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these mice, BIN1 and T-tubule defects preceded the
appearance of muscle weakness. Similar BINI and
T-tubule/triad defects appear as common features of the
different CNM forms due to mutations in MTM 1, BINI, or
DNM?2 in humans, suggesting that these proteins func-
tionally interact. In agreement, Dowling et al. [11] recently
showed that DHPR and RYRI1 labeling was aberrant in
three XLMTM patients. In both mtml zebrafish morphants
and in our present study on CNM patients, electron
microscopy showed some defects in the triad structure.
BINI accumulations around or between centralized nuclei
were observed in patients with BINI and MTMI mutations
(Figs. 5, 6). Surprisingly, triad and BIN1 defects were
marked in DNM2-mutated patients’ biopsies, where DHPR,
RYR1, and BIN1 were all distributed in a longitudinal
orientation in contrast to their typical transverse pattern in
normal skeletal muscle. As DNM2-mutated patients studied
here are adults, these defects may have accumulated with
time, suggesting the implication of DNM2 in the mainte-
nance of triad organization.

Taken together, our findings suggest that the three forms
of CNM share a common pathogenetic mechanism where
BIN1 may represent a molecular link between myotubul-
arin and dynamin 2 in skeletal muscle. MTM I encodes a P1
phosphatase, and the skeletal muscle-specific exon of BINI
encodes a PI-binding domain. Moreover, BIN1 and DNM2
are well-known interactors in cultured cells although this
molecular link remains to be explored in skeletal muscle.
We hypothesize that MTMI regulates the level and
localization of specific PIs that either bind to BINI or
serve as substrates to produce the PI that specifically binds
BIN1. Amphiphysins have been shown to bind preferen-
tially to PtdIns(4,5)P, rather than substrates and product
of myotubularin activity (PtdIns3P, PtdIns(3,5)P,, and
PtdIns5P) [5, 21, 24, 43, 46]. Once membranes are
remodeled by the action of BIN1, DNM2 may direct the
adequate organization of the triads and/or their mainte-
nance through cytoskeleton regulation. Indeed, DNM2 is a
microtubule-binding protein which also plays a role in
actin cytoskeleton assembly [42, 48]. An alternative
hypothesis is the participation of BIN1 for the delivery of
DHPR ion channels to the T-tubules as suggested recently
by Hong et al. [17] based on their results in cardiac
myocytes. Whether this mechanism is present in skeletal
muscle remains to be determined.

In conclusion, BIN1 skeletal muscle isoforms appear to
play an important role in triad formation, and this function
is altered in several forms of centronuclear myopathies,
where BIN1 and triad organization defects define a com-
mon pathogenetic mechanism. Molecular dissection of the
roles of BIN1, myotubularin, and dynamin 2 in skeletal
muscle will be required to understand the precise regula-
tion of this pathway. Specifically, it will be important to

elucidate what other functions BIN1 has in addition to its
known role as a tumor suppressor.
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Abstract

Rimmed vacuoles in sporadic inclusion body myositis (s-IBM) contain nuclear remnants. We sought to determine if the nuclear
degeneration seen in s-IBM is associated with DNA damage. In muscle biopsy specimens from ten patients with s-IBM and 50 controls,
we immunolocalized 1) phosphorylated histone H2AX (y-H2AX), which is a sensitive immunocytochemical marker of DNA double-
strand breaks and 2) DNA-PK, which is an enzyme involved in double-strand break repair. In s-IBM, vacuolar peripheries often showed
strong immunoreactivity to y-H2AX and the three components of DNA-PK (DNA-PKcs, Ku70, and Ku80). A triple fluorescence study
of Ku70, emerin, and DNA displayed nuclear breakdown and it suggested impaired nuclear incorporation of Ku70. The percentage of
positive nuclei for y-H2AX was significantly higher in vacuolated fibers than non-vacuolated fibers in s-IBM, or fibers in polymyosits.
We hypothesize that a dysfunction of nuclear envelope may cause nuclear fragility, double-strand breaks and impaired nuclear transport

in s-IBM.
© 2011 Published by Elsevier B.V.

Keywords: Inclusion body myositis; Rimmed vacuole; DNA double strand breaks (DSB); Nuclear breakdown

1. Introduction

Sporadic inclusion body myositis (s-IBM) is the primary
cause of acquired myopathy in patients over 50-years old,
but no effective therapy has yet been found [1,2]. The histo-
pathological hallmarks of s-IBM consist of mononuclear
cell infiltration, muscle fibers with congophilic inclusions,
and rimmed vacuoles. Several studies showed nuclear com-
ponents in the rimmed vacuoles (e.g., a single-stranded
DNA binding protein of nuclear origin [3], emerin [4,5],
lamin A/C [4] and histone H1 with DNA [5]). The findings

* Corresponding author. Address: Department of Neurology, Osaka
City General Hospital, 2-13-22 Miyakojima hondori, Miyakojima-ku,
Osaka 534-0021, Japan. Tel.: +81 66929 1221, fax: 481 66929 1091.

E-mail addresses: s-nakano@hospital.city.osaka.jp, nakanos@takii.
kmu.ac.jp (S. Nakano).

0960-8966/$ - see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.nmd.2011.02.004

indicate that the vacuoles may result from nuclear
breakdown.

Terminally differentiated cells do not possess a replica-
tion-associated DNA repair mechanism, making them par-
ticularly sensitive to DNA damage [6]. Mature muscle cells
are such terminally differentiated cells. In a muscle cell cul-
ture study, the exposure of differentiated myocytes to
hydrogen peroxide resulted in the accumulation of foci of
phosphorylated histone H2AX (y-H2AX) [7], which is a
sensitive marker of a serious form of DNA damage,
DNA double strand breaks (DSB) [8]. DSB are produced
by reactive oxygen species (ROS), ionizing radiation, and
other genotoxic agents. Histone H2AX, a variant of his-
tone H2A, is rapidly phosphorylated at Ser 139 in the chro-
matin region surrounding a DSB [9]. Immunocytochemical
staining of y-H2AX has been broadly applied to reveal
DNA damage caused by cancer and other cellular stresses
[8,10]. DNA-PK is an enzyme involved in the initial step of
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the DSB repair process, non-homologous end joining
(NHEJ), which does not require DNA replication, and
therefore NHEJ is the predominant DNA repair mecha-
nism in terminally differentiated cells [11,12]. DNA-PK
consists of a catalytic subunit (DNA-PKcs) and two regu-
latory subunits (Ku70 and Ku80). The binding of hetero-
duplexes of Ku70 and Ku80 to DSB sites initiates the
repair process [13,14]. In the current paper, we examine
whether DSB are associated with myonuclear breakdown
in s-IBM.

Note that DSB is different from the apoptotic DNA frag-
mentation that has been scarcely detected in the s-IBM
muscles [15] In DSB, DNA breaks occur directly and
randomly by radiation or other genotoxic agents, whereas
apoptotic DNA fragmentation takes place at a late stage
of programmed cell death, in which endonucleases sever
DNA strands at regular lengths. Apoptotic DNA fragmen-
tation is not subject of repair or is not labeled with
anti-y-H2AX.

2. Materials and methods
2.1. Patients

We studied muscle biopsy specimens from 10 patients
(58-82 years old, 8 men and 2 women) who fulfilled the
clinical, electromyographic, and histopathological criteria
for s-IBM [16]. The muscle sections displayed cell infiltra-
tion surrounding non-necrotic fibers, congophilic inclu-
sions and rimmed vacuoles in each patient. All s-IBM
patients showed slowly progressive muscular symptoms
(disease duration: 3.8 + 2.9 years; mean = standard devia-
tion [SD], range: 0.5-9 years). None of these patients had
received immunotherapy before the muscle biopsy. Speci-
mens from five patients without pathologic alterations
served as non-pathologic controls. For controls of other
neuromuscular diseases, we used 45 muscle biopsies from
patients with polymyositis (» = 10), dermatomyositis (8),
dystrophinopathy (3), dysferlinopathy (3), mitochondrial
encephalomyopathy (5), myotonic dystrophy type I (1),
neurogenic muscular atrophy (5), oculopharyngeal muscu-
lar dystrophy (5), myopathy with autophagic vacuoles of
an undetermined etiology (1), rhabdomyolysis (1), hypoka-
lemic vacuolar myopathy (2), and colchicine myopathy (1).

The above diagnoses were based on a clinical examination,
family history, electromyography, and muscle biopsy stud-
ies. Polymyositis and dermatomyositis were diagnosed
using conventional criteria [17]. The polymyositis sections
contained several to many non-necrotic fibers surrounded
by mononuclear cells, and the dermatomyositis sections
demonstrated perifascicular atrophy or perimysial infiltra-
tion of inflammatory cells. This study was performed
with the compliance of the internal review board of our
institution.

2.2. Immunohistochemistry

Table 1 shows the primary antibodies applied and their
concentrations. Immunohistochemical studies were per-
formed as previously described [18]. Briefly, sections were
fixed in cold acetone and then in 4% paraformaldehyde
in 0.1 M phosphate buffer (pH 7.4) before being blocked
and incubated overnight at 4 °C with the primary antibody.
The sections were then incubated with a biotin-labeled sec-
ondary antibody and developed using the avidin—biotin
complex (ABC) immunoperoxidase method (Vector Labo-
ratories, Burlingame, CA) with 3,3’-diaminobenzidine as
the coloring agent. Next, the slides were lightly counter-
stained with hematoxylin for the quantitation of positive
nuclei. The control experiments involved the omission of
the primary antibody or the substitution of the primary
antibody for non-immune mouse or rabbit IgG. We immu-
nostained 12 or more sections from different individuals at
a time, and the duration of color development was fixed.
The specificity of antibodies for y-H2AX and Ku70 was
also tested in immunoblotting.

For triple-color immunofiuorescence studies, the sec-
tions were incubated with anti-Ku70 plus anti-emerin anti-
bodies followed by incubation with appropriate secondary
antibodies for triple fluorescence (Chemicon International,
Temecula, CA). The slides were mounted with Vectashield
(Vector) containing 1.5 pg/mL of the nuclear DNA marker
4',6-diamidino-2-phenylindole (DAPI) and examined with
confocal imaging using the LSM510-META system (Carl
Zeiss, Jena, Germany). As controls, we performed a sin-
gle-color fluorescence study using each antibody or DAPI
alone and confirmed the specificity of the secondary anti-
bodies and filters.

Table 1

List of primary antibodies.

Antigen Type Clone/ID Source Concentration
y-H2AX MMA JBW301 Upstate 1 pg/mL
Ku70 MMA 4C2-1A6 Abnova 1 pg/mL
Ku80 MMA 111 Abcam 1:500
DNA-PKcs RPA PC127 Calbiochem 5 pg/mL
Emerin RPA FL-254 Santa-Cruz Biotec 1 pg/mL
HNE MMA HNEJ-2 JalCA 20 pg/mL
iNOS RPA sc-651 Santa-Cruz Biotec 4 pg/mL
LAMP-2 MMA H4B4 Santa-Cruz Biotec 4 pg/mL

MMA: mouse monoclonal antibody; RPA: rabbit polyclonal antibody.
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2.3. Immunoelectron microscopy

Preembedding immunoelectron microscopy was per-
formed using the immunogold method with silver-enhance-
ment [19]. Cryostat sections, prepared from s-IBM biopsy
specimens that had been stored at —80 °C, were attached
to a slide glass, fixed in 4% paraformaldehyde, and incu-
bated with the anti-Ku70 antibody at a 100-fold dilution.
The sections were then incubated with a secondary anti-
body (goat IgG, Fab’ fragment) coupled with 1.4 nm gold
particles (Nanoprobes Inc., Yaphank, NY). The sample-
bound gold particles were then silver-enhanced using the
HQ-silver kit (Nanoprobes) at room temperature for 12—
14 min according to the manufacturer’s instructions. Then,
the samples were postfixed with 0.5% osmium oxide in
0.1 M phosphate-buffer at pH 7.4, before being dehydrated
in a graded series of ethanol (50%, 70%, 90%, and 100%)

and propylene oxide, and embedded in epoxy resin. Ultra-
thin sections were then cut, stained with uranyl acetate and
lead citrate, and examined with a JEM-1400A electron
microscope (JEOL Ltd., Tokyo, Japan).

2.4. Quantitation

For quantitation of the y-H2AX-positive myonuclei in
the non-pathologic controls, a mean of 342 randomly
selected photographed nuclei were inspected for each sam-
ple. In s-IBM, a mean of 42.3 vacuolated fibers were pho-
tographed per patient. For each vacuolated fiber, we
surveyed y-H2AX-positivity in vacuoles and nuclei. To
quantitate the positive nuclei in non-vacuolated fibers, we
analyzed a mean of 266 nuclei in 97 randomly selected
muscle fibers in each s-IBM patient. In polymyositis, we
analyzed a total of 1657 randomly selected myonuclei. In

st
e
5

Fig. 1. A-F: Localization of y-H2AX, which is induced upon the occurrence of DNA double-strand breaks (DSB); in controls (A-D); and sporadic
inclusion body myositis (s-IBM) (E-F). Immuno-peroxidase method, lightly counterstained with hematoxylin to localize nuclei. (A) non-pathologic
control, (B) perifascicular atrophy in dermatomyositis, (C) grouped atrophy in neurogenic muscular atrophy, and (D) oculopharyngeal muscular
dystrophy (OPMD). The myonuclei in A show no or trace immunoreaction to y-H2AX. The nuclei of the atrophic fibers in B and C are strongly positive
for y-H2AX. In D, the vacuoles in OPMD are negative for y-H2AX. In E & F, the vacuolar rims and myonuclei in s-IBM contain strongly positive y-
H2AX products. Some mononuclear cells in the inflammatory exudates in E are positive. G-I: Localization of the three components of DNA-PK (G:
Ku70, H: Ku80 and I: DNA-PKcs) in vacuolated fibers in s-IBM. Vacuolar peripheries and nuclei display positive immunoreactivity for each component
of DNA-PK. Bar = 50 ypm (A-D); 20 pm (E-).
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s-IBM DNA-PKcs, we examined a total of 393 vacuolated
fibers with 950 nuclei and 1953 myonuclei in non-vacuo-
lated fibers. As it was sometimes difficult to differentiate
between the nuclei of invading/surrounding mononuclear
cells and myonuclei, we excluded muscle fibers surrounding
inflammatory cells from the nucleus calculation. We cate-
gorized nuclei as positive when a brown color was clearly
discernible against lightly-stained hematoxylin.

3. Results

3.1. Increased expression of the DNA double strand break
(DSB) marker y-H2AX in s-IBM vacuolated fibers

In the non-pathologic controls, a small number of
myonuclei showed a weakly positive reaction to y-H2AX
(n=35; 6.0+1.8%, mean +standard deviation [SD].
Range: 3.97-8.05) (Fig. 1A). In polymyositis and dermato-
myositis, the nuclei in regenerating fibers were positive for
v-H2AX. The nuclei in perifascicular atrophic fibers in
cases of dermatomyositis were strongly positive (Fig. 1B),
and positive myonuclei were also found in other fibers in
polymyositis and dermatomyositis. A proportion of the
cells in inflammatory exudates were positive for y-H2AX.
In neurogenic muscular atrophy, strongly reactive nuclei
were usually found in atrophic angulated fibers (Fig. 1C),
and the nuclei at pyknotic nuclear clumps showed
increased reactivity for y-H2AX. In other neuromuscular
diseases, the nuclei at nuclear clumps such as those
observed in myotonic dystrophy showed increased reactiv-
ity for y-H2AX, and the nuclei in ragged-red fibers in mito-
chondrial encephalomyopathy and those of regenerating
fibers in various myopathies were strongly positive for y-
H2AX. Vacuoles in hypokalemic myopathy, myopathy
with autophagic vacuoles, colchicine myopathy, and
OPMD were negative for y-H2AX (Fig. 1D).

In s-IBM, a proportion of fibers contained vacuoles that
were partially or entirely lined by positive immunoreactiv-
ity (Fig. 1E and F). Table 2 shows the percentage of (1)

vacuolated fibers vs. total fibers and (2) fibers containing
v-H2AX positive vacuoles vs. total vacuolated fibers in
patients with s-IBM (n = 10; 74.0 + 13.0%, mean =+ SD).
The nuclei in vacuolated fibers displayed strong y-H2AX-
positive reactivity, and the percentage of positive nuclei
was significantly higher in vacuolated fibers than in non-
vacuolated fibers (Table 1) (p <0.01; paired Student’s t-
test). In polymyositis, the percentage of y-H2AX-positive
nuclei (n=10; 23.3 £+ 7.4%, mean + SD) was similar to
that in the non-vacuolated fibers in s-IBM, but lower than
that in the vacuolated fibers (p < 0.01; Student’s t-test).

The results of immunoblotting using this anti-y-H2AX
antibody showed several positive bands including ubiquiti-
nated forms of y-H2AX (Fig. 2) [20].

3.2. Detection of the DSB repair enzyme DNA-PK in s-IBM

In s-IBM, all of the DNA-PK components (DNA-PKcs,
Ku70, and Ku80) were found in vacuolar peripheries as
well as being strongly expressed in nuclei, consistent with
the results for y-H2AX (Fig. 1G, H and I). As for DNA-
PKcs, 70.6 4 14.0% (mean + SD) of vacuolated fibers con-
tained positive vacuoles for DNA-PKcs. The percentage of
positive nuclei for DNA-PKcs was significantly higher in
vacuolated fibers than in non-vacuolated fibers
(61.7 +10.6%, mean + SD, vs. 32.5+10.2%: p<0.01;
paired t-test). Ku70 was often found to form several round
or comma-shaped cytoplasmic inclusions in vacuolated
fibers and other fibers. We confirmed the relative localiza-
tion of Ku70, the nuclear envelope, and DNA in a triple-
fluorescence study in five patients with s-IBM, five patients
with polymyositis, and patients with other diseases. In pol-
ymyositis and other controls, Ku70 was confined to within
the emerin boundary, even when the Ku70-signal was very
intense (Fig. 3A). In vacuolated fibers in s-IBM, although
Ku70 was often localized to the nuclei, it was also found
in vacuolar peripheries, around the nuclei, and in the cyto-
plasm (Fig. 3B and C). In a few instances, cytoplasmic
Ku70-positive granules were associated with nuclear frag-

Table 2

Quantitation.

s-IBM Pt Vacuolated fibers/total y-H2AX positive fibers/vacuolated ~ Positive nuclei in

number fibers (%) fibers (%) Vacuolated fibers  Non-vacuolated
(%) fibers (%)

1 18.6 87.2 64.0 24.5

2 21.0 829 64.0 29.0

3 5.0 69.6 64.5 39.4

4 42 76.5 703 23.8

5 7.2 89.5 814 38.2

6 23.0 76.8 65.0 22.1

7 6.6 471 58.8 8.5

8 7.6 74.6 56.5 25.2

9 42 58.1 58.2 249

10 7.6 78.3 63.9 21.6

Mean + SD 105+7.3 74.0 +13.0 64.7+7.1 25.7+88

* The percentages for vacuolated fibers are significantly higher than those for non-vacuolated fibers (p < 0.01).
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y-H2AX Ku70 Immunoblotting of muscle homogenates with the anti-
MW (KD) Ku.70 anti.body showed a clear band around the molecular
_ 150 MW (kD) weight (Fig. 2).
—150
—100 —100 3.3. Localization of HNE, iNOS, and LAMP-2
—75 ~=76 . . . Sy
— e ROS is an inducer of DSB in muscle cells and oxidative
—50 ‘ stress may be associated with vacuolar formation [21], so
— —50 we tested 4-hydroxy-2-noennal (HNE), a product of lipid
peroxidation by ROS [22], and iNOS, a marker of oxida-
:: m_ —a7 tive stress that was previously found to be increased in vac-
—25 uolated fibers [21]. HNE and iNOS were increased not only
. —25 in some vacuolated fibers in s-IBM, but also in perifascicu-
s 1 lar atrophic fibers in dermatomyositis and ragged red
fibers. In non-vacuolated fibers in s-IBM, atrophic fibers
—10 —15 in neurogenic muscular atrophy, and pyknotic nuclear
clumps, the two ROS markers were not increased.
1 2 3 1 2 3 Several studies indicated that rimmed vacuoles are lyso-

Fig. 2. Tests for the antibody specificity in immunoblotting. Muscle
homogenates in control patients were segregated through polyacrylamide
gel electrophoresis and immunoblotted using anti-y-H2AX (left) and
Ku70 (right) antibodies. The molecular weights of y-H2AX and Ku70 are
15 kDa and 70 kDa, respectively. In y-H2AX, patient 1 and 2, the extra
bands between 25 kDa and 37 kDa correspond to the ubiquitinated forms

somes in origin [23,24]. In this study, we observed that vac-
uoles in s-IBM usually showed positive for the lysosome
marker LAMP-2, as described previously [23]. A dual fluo-
rescence study using antibodies against LAMP-2 and emer-
in showed frequent association of these two markers in the
vacuoles in s-IBM.

[19]. In Ku70, patient 1 and 2, positive bands appear around its molecular

weight.
3.4. Immuno-electron microscopy of Ku70

In the ultrastructural study of Ku70 in s-IBM, we
detected Ku70-positive granules in some nuclei. Ku70-posi-
tive granules were often found in the vacuolar spaces of

ments, indicating nuclear breakdown. Ku70-positive
deposits were sometimes found around intact nuclei
(Fig. 3D).

Fig. 3. Triple fluorescence study. Ku70 (red), emerin (green), and DNA (DAPI: blue). A: Regenerating fibers. B to D: s-IBM. A1-D1: overlay of the three
colors. A2-D2: emerin plus DNA. (A) Ku70-positive deposits are largely confined to the area surrounded by emerin. (B) A vacuolated fiber contains a
nucleus abutted by deposits of Ku70 (arrow head). Fragments of Ku70-positive deposits intermingle with remnants of emerin or DNA (arrows). The
figures indicate nuclear breakdown and impaired incorporation of Ku70 into the nucleus. (C) Muscle fibers with numerous cytoplasmic deposits of Ku70
and breaks in the nuclear envelope (arrows). (D) Ku70-positive deposits surrounding a nucleus with an intact circle of emerin. This figure shows that
nuclear import of Ku70 is impaired even in the early phase of nuclear breakdown in s-IBM. Bar =25 pm.
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Fig. 4. Immunoelectron microscopy of Ku70, a regulatory component of DNA-PK. (Al) Deposits of Ku70 in cytoplasmic spaces. (A2) Higher
magnification of Al. The positive reactivity may correspond to the cytoplasmic inclusion of Ku70 in immunofluorescence. (B1) Ku70 surrounding
electron-dense round bodies. (B2) Higher magnification of one body shows granular structures inside with a peripheral dense zone. According to the triple
fluorescence results, such as those shown in Fig. 2, the round body corresponds to a degenerating nucleus, and the electron micrograph may illustrate that
the nucleus cannot incorporate Ku70. Bar =1 pm (Al & B1), 200 nm (A2), 500 nm (B2).

various sizes, sometimes combined with degenerative
products (Fig. 4A). Ku70-positive products were also
found to be attached to something like degenerating
nuclear structures that contained no Ku70 (Fig. 3B), which
may have corresponded to nuclei surrounded by Ku70-
positive deposits in the immunofluorescence study
(Fig. 2B, arrowhead).

4. Discussion
4.1. Findings in s-IBM

In the current study, we showed that the percentage of
DSB-positive nuclei was significantly higher in vacuolated
fibers than in other fibers in s-IBM. This finding suggests
that nuclear breakdown along with the accumulation of
DSB occurs in muscle cells in s-IBM. Moreover, we
detected figures suggesting impaired nuclear import of
Ku70. Nuclear translocation of Ku proteins is important
location

caused hypersensitivity against X-ray irradiation due to
the lack of DBS repair in a cell culture study [25]. There-
fore, we hypothesize that defects in Ku70 nuclear import
accelerate DSB formation.

As DSB occur in other disease conditions without
nuclear breakdown, additional factors may be involved in
the nuclear changes seen in s-IBM. There is evidence that
nuclear envelope dysfunction can cause both mechanical
fragility of the nucleus and DNA damage. Lamins are pro-
teins of nuclear intermediate filaments that comprise the
lamina, the meshwork supporting inner nuclear mem-
branes. Mutations in the genes that encode lamins and
emerin (a lamin-associated protein) cause Emery—Dreifuss
muscular dystrophy and a number of different diseases col-
lectively called laminopathies [26]. In several laminopa-
thies, blebbing of the nuclei in cultured fibroblasts can be
seen, and it is hypothesized that such mutations result in
fragile and mechanically unstable nuclei [27]. Emerin muta-
tions can cause myopathy with rimmed vacuoles [28,29]
Besides structural integrity, the lamina is also involved in
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various other processes, such as replication and gene tran-
scription, which are intimately associated with DNA dam-
age repair. Accordingly, impaired DNA repair has been
found in several laminopathies. Fibroblasts possessing a
laminopathy mutation show an excessive amount of un-
repaired DNA damage, as evidenced by y-H2AX immuno-
histochemistry [30]. Furthermore, lamins are important in
the spatial rearrangement of nuclear pore complexes and
therefore nuclear protein transport. Nuclear protein import
is reduced in cells expressing lamin A mutants [31]. In the
current study, we detected figures suggestive of impaired
nuclear import of Ku70. Defects of nuclear import have
been suggested for the mechanism of cytoplasmic accumu-
lation of enzymes (e.g., ERK [32] and MKP-1 [33]) and
nuclear molecules (e.g., pElk-1 [5,32] and TDP-43 [34]) in
s-IBM. In summary, dysfunctional lamins can explain the
nuclear breakdown, accumulation of DSB, and impaired
nuclear transport observed in s-IBM. A specific stressor
predicted in this disease [35] may affect lamins or other
nuclear envelope components. Alternatively, the nuclear
envelope might become fragile by aging. Cell nuclei from
old individuals exhibit defects similar to those of cells from
Hutchinson—Gilford progeria syndrome, which is caused
by mutations of lamin A [36]. Likewise, nuclear pore com-
plexes are not turned over in differentiated cells, and age-
related alterations in nuclear pore complexes affect nuclear
integrity [37]. Moreover, several studies have indicated an
age-dependent decline in DNA repair capacity [38]. We
suspect that these age-associated changes in nuclear enve-
lope integrity and DNA repair mechanisms may predispose
the muscles of the elderly to s-IBM pathology. In this con-
text, the initial inducer of DSB in s-IBM muscle may be the
same as that in polymyositis.

We found products that were positive for the lysosome
marker LAMP-2 in rimmed vacuoles, indicating that they
also originate from lysosomes. Moreover, we found that
the LAMP-2-positive products were frequently associated
with emerin. These findings suggest the induction of
autophagy to process broken-down nuclei. In the muscle
of laminopathy patients and emerin-null mice, it has been
shown that autophagosomes/autolysosomes are involved
in the degradation of damaged nuclear components [39].

4.2. Findings in other diseases

Recent studies indicate an up-regulation of type 1 inter-
feron inducible proteins in dermatomyositis muscle with
perifascicular atrophy [40]. A prolonged stimulation of
type 1 interferon (B-interferon) induces ROS and DNA
damage response in culture study [41]. Therefore, the
strong myonuclear y-H2AX staining and excessive levels
of ROS found in perifascicular atrophy might correspond
with this hypothesis. The strong myonuclear y-H2AX
staining found in ragged red fibers may have been induced
by increased ROS caused by mitochondrial dysfunction.
Although the small angulated fibers show positive y-
H2AX reactivity, the majority of these fibers were negative

for HNE and iNOS. Our results suggest that y-H2AX his-
tochemistry is more sensitive to detect ROS injury than the
two markers or that other genotoxic stresses attack on
muscle cells during degeneration. Contrary to the case in
s-IBM, vacuoles in OPMD, which may originate from
the nucleus and show some histone H1-positivity [5], were
negative for y-H2AX. This result suggests that simple
nuclear breakdown does not induce DSB. We found a
strong y-H2AX reaction in a proportion of cells in inflam-
matory exudates. As DSB occurs during V(D)J recombina-
tion in lymphocyte development [11], y-H2AX-positive
cells may be active in gene recombination.
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BHEBICLIBHMPEETHL. ZRHERTII,
FERRAE R B 3 X N RRHEI A~ DY) ¥ N EROBRE A
HAohs, LIELEZHRAWETNVAYERAT 7
% — ¥ (alkaline phosphatase) Jefa CHREM %2 R~ 7.
B2 5 4% T 5 R B 3 o 5 WA 258 (perifascicu-
lar atrophy) 24FBIZEILE LTHIGRTWA.

BAOREGRTIE, BEEREOSHEEED
B, TESTSTLECHANRESNTET
BY, FhFhodifLBRK - REENELOR
BIZOWTEHEHIIhDDH 5.

HAGHRIBHEICALNLIERTHY, K
BAPUBERS & RIS ARBEEICR I NS, JREE
BICIE, SRR D) v BRBEICI R TR
Wy ZREZEDLI LB TH 5.

7. KRR

RN TOT A NVF—EEL, BIBOI b
¥ B 7 TOFRSE DT ISR E N T OfRER
IR B ML IR LTV A, EROR
HEOHERE 2T, LCHEERDD B, BR
3% I & (Pompe %) CldBtEa- 7V a v ¥ —¥R
BIZEYSAVY—2RITY) a—7 U HER
L, iR E - JERRLOARIE - ST 2R 7.
VAR, BERMTRESRBIIGR S N, BRHIZHO
EEEHB LT 5. FREABRARICIE VLCAD
(very long chain acyl-CoA dehydrogenase) K 8
7 CHERMAE 2 & - TRBHOE», EREN
HNV=F Y RIBEREZHET ¥V CoA BKERER
RIBIE: CIREEREI AN F —% - TR

SANF—

MhH5b.

8. AibiEER

FRBEVEVREBEICIY) LIFLIEHEEL X
729, HIRBRBE BB T i Tl E LB AL O f K
T LBEFY, RIEREEEP LIELIEEALNS.
FANTVT-ICLAHMTICI Y HBERSR
(mounding phenomenon) 25& b 4. IiiE CK fil
ZEAEREETHORMEZRT L0 H 5. FREH
FtE I FNF— IR OB HET 2R T
TEHEL, LECHEBEELET LI LD
5. JMiE CKEIZER BT T2 L0 5.
F 7o FRBRBRARAR T RE - JUMESE & B ICEREFHES
FEDAPEENB LI EPMON TV 5.

BREET NV FATO VETIZES ) T A ME %
XL TIANF—%22T 5. HRAOREELE
EZ BRI,

9. ¥ . BREESR

hERERTIIT VI MHEIFNF—R T
04 FIFNF—, RAFFVIFNNF—L LD
BEASE, T a— VI A8 F— 3B H e
IANF— - BMWESY YA A F— - 1BY
TN I—= WS FF— - TV T — VHRLEE &
Voo 8FELELRRBEEL. AT704 FIFN
F—ITHOEMA S L O TRHOHIET & fHFE
WERTAZ LA\, IMiE CK ZIEH T 2138
BEoLRIZEETE. RAFFVIFNF—IRY
F ¥ (HMG-CoA RITEEEMHER) OoWIRIZL Y
FREINLENGBBELET S, BLrE0aH
PERF LR 5.

BB, FICTANVABRSSHRTF
NCHFERBREDMEEINDL., T4 VARHRED
BER LT, az¥vyF—-xa—-- -4 7T
VHCHIV: XVERIA VAR ERAMLILTWY
A.

10. A 1o PO B R

BAEMEICUE S X O RROMREREL 27
5. PGWEEZBRA LD 0% REERBMN
BRBEE VS, 3V F xR NVEI—FLTWS
BIZTFERICL ) HREOREBNREIRIS L
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iR ARRBOZHTEE - RRME - BEEE

Ezohs, BIFHOMES VT A4 F VBEIC
0% - BT A EAIBENBUREIZT Hh
5.

Ay A ERHEEEAEORRAE LT
CACNAIS (calcium channel, voltage -dependent,
L type, alpha-1S subunit) B2 FOREVRES h
Twa. A7 A EEREMEREORE & L
‘Tt SCN4A (sodium channel, voltage-gated, type
IV, alpha subunit) BIZFOREFRE I LT
5. HHREERBOETHIF-EREIT7I4
ZT7EA—-OREFREICL S alelic 2RET
b5,

mE = ® |

B BEOFEICINA T, HHETIZX 2517
BEEL Lo HEEIEBIME (activities of daily living
ADL) #IRE - BETHREEEICL 2 BERBOKT
2 - PR TIC X AIlREREE - LAREE
THOFEGEETH 5.

FHE, — B ICHEF I BRA (manual muscle
testing : MMT) CeMlish b, 2721, ®BHET
DERVS LD, FAFEXA—F—REVTF
A—F—il X HERKFMENTICL DS, B
HiE MMT ICHBLTEBNTHELLEILN
A%, BHICIAEVEHL. Tz, MEEEHC

1390 W# Vol. 105 No. 6(2010)

L5 EBOFMbITbN A, ILiE CK EIXEE,
R D E K3 548, BT TR LAK
TTAIELIHERILETH L. CKEOHEMD
AbhEVEHKREDH S, I PV FYTHTIR
WENEL I OCBRTOLBO LABALRS.
R OFEIIIBERS CT XAV S, Kt
HERA T, RAESMOFEICH MRI BSEH TH
5,

BT REARAEM 13 Ui LIS RER T B RESS
Ao s, BWTHEEROBREFMCME, &
OKED ORERE~OY Y B 2 HW§ HBRIC
HHTH 5.

FEERERRZE R BRI A 2 AT & O PR AT REE
DERELZFET 5.

LDREEERECOHABER MHOERRE
RCLHEEORE LT 5. MBAILER
HTRREF P Y AFRARTF F (brain natriu-
retic peptide : BNP) DAL OBE L LTHFHT
b5.

X R

1) Walton JN, Nattrass FJ : On the classification, natural
history and treatment of the myopathies. Brain 77 :
169, 1954
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