

M 5335.2q35.3 Chromosome 5q subtelomeric deletion syndrome Rauch et al.?5

F 6p25.3 Chromosome 6pter-p24 deletion syndrome #612582

M 7q36.3 7q36 deletion syndrome® Horn et al.2®

F 7q36.3 7q36 deletion syndrome® Horn et al.2®

M 9p24.3p24.2 Chromosome 9p deletion syndrome #158170

F 9q34.3 Kleefstra syndrome #610253

F 10g926.3 Chromosome 10g26 deletion syndrome #609625

F 16p13.3 Chromosome 16p13.3 deletion syndrome #610543

F 22q13.31 Chromosome 22q13 deletion syndrome #606232

M 22q13.31q13.33 Chromosome 22q13 deletion syndrome #606232

(] 15q26.3 15q overgrowth syndrome® Tatton-Brown et al.?’

F 15q26.3 15q overgrowth syndrome® Tatton-Brown et a/.2”

M 21q22.13q22.3 Down's syndrome (partial trisomy 21) #190685

M Xp22.33 A few cases have been reported; e.g. V5-130 in Lu et a/.28

M Xq28 Chromosome Xq28 duplication syndrome #300815

F 1qa4 Chromosome 1g43-g44 deletion syndrome #612337
Bp23.2p23.3

M 3p26.3 3p deletion syndrome? Fernandez et al.??
12p13.33p11.22

F 3p26.3 3p deletion syndrome Fernandez et a/.2°
16pl3.3 Chromosome 16p13.3 duplication syndrome #613458

F 4q35.2 4q- syndromed Jones et a/.30
7q36.3

M 5p15.33 Cri-du-chat syndrome #123450
20p13

M 5pl15.33p15.32 Cri-du-chat syndrome #123450
2p25.3

F 6q27 6q terminal deletion syndrome? Striano et al.3!
1125 ’

F 6q27 6q terminal deletion syndrome? Striano et al.3!
8q24.3

M 7936.3 7q36 deletion syndrome Horn et al.26 dn
1q44

M 9p24.3p24.2 Chromosome 9p deletion syndrome #158170
7936.3

F 10p15.3p15.2 Chromosome 10p terminal deletion? Lindstrand et a/.3? pat
7p22.3p22.2

M 10p15.3 Chromosome 10p terminal deletion? Lindstrand et al.3?
2p25.3

M 10g26.3 Chromosome 10g26 deletion syndrome #609625
2q37.3 Distal trisomy 2q“ Elbracht et a/.33

M 18q23 Chromosome 18q deletion syndrome #601808
7q36.3

F 22q13.31q13.33 Chromosome 22q13.3 deletion syndrome #606232 pat
17q25.3 One case was reported Lukusa et a/.3%

M Xp22.33/Yp11.32 Contiguous gene-deletion syndrome on Xp22.3¢° Fukami et al.?®
Xq27.3q28 Chromosome Xg28 duplication syndrome

Abbreviations: F, female; CNV, copy-number variant; M, male; OMIM, Online Mendelian Inheritance in Man; dn, de novo CNV observed in neither of the parents
aThe name of disorder is based on entry names of OMIM, expect for entry names in DECIPHER and description in each cited article

bpat, father had a balanced translocation involved in corresponding subtelomeric regions.

“Entry names in DECIPHER
9Description in each cited article
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All the CNVs detected in the first screening were confirmed by FISH.
Among the positive cases, in 24 cases one CNV was detected. All the
CNVs corresponded to well-established syndromes or already
described disorders (Table 1). In 16 cases two CNVs, one deletion
and one duplication, were detected at two subtelomeric regions,
indicating that one of parents might be a carrier with reciprocal
translocation involved in corresponding subtelomeric regions, and at
least either of the two CNVs corresponded to the disorders. We also
performed parental analysis by FISH for three cases whose parental
samples were available, and confirmed that in two cases the sub-
telomeric aberrations were inherited from paternal balanced translo-
cation and in one case the subtelomeric aberrations were de novo
(Table 1). In the other 14 cases, CNVs (25.9%) were detected in
regions corresponding to known disorders (Table 2).

CNVs detected in the second screening and assessment of the CNVs
Cases were subject to the second screening in the order of subjects
detected no CNV in the first screening, and until now we have
analyzed 349 of 482 negative cases in the first screening. In advance,
we excluded highly frequent CNVs observed in healthy individuals
and/or in multiple patients showing disparate phenotypes from the
present results based on an internal database, which contained all
results of aCGH analysis we have performed using WGA-4500, or
other available online databases; for example, Database of Genomic
Variant (http://projects.tcag.ca/variation/). As a result, we detected 66
CNVs in 63 cases (Figure 1; Table 3). Among them, three patients
(cases 36, 42 and 44) showed two CNVs. All the CNVs detected in the
second screening were confirmed by other cytogenetic methods
including FISH and/or X-array. For 60 cases, we performed FISH
for confirmation and to determine the size of each CNV. For five cases,
cases 13, 36, 48, 57 and 63, with CNVs on the X chromosome, we used
the X-array instead of FISH. For cases 4, 6, 16—19 and 34, we also used
Agilent Human Genome CGH Microarray 244K to determine the
refined sizes of CNVs. The maximum and minimum sizes of each
CNV determined by these analyses are described in Table 3.

Well-documented pCNVs emerged in the second screening

CNVs identified for recently established syndromes. We assessed the
pathogenicity of the detected CNVs in several aspects (Figure 2)213738
First, in nine cases, we identified well-documented pCNVs, which are
responsible for syndromes recently established. A heterozygous deletion at
1q41—q42.11 in case 2 was identical to patients in the first report of
1g41g42 microdeletion syndrome.* Likewise a CNV in case 3 was identical
to chromosome 1g43—q44 deletion syndrome (OMIM: #612337),%¥ a CNV
in case 4 was identical to 2q23.1 microdeletion syndrome,*! a CNV in case
5 was identical to 14q12 microdeletion syndrome*? and a CNV in case 6
was identical to chromosome 15q26-qter deletion syndrome (Drayer’s
syndrome) (OMIM: #612626).4* Cases 7, 8 and 9 involved CNVs of
different sizes at 16p12.1-p11.2, the region responsible for 16p11.2-p12.2
microdeletion syndrome.*#5 Although an interstitial deletion at 1p36.23-
p36.22 observed in case 1 partially overlapped with a causative region of
chromosome 1p36 deletion syndrome (OMIM: #607872), the region
deleted was identical to a proximal interstitial 1p36 deletion that was
recently reported.® Because patients with the proximal 1p36 deletion
including case 1 demonstrated different clinical characteristics from cases of
typical chromosome 1p36 deletion syndrome, in the near term their
clinical features should be redefined as an independent syndrome. %

CNVs containing pathogenic gene(s). In four cases we identified
pCNVs that contained a gene(s) probably responsible for phenotypes.
In case 10, the CNV had a deletion harboring GLI3 (OMIM: *165240)

Two-stage aCGH analysis for patients with MCAMR
S Hayashi et !

Table 2 Other cases among 54 positive cases in the first screening

Position where CNV detected

Gender Gain Loss Corresponding disorder OMiM
F 4pl6.3 Ring chromosome

4q35.2
M 3q22.323 BPES #110100
M 2q22.3 ZFHX1B region *605802
M 4q22.1 Synuclein (SNCA) region  *163890
F 7p21.1 Cramosynostosis, type 1 #123100
F 7q11.23 Witliams syndrome #194050
F 8q923.3924.11 Langer-Giedion syndrome  #150230
M 15q11.2g13.1 Prader-Will/Angelman #176270/

#105830

F 17pll1.2 Smith-Magenis syndrome  #182290
M 17q11.2 Neurofibromatosis, type | +162200
M 22ql11.21 DiGeorge syndrome #188400
F 22q11.21 DiGeorge syndrome #188400
F Xp22.31 Kallmann syndrome 1 +308700
F Whole X Mosaicism

Abbreviations: CNV, copy-number vanant; F, female; M, male; OM{M, Online Mendehan
Inheritance in Man

accounting for Greig cephalopolysyndactyly syndrome (GCS; OMIM:
175700).*” Although phenotypes of the patient, for example, pre-axial
polydactyly of the hands and feet, were consistent with GCS, his severe
and atypical features of GCS, for example, MR or microcephaly, might
be affected by other contiguous genes contained in the deletion 3
Heterozygous deletions of BMP4 (OMIM: *112262) in case 11 and
CASK (OMIM: *300172) in case 13 have been reported previously,*>5¢
In case 12, the CNV contained YWHAE (OMIM: *605066) whose
haploinsufficiency would be involved in MR and mild CNS dysmor-
phology of the patient because a previous report demonstrated that
haploinsufficiency of ywhae caused a defect of neuronal migration in
mice’! and a recent report also described a microdeletion of YWHAE
in a patient with brain malformation.>?

Recurrent CNVs in the same regions. We also considered recurrent
CNVs in the same region as pathogenic; three pairs of patients had
overlapping CNVs, which have never been reported previously. Case
16 had a 3.3-Mb heterozygous deletion at 10q24.31—q25.1 and case 17
had a 2.0-Mb deletion at 10q24.32-q25.1. The clinical and genetic
information will be reported elsewhere. Likewise, cases 14 and 15 also
had an overlapping CNV at 6q12—ql4.1 and 6q14.1, and cases 18 and
19 had an overlapping CNV at 10pl12.1-p11.23. Hereafter, more
additional cases with the recurrent CNV would assist in defining
new syndromes.

CNVs reported as pathogenic in previous studies, Five cases were
applicable to these criteria. A deletion at 3p21.2 in case 20 overlapped
with that in one case recently reported.>® The following four cases had
CNVs reported as pathogenic in recent studies: a CNV at 7p22.1 in
case 21 overlapped with that of patient 6545 in a study by Friedman
et al,"* a CNV at 14q11.2 in case 22 overlapped with those of patients
8326 and 5566 in Friedman et al,'* a CNV at 17q24.1-q24.2 in case 23
overlapped with that in patient 99 in Buysse ef al.>* and a CNV at
19p13.2 in case 24 overlapped with case P11 in Fan et al.%°

Large or gene-rich CNVs, or CNVs containing morbid OMIM
genes.  In cases inapplicable to the above criteria, we assessed CNVs

113
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Figure 2 A flowchart of the assessment of CNVs detected in the second screening.

from several aspects. A CNV that contains abundant genes or is large
(>3 Mb) has a high possibility to be pathogenic.?! The CNVs in cases
25-30 probably correspond to such CNVs. Also, we judged a CNV
containing a morbid OMIM gene as pathogenic:’' TBRI (OMIM:
*604616) in case 31,6 SUMFI (OMIM: *607939) in case 32,538
SEMA3A (OMIM: *603961) in case 33,°° EMLI (OMIM: *602033)
and/or YYI (OMIM: *600013) in case 34,50%! A2BPI (OMIM:
*605104) in case 35°2 and ILIRAPLI (OMIM: *300206) in case
36.5% Several previous reports suggest that these genes are likely to
be pathogenic, although at present no evidence of a direct association
between these genes and phenotypes exists.

CNVs de novo or X maternally inherited. Among the remaining
27 cases, 12 cases had CNVs considered pathogenic as their CNVs
were de novo (cases 37-47) or inherited del(X)(p11.3) from the
mother (case 48). In the second screening we performed FISH for
36 CNVs of the 34 cases whose parental samples were available to
confirm that 24 cases had de novo CNVs, which were probably
pathogenic. A CNV in case 48, a boy with a nullizygous deletion at
Xp11.3 inherited from his mother, was also probably relevant to his
phenotype (Tables 3 and 4). Meanwhile, although case 57 was a boy
with a deletion at Xp11.23 inherited from his mother, he was clinically
diagnosed with Gillespie syndrome (OMIM: #206700) that was
reported to show an autosomal dominant or recessive pattern,®
thus we judged that the deletion was not relevant to his phenotype.
As a result, cases 49-57 had only CNVs inherited from one of their
parents which are likely to be unrelated to the phenotypes; that is,
bCNV (Table 4).

As a result, we estimated that 48 cases among 349 analyzed (13.8%)
had pCNV(s) in the second screening (Table 3; Figure 2). The CNVs
of the remaining six cases, cases 58-63, were not associated with
previously reported pathogenicity and their inheritance could not be
evaluated, thus we estimated they were variants of uncertain clinical
significance (VOUS).*®

DISCUSSION
Because aCGH is a high-throughput technique to detect CNVs rapidly
and comprehensively, this technique has been commonly used for

analyses of patients with MCA and/or MR.*®5-68 However, recent
studies of human genomic variation have uncovered surprising
properties of CNV, which covers 3.5-12% of the human genome
even in healthy populations.'®2%%° Thus analyses of patients with
uncertain clinical phenotypes need to assess whether the CNV is
pathogenic or unrelated to phenotypes.?! However, such an assess-
ment may diminish the rapidness or convenience of aCGH.

In this study, we evaluated whether our in-house GDA can work
well as a diagnostic tool to detect CNVs responsible for well-
established syndromes or those involved in subtelomeric aberrations
in a clinical setting, and then explored candidate pCNVs in cases
without any CNV in the first GDA screening. We recruited 536 cases
that had been undiagnosed clinically and studied them in a two-stage
screening using aCGH. In the first screening we detected CNVs in
54 cases (10.1%). Among them, 40 cases had CNV(s) at subtelomeric
region(s) corresponding to the well-established syndromes or the
already described disorders and the other 14 cases had CNVs in
the regions corresponding to known disorders. Thus about three
quarters of cases had genomic aberrations involved in subtelomeric
regions. All the subtelomeric deletions and a part of the subtelomeric
duplications corresponded to the disorders, indicating that especially
subtelomeric deletions had more clinical significance compared to
subtelomeric duplications, although the duplication might result in
milder phenotypes and/or function as a modifier of phenotypes.”
Moreover, parental analysis in three cases with two subtelomeric
aberrations revealed that two of them were derived from the parental
balanced translocations, indicating that such subtelomeric aberrations
were potentially recurrent and parental analyses were worth
performing. Recently several similar studies analyzed patients with
MCA/MR or developmental delay using a targeted array for sub-
telomeric regions and/or known genomic disorders and detected
clinically relevant CNVs in 4.4-17.1% of the patients 28657071
Our detection rate in the first screening was equivalent to these
reports, Although such detection rates depend on the type of
microarray, patient selection criteria and/or number of subjects,
these results suggest that at least 10% of cases with undiagnosed
MCA/MR and a normal karyotype would be detectable by targeted
array.
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Table 4 Parental analysis of 34 cases in the second screening

CNV Size of CNV (bp)
Clinical Protein-coding Parental
Case Gender diagnosis del/dup Position Min. Max. genes analysis Pathogenicity
1 M MCA/MR del 1p36.23p36.22 1670237 2558590 32 de novo P
2 M MCA/MR del 1q41q42.11 5001 798 6481439 35 de novo P
7 M MCA/MR del 16pl2.1pl11.2 2816866 5648152 138 de novo P
8 M MCA/MR del 16pl1.2 951773 4258984 134 de novo . P
with CHD
10 M MCA/MR del 7p14.2p13 8516513 9421233 70 de novo P
11 F MCA/MR del 14922.1q22.3 2746662 3089980 18 de novo P
12 M MCA/MR del 17q13.3 930940 1018839 22 de novo P
13 M MCA/MR del Xpll.4p11.3 4034171 4103418 9 de novo P
14 M MCA/MR del 6ql2ql4.1 14194 290 16071847 56 de novo P
18 M MCA/MR del 10g24.31q25.1 33455095 3368825 66 de novo P
19 M MCA/MR del 10q24.32g25.1 2077638 2093622 41 de novo P
21 M MCA/MR del 7p22.1 341762 3223668 28 de novo P
24 M SMS susp. del 19p13.2 1719919 3304902 23 de novo P
37 F MCA/MR del 1p34.3 1128084 1753514 7 de novo P
38 M MCA/MR dup 1925.2 338801 771348 de novo P
39 M MCA/MR del 2p24.1p23.3 3721550 8376636 86 de novo P
40 F MCA/MR del 3p26.1p25.3 1433024 1835660 18 de novo P
41 M MCA/MR del 3p22.1p21.31 5893173 7832879 123 de novo P
42° M MCA/MR del 8q21.11q21.13 5289394 5770485 12 de novo P
422 M MCA/MR del 3pl4.3pl4.2 593434 1517 140 11 Maternal B
43 M MCA/MR del 3q26.31q26.33 4081515 6002971 12 de novo P
44° M MCA/MR del 13q13.2q13.3 917819 1458769 1 de novo P
44° M MCA/MR del 22ql1.21 917819 1458769 15 Paternal B
45 F Rett syndrome del 18q21.2 2121913 3642522 9 de novo P
46 M MCA/MR dup 19p13.3 2041395 2404096 113 de novo P
47 F MCA/MR del 19p13.3 816079 2037409 23 de novo P
48°¢ M MCA/MR del Xpll.3 2362422 2392511 18 Maternal P
49 M MCA/MR dup 3p26.3 176 050 250850 1 Paternal B
50 M MCA/MR dup 5pl4.3 170578 1752211 1 Paternal B
51 M MCA/MR dup 5q13.3 1020329 1421706 3 Maternal B
52 M MCA/MR dup 7p22.3 568 1101943 12 Maternal B
53 F MCA/MR dup 8p23.2 838610 2648539 1 Paternal B
54 M MCA/MR dup 9q33.1 162612 1030807 2 Paternal B
55 F MCA/MR dup 10q22.3 154 664 873124 1 Maternal B
56 M MCA/MR dup 12q21.31 152042 4843434 3 Paternal B
57 M Gillespie del Xp11.23 104 191 115604 3 Maternal B
syndrome

Abbreviations: B, benign; CNV, copy-number variant; F, female; M, male; MCA/MR, multiple congenital anomalies and mental retardation; P, pathogenic

aTwo CNVs were detected in case 42.
bTwo CNVs were detected in case 44.
“Nullizygous deletion inherited from his mother probably affected the phenotype

Another interesting observation in the first screening was that
subtelomeric rearrangements frequently occurred even in patients
with MCA/MR of uncertain whose karyotype had been diagnosed as
normal. This result may be consistent with a property of subtelomeric
regions whose rearrangements can be missed in conventional karyo-
typing,”? and in fact other techniques involving subtelomeric FISH or
MLPA also identified subtelomeric abnormalities in a number of
patients with MCA and/or MR in previous reports.”®’37# Qur result
may support the availability of prompt screening of subtelomeric
regions for cases with uncertain congenital disorders.

In the second screening we applied WGA-4500 to 349 cases to
detect 66 candidate pCNVs in 63 cases (18.1%), and subsequently
assessed the pathogenicity of these CNVs. The pCNVs included nine
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CNVs overlapping identical regions of recently recognized syndromes
(cases 1-9; deletion at 1p36.23-p36.22, 1q41-q42.11, 1q43—q44,
2q23.1, 14ql2, 15q26-qter and 16pl1.2—pl2.2, respectively), four
CNVs containing disease-associated genes (cases 10-13; GLI3,
BMP4, YWHAE and CASK, respectively), three pairs of CNVs of
recurrent deletions (cases 14, 15: at 6q12—ql4.1 and 6q14.1; case 16,
17: at 10pl12.1-p11.23 and case 18, 19: at 10q24.31-q25.1 and
10q24.32—q25.1), five CNVs identical to pCNVs in previous studies
(cases 20-24), six large and/or gene-rich CNVs (cases 25-30) and six
CNVs containing a morbid OMIM gene (cases 31-36). For the
remaining cases, we estimated the pathogenicity of the CNVs from
a parental analysis (Table 4). We judged the 11 de novo CNVs
(cases 37-47) and 1 CNV on chromosome Xpl1.3 inherited from
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the mother (case 48) as probably pathogenic. And nine inherited
CNVs (cases 49-57) were probably benign. The clinical significance of
CNVs in the other six cases, cases 58—63, remains uncertain {VOUS).
As a result we estimated CNVs as pathogenic in 48 cases among 349
cases (13.8%) analyzed in the second screening. None of the pCNVs
comresponded to loci of well-established syndromes. This may suggest
that our two-stage screening achieved a good balance between rapid
screening of known syndromes and investigation of CNV of uncertain
pathogenicity.

Table 5 Summary of parental analyses

Average size (bp}
The average number of
Min. Max. protein-coding genes

Pathogenic CNVs?

del 23 3309267 4597689 43

dup 2 1190098 1587722 61

Total 25 3139733 4356892 44
Benign CNVs®

del 3 538481 1030504 10

dup 8 334432 1740327 3

Total 11 390082 1546739 5
A on: CNV, copy ber variant.

*Twenty-four de novo CNVs and case 48.
SEleven inherited CNVs other than case 48.

Two-stage aCGH analysis for patients with MCAMR
S Hayashi et 8/

Among the cases with parental analyses, the 25 pCNVs had larger
sizes and contained more protein-coding genes (average size, 3.1 Mb at
minimum to 4.4 Mb at maximum; average number of genes, 44) as
compared with the 11 inherited bCNVs that were probably unrelated
to phenotypes (average size, 0.39Mb at minimum to 1.5Mb at
maximum; average number of genes, 5) (Table 5). Although all of
the 25 pCNVs except 2 were deletions, about three quarters (8 of 11
cases) of the inherited bCNVs were duplications (Table 5). These
findings are consistent with previously reported features of pCNVs
and bCNVs, 2138

We also compared our current study with recent aCGH studies
meeting the following conditions: (1) a microarray targeted to whole
genome was applied; (2) patients with MCA and/or MR of uncertain
etiology, normal karyotype and the criteria for patients selection were
clearly described; (3) pathogenicity of identified CNVs were assessed.
On the basis of the above criteria, among studies reported in the past 5
years, we summarized 13 studies (Table 6).!0!415.175435.7581 yja0.
nostic yield of pCNVs in each study was 6.3-16.4%, and our current
diagnostic yield of the second screening was 13.8%. Though cases with
subtelomeric aberration detected in the first screening had been
excluded, our diagnostic yield was comparable to those of the reported
studies. It is not so important to make a simple comparison between
diagnostic yields in different studies as they would depend on the
conditions of each study, for example, sample size or array resolu-
tion,*®82 however it seems interesting that the higher resolution of a
microarray does not ensure an increase in the rate of detection of
pCNVs. One recent study showed data that may explain the discre-
pancy between the resolution of microarray and diagnostic yield.>#83
The authors analyzed 1001 patients with MCA and/or MR using one

Table 6 Previous studies of analyzing patients with MCA and/or MR using aCGH targeted to whole genome

Applied array Patients Fathogenic CNV

Author (year) Type Number Distributior® Number Type of disorders Number %
Schoumans et al.”5 BAC 2600 1.0 Mb* 41 MCA and MR 4 98
de Vries et al.’8 BAC 32477 Tiling 100 MCA and/or MR 10 10.0
Rosenberg et al.”” BAC 3500 1.0Mb* 81 MCA and MR 13 16.0
Krepischi-Santos et /.78 BAC 3500 1.0Mb* 95 MCA and/or MR 15 15.8
Friedman et al.!* SNP Affymetrix 100K 23.6kb™* 100 MR 11 11.0
Thuresson et al.”® BAC 1.0 Mb* 48 MCA and MR 3 6.3
Wagenstaller et a/.8¢ SNP Affymetrix 100K 23.6kb** 67 MR 11 16.4
Fan et al.55 Oligo Agilent 44K 24kb-43kb** 100° MCA and MR, Autism 15¢ 15.0
Xiang et al.!® Oligo Agilent 44K 24kb-43kb** 40° MR, DD and autism 3 7.5
Pickering et /.10 BAC 2600 1 Mb* 354" MCA and/or MR 368 10.2
McMullan et al.!? SNP Affymetrix 500K 2.5kb-5.8kb** 120 MCA and/or MR 18 15.0
Bruno et a/8! SNP Affymetrix 250K 2.5kb-5.8kb** 117 MCA and/or MR 18 15.4
Buysse et al.>* BAC 3431 1 Mb* 298 MCA and/or MR 26 87

Oligo Agilent 44K 24kb-43kb** 703 MCA and/or MR 74 105
Our current study BAC 4523 0.7Mb 349 MCA and MR 48 138
Total 2613 305 11.7

Abbreviations: BAC, bacterial artificial chromasome; CNV, copy-number variant; DD, developmental delay; MCA, multiple congenital anomalies: MR, mental retardation; SNP, single nucleotide

polymorphism.

3The number of ciones or name of array is descnbed.

®Each distribution referred ta each article (*) or manua! of each manufacturer (**).
All cases were analyzed by both a targeted array and a genome-wide array.

9n five cases, CNVs were also identified by a targeted array,

Ten cases with an abnormal karyotype were excluded.

'Only cases studied with an array throughout the genome are described. Ninety-eight cases were also analyzed by a targeted array.

#Seventeen cases with an abnormal karyotype were excluded
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