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Figure 3. The synergistic effects of glucose and palmitate on ER stress and reduction of insulin signaling is attenuated by addition
of a chemical chaperon. (A) MIN6 cells were treated with either control 0.5% BSA or 400 UM palmitate+0.5% BSA at a concentration of 5, 10,
25 mM glucose for 8 hours. Total cell lysates were extracted at indicated time points and were subjected to Western blot analysis using anti-
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phospho-PERK (980Thr), anti-phopsho-elF2a (51Ser), and (B) MING cells were treated with either control 0.5% BSA or 400 uM palmitate+0.5% BSA at a
concentration of 5, 10, 25 mM glucose for 18 hours and blotted with anti-ATF3 and anti-CHOP antibodies. B-Actin was detected for loading control.
Tunicamycin treatment was control for ER stress. (C) Cells were treated with either 500 pg/ml NaCl (ionic control) or 500 pg/ml TUDCA 15-h prior to
beginning of palmitate treatment and then were co-treated with either 0.5% BSA or 400 uM palmitate+0.5% BSA with either 5 mM or 25 mM glucose
and NaCl or TUDCA for 24 h. Total cell lysates were subjected to Western blot analysis with antibodies to the indicated proteins. Densitometry of total
CHOP and cleaved Caspase3 and Pdx1 were measured and normalized over o-Tubulin, respectively. Densitometry of phospho-cJun was measured
and normalized over total JNK. The representative results of three individual experiments are shown. The effects on CHOP, cleaved Caspase3 and
phospho-cJun and Pdx1 protein are graphically illustrated. *p<0.05. (D) Cells were treated with either 500 pg/ml NaCl (ionic control) or 500 pg/ml
TUDCA 15-h prior to beginning of palmitate treatment and then were co-treated with either 0.5% BSA or 400 uM palmitate+0.5% BSA with either
5 mM, 10 mM or 25 mM glucose and NaCl or TUDCA for 24-h. Total cell lysates were subjected to Western blot analysis with antibodies to the
indicated proteins. Densitometry of total IRS2 was measured and normalized over o-Tubulin and densitometry of phospho-Akt was measured and
normalized over total Akt. The representative results of three individual experiments are shown. The effects on IRS2 protein are graphically illustrated,

*p<0.05, **p<<0.01.
doi:10.1371/journal.pone.0018146.g003

shRNA adenovirus constructs described previously [14] were
incubated with the cells at an MOI of 30 for 4 hours in normal
culture media. Palmitate and cytokine treatments were initiated
24 hours following removal of virus.

Inhibition of Gsk3f expression with a kinase dead
adenovirus

Adenovirus expressing a catalytic inactive mutant of the human
Gsk3B (Adv-Gsk3BKM) was prepared as previously described
[21]. Control adenovirus-green fluorescent protein (AdV-GFP)
was a gift from D. Kelly (Washington University, St. Louis, MO).
Infection of the MING6 cells was carried out at the indicated
multiplicity of infection (MOI) for one hour in serum-free media.
The MING6 were then washed in PBS, maintained in the DMEM/
15% FBS media, and then experiments were carried out 24 hours
after infection.

Statistical analysis

The presented data were analyzed from at least 3 independent
experiments and are shown as means *£S.E.M. The significance of
the variations was analyzed using either a one- or two-way
ANOVA with Bonferroni corrections with a significance level of
0.05 (95% confidence intervals).

Results

Glucose and palmitate synergize to induce apoptosis

Our previous study had shown a dose-dependent effect of FFA,
both palmitate (50-400 uM) and oleate (50-400 pM), on ER stress
and apoptosis in glucose-responsive insulinoma (MING6) cells [16].
In the current study the dose-dependent effect of glucose (5-
25 mM) was examined at 400 puM palmitate. As shown in
Figure 1A, increasing glucose concentration had a clear synergistic
effect on cell death characterized by propidium iodide incorpo-
ration normalized to DAPI staining. While 400 pM palmitate
resulted in about 3% propidium iodide incorporation at 5 mM
glucose, this was increased more than threefold when the glucose
concentration was raised to 15 mM and 25 mM. While there was
no effect of palmitate on cleaved Caspase3 at 5 mM glucose,
consistent with the synergism observed on propidium iodide
staining, glucose and palmitate also synergized on activation of
the pro-apoptotic marker cleaved Caspase3 comparing that at
5 mM glucose/palmitate vs. 25 mM glucose/palmitate, p<<0.05
(Figure 1B).

We next explored the underlying mechanisms for the glucose
potentiation. FFA treatment has been shown to induce JNK
activation that can contribute to FFA-induced apoptosis; we
determined the effects of altering glucose concentrations on JNK
activation. Interestingly, JNK activation by FFA was maximal at
the lowest glucose concentration and did not increase further as
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glucose was increased (Figure 1B). Maximal FFA activation of
JNK at 5 mM glucose with apparent increasing activation of
cleaved Caspase3 with increasing glucose concentration suggested
that further enhancement of JNK by glucose could not explain the
synergistic effects on cell death.

Glucose and palmitate synergize to reduce insulin
signaling associated with a decrease in IRS2 protein

Previous studies have shown that glucose treatment of
insulinoma cells results in activation of the insulin receptor
substrate-PI3-kinase-Akt pathway that serves to protect against -
cell death. In contrast, FFA treatment of insulinoma cells inhibits
this pathway [8,16]. We examined whether the synergistic effect of
glucose on FFA-induced apoptosis could be related to inhibition of
this signaling pathway. Glucose alone (5-25 mM), as shown in the
first four lanes of Figure 2, increased phospho-Akt (S473) and
phospho-Gsk3 as expected, with no apparent change in IRS1 or
IRS2 proteins, confirming previous observations [8,22]. However
as glucose was raised in the presence of palmitate (Figure 2, lanes
5-8) a dose-dependent decrease in phospho-Akt and phospho-
Gsk3P were observed and accompanied by a parallel decrease in
IRS2, while IRS1 levels did not appear to change. This synergistic
effect of increasing glucose in the presence of FFA on inhibition of
IRS2 and PI-3 kinase-Akt signaling is a novel finding that might
explain the synergistic effect on p-cell survival [23].

The effect of glucose and FFA is accompanied by a
synergistic effect on ER stress that is reduced by addition
of a chemical chaperone

FFA impair insulin signaling in B-cells in part via activation of
ER stress [16,24]. Bachar et. al. [13] recently showed in
insulinoma cells that palmitate at 22.2 mM glucose vs. 3.3 mM
glucose increased activation of JNK, CHOP and the ER stress
enzyme phospho-PERK. We examined the effects of increasing
glucose from 5 mM to 25 mM at 8 and 18 hours of treatment to
observe the different time course of development of ER stress
markers. An enhancement of the ER stress markers phospho-
PERK, phospho-elF2a, CHOP, and ATF3 (Figure 3A and 3B)
was observed, confirming and extending the results of Bachar
et. al. [13]. The observation that glucose appeared to synergize
with palmitate to increase ATF3 protein expression, although this
was not statistically significant, was consistent with the previous
finding by Hartman et. al. demonstrating that high glucose and
FFA together increased ATF3 mRNA expression, and that this
was associated with increased apoptosis of insulinoma cells [25].
These glucose-induced changes in the presence of palmitate on ER
stress markers were again noted in the absence of phospho-c-Jun
(Figure 3C).

We next examined whether reducing ER stress using TUDCA,
a chemical chaperone that enhances ER functional capacity [26],
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Figure 4. The synergistic effects of glucose and palmitate on ER stress results in concomitant effects on activation of SREBP1. (A)
MING cells were treated with either control 0.5% BSA or 400 uM palmitate+0.5% BSA at a concentration of 5, 10, 15, 25 mM glucose for 18-h. Nuclear
fractions were extracted from the cells and were subjected to Western blot analyses using anti-SREBP1 and anti-Lamin antibodies. 25 ug of nuclear
protein was loaded in each lane. The upper band normalized over Lamin was used to do the quantification (the lower band is nonspecific). The
relative ratio of nuclear SREBP1 over Lamin calculated by densitometries was summarized as means = S.EM. in the graph respectively. The
representative results of three experiments are shown, and graphically illustrated, * p<0.05. (B) MING cells were treated with either control 0.5% BSA
or 400 pM palmitate+0.5% BSA at a concentration of either 5 or 25 mM glucose for 24-h. Total cell lysates were subjected to Western blot analysis
using anti-acetyl CoA carboxylase (ACC) and anti-o-Tubulin antibodies. The representative results of two individual experiments are shown. (C) Cells
were treated with either 500 ug/ml NaCl or 500 ug/ml TUDCA 15-h prior to beginning of palmitate treatment. Cells were co-treated with either 0.5%
BSA or 400 uM palmitate+0.5% BSA with 25 mM glucose and NaCl or TUDCA for 18-h. Nuclear fractions were extracted from the cells and were
subjected to Western blot analyses using anti-SREBP1 and anti-Lamin antibodies. The upper band normalized over Lamin was used to do the
quantification (the lower band is nonspecific). 25 ug of nuclear extracts were loaded in each lane. The representative results of three individual
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experiments are shown. The relative ratio of nuclear SREBP1 over Lamin calculated by densitometries was summarized as means * S.EM. in the

graph respectively **p<<0.01.
doi:10.1371/journal.pone.0018146.g004

can reverse the synergistic effects of glucose and FFA on insulin
receptor substrate signaling. As shown in Figure 3C, the effects of
24 hour treatment with 5 mM or 25 mM glucose in the presence
and absence of palmitate (400 uM) on activation of JNK and other
markers of ER stress are shown in the control condition with NaCl
(first 4 lanes). The results of protein expression under the same
conditions but in the presence of TUDCA are shown in the last 4
lanes of Figure 3C. JNK activation, which again was not
augmented by the combination of high glucose and palmitate,
was little affected by TUDCA treatment. In contrast the other ER
stress markers phospho-elF20, CHOP and cleaved Caspase 3
were attenuated by co-treatment with TUDCA. Addition of
TUDCA also increased Pdxl (Figure 3C). The increase in
phospho-Akt protein levels, an inhibitor of Gsk3 activity, and
IRS2 protein levels were also observed with TUDCA treatment
(Figure 3D). Together the results suggest that glucose potentiation
of FFA induced apoptosis involves activation of ER stress with
resultant inhibition of insulin signaling in a manner independent of
further JNK activation.

Glucose and palmitate synergistically activate SREBP1

Sterol regulatory element-binding protein-1 (SREBPI) is a
transcription factor that stimulates expression of lipid-regulatory
genes [27]. SREBPI is an ER membrane resident protein that in
response to sterol depletion is cleaved to generate a transcription-
ally active N-terminal fragment that translocates to the nucleus
[28]. SREBP!I is increased in liver and islets of diabetic animals
[29]. In vivo SREBP1 overexpression increased lipid accumulation
in islets, reduced B-cell mass, and impaired insulin secretion [30].
Overexpression of the SREBPI gene in insulinoma and islet B-
cells also reduced IRS2 protein [31]. Furthermore, incubation of
insulinoma cells and islets with high glucose (25 mM) was shown
to activate SREBP1. The latter study examined only high glucose,
and did not include FFA. As shown in Figure 4A, like the study of
Wang et. al [31] we observed an apparent slight effect of
increasing glucose on SREBP1 activation, when nuclear SREBP1
was corrected for nuclear Lamin. A synergistic effect was observed
of glucose and FFA on activation of SREBP1 with a concomitant
reduction of SREBPI precursor and appearance of mature or
nuclear SREBP1. SREBP1 activation was further confirmed by
increased expression of its target acetyl-CoA carboxylase (ACC)
(Figure 4B). SREBP1 activation was reduced by attenuation of ER
stress with TUDCA pretreatment (Figure 4C) that suggested that
the synergistic effects of glucose and palmitate on activation of
SREBP1 were mediated by exacerbation of ER stress.

Glucose/palmitate activate ER stress and reduce insulin
signaling in primary islets

To validate the relevance of synergistic effects of glucose and
palmitate on pancreatic f-cells we treated isolated primary mouse
islets with 11 mM or 30 mM glucose in either the absence or
presence of 400 WM palmitate for 72 hours. This incubation time
and different glucose concentrations were utilized as it was
determined that primary islets are more resistant to FFA induced
apoptosis than are insulinoma cells (data not shown). Treatment
with high glucose (30 mM) and palmitate resulted in an apparent
but mnot significant (p=0.14) enhanced induction of cleaved
Caspase3 (Figure 5A), and an apparent but not significant
(p=0.07) reduced IRS2 expression (Figure 5B). In addition, high
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glucose and palmitate synergistically enhanced the ER stress
marker GRP78 (p<<0.05) beyond JNK activation (Figure 5C), and
caused an apparent increase in ATF3 (p=0.06) (Figure 5D).
Consistent parallel increases in nuclear SREBP1 and total ACC
protein also appeared to be potentiated by high glucose and
palmitate although the effects were not significant (Figure 5E).
Treatment with high glucose and palmitate did however result in
significant reduction of phospho-Akt, Pdx1, and phospho-Gsk3b
with no change in phospho-¢Jun (Figure 5F). These data together
support the relevance of findings in insulinoma cells to primary
islet B-cells.

Loss-of-function of ATF3 and gain-of function of IRS2
reduce the effects of glucose and palmitate on apoptosis

To assess the effects of ER stress-induced ATF3 expression and
subsequent suppression of IRS2 on glucolipotoxicity mediated
apoptosis, loss- and gain-of-function studies were conducted. INS-
r3 cells were utilized as the reagents for small hairpin RNA
(shATF3) were controlled for rat ATF3 and not mouse. A similar
role for ATF3 in MING6 and INSI insulinoma cell stress response
has been observed (Zmuda and Hai, unpublished observations).
INS-r3 cells were incubated with 400 pM palmitate/25 mM
glucose for the indicated times in the presence of adenoviruses
expressing either control or shATF3 to reduce ATF3 expression
[14]. Note that phospho-Akt appeared to be elevated in cells
expressing shATF3 at all times consistent with the known
inhibitory effect of ATF3 on IRS2 transcription and subsequent
insulin signaling. The IRS2 levels in the ATF3 knockdown cells
appeared to be elevated relative to that in control cells at both 8
and 16 hours of glucose/palmitate treatment. Further cleaved
Caspase3, following glucose/palmitate treatment, was suppressed
in ATF3 knockdown cells (p<<0.002). The conclusion that ER
stress activates ATF3 that contributes to impaired insulin signaling
and apoptosis is thus supported by these ATF3 knockdown
experiments.

In another experiment using primary islets treated with glucose/
palmitate for 72 hours, the effects of transfection with an
adenovirus expressing IRS2 was compared to that of islets with
control adenovirus. As shown in Figure 6B, where Immunodetec-
tion was set to assess high levels of IRS2 in IRS2 transfected cells,
there was a marked increase in IRS2 protein with IRS2
overexpression. Glucose/palmitate treatment resulted in increased
ATF3 and cleaved Caspase3 with control adenovirus, while
overexpression of IRS2 appeared to reduce the degree of apoptosis
as measured by reduction of cleaved Caspase3 (Figure 6B). These
results are consistent with the previously demonstrated role of
ATF3 on ER stress induced apoptosis in islets [14,25].

Loss-of-function of Gsk3B on glucose and palmitate
induced B-cell apoptosis

The progressive decline in insulin receptor substrate signaling
observed with decreasing IRS2 expression and phospho-Akt was
associated with decreased phosphorylation of Gsk3p (Figure 2) and
thus activation of the pro-apoptotic form of Gsk3B [32]. To
examine the contribution of activation of Gsk3f, the effects of
palmitate treatment with increasing amounts of an adenovirus
expressing a catalytic inactive mutant of the human Gsk3f (Adv-
Gsk-3BKM) were analyzed by Western blot (Figure 7A). A control
sample was placed on either end of the blot to facilitate
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Figure 5. Synergistic effects of glucose and palmitate on ER stress and suppression of IRS2 expression levels in primary mouse
islets. Islets from 14 weeks of age C57BL/6 male mice were isolated as described in Methods and were treated with either control 0.5% BSA or
400 uM palmitate+0.5% BSA in RPMI medium containing either 11 mM or 30 mM glucose, 10% FBS for 72-h. Total cell lysates were extracted from

@ PLoS ONE | www.plosone.org

—163—

April 2011 | Volume 6 | Issue 4 | 18146



Glucolipotoxicity Mechanisms

the islets and subjected to Western blot analysis using (A) anti-cleaved Caspase3 and anti-B-Actin, (B) anti-IRS2 antibodies, (C) anti-phospho-JNK,
anti-total JNK, anti-GRP78, anti-CHOP, anti-a-Tubulin antibodies, (D) anti-ATF3 antibodies, (E) anti-Acetyl CoA Carboxylase (ACC), anti-SREBP1, anti-a-
Tubulin antibodies, (F) anti-Pdx1, anti-phospho-Gsk3p, anti-total Gsk3p, anti-phospho-Akt (S473), anti-phospho-cJun, anti-a-Tubulin antibodies. The
blots shown are representative of 3 individual islet experiments. The relative ratio of indicated protein over B-Actin or a-Tubulin as a loading control
calculated by densitometries was summarized as means = S.E.M. in the graph respectively *p<<0.05, **p<<0.01.

doi:10.1371/journal.pone.0018146.g005

comparisons. For instance, observe the increase in cleaved
Caspase3 and phopho-JNK between the two controls on either
end of the blot. Increasing doses of the virus correlated with
increased levels of total Gsk-3f, and reduced levels of the Gsk-33
substrate phospho-GS. Increased kinase dead Gsk-3p virus also
resulted in increased expression of Pdxl, reduced apoptosis as
suggested by cleaved Caspase 3 levels, and cell death measured by
propidium iodide incorporation (Figure 7B). Interestingly the
protective effects of the Adv-Gsk-3KM occurred in spite of
apparent comparable activation of phospho-JNK with palmitate
treatment.

Discussion

The combination of hyperglycemia and hyperlipidemia that is
associated with insulin resistance may contribute to reducing B-cell
mass and promoting the transition to full blown Type 2 diabetes,
but the underlying mechanisms are only partially understood. This
study examined the sequence of molecular events that may be
involved in this process, and resulted in several novel observations:
1) While early induction of JNK plays a role in FFA-induced
apoptosis [13,16], it does not appear involved in the high glucose
potentiation of FFA effects; 2) the potentiating effects of glucose
and FFA on ER stress result in activation of ER-associated
SREBPI and ATF3 leading to reduced IRS2 expression further
impairing insulin-receptor substrate-PI-3K-Akt signaling, and 3)
treatment with an adenovirus expressing a kinase dead Gsk3p
significantly restored Pdxl levels, and reduced the apoptosis
induced by high glucose and FFA. Together these findings provide
a molecular model for the synergistic effects of glucose and FFA on
islet cell death and identify potentially useful therapeutic targets.

The role of JNK activation in FFA-induction of apoptosis in p-
cells has been documented [13,16,33]. In the current study, JNK
activation by palmitate was significant as expected, but was
maximal at low glucose, and glucose potentiation of FFA-induced
apoptosis was JNK independent (Figure 1B). How FFA treatment
of B-cells leads to JNK activation is not completely known, but
FFA induce ER stress, which activates JNK activation, and JNK
activation itself can induce ER stress [13,34]. Interestingly,
TUDCA appeared to reduce cleaved Caspase3 and CHOP
induction, while not appearing to reduce JNK activation (Figure 3)
suggesting that in this case JNK activation is upstream of ER
stress. On the other hand the results of inhibition of ATF3 by
shRNA in Figure 6A suggest that JNK activation is upstream of
ER stress. Our results do not therefore settle this issue of the
relative position of JNK activation and ER stress. Regardless of
whether JNK activation is upstream or downstream of ER stress,
the findings in the current study show that the combination of high
glucose and FFA does not associate with further activation of JNK
as compared to FFA in low glucose. This result is to some extent in
conflict with that of Bachar et. al. [13] who showed that incubating
islet cells in low vs. high glucose resulted in both increased ER
stress and JNK activation. A difference in the two experiments is
that Bachar et.al. evaluated islet cells in 3.3 mM vs. 22 mM
glucose, and our experiments assessed cells in 5.5 mM vs. 25 mM
glucose. Our results do not rule out the contributory effect of JNK
on P-cell apoptosis as previously shown [13,16,33] but they
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emphasize the importance of additional mechanisms contributed
by high glucose. Additionally, since glucose and palmitate have
been shown to evoke oxidative stress, impairing nuclear translo-
cation of Pdx1 and triggering B-cell failure [35], it is conceivable
that oxidative stress interacts with JNK, ATF3 and ER stress to
contribute to glucose/palmitate induced apoptosis, although this
hypothesis remains to be tested.

The role of SREBPI in high glucose induced apoptosis in islet
f-cells has been reported [31]. In the absence of FFA, high glucose
alone for 48 hours was shown to activate SREBP1 and to repress
IRS2 and Pdx1 levels. Expression of a dominant negative SREBP1
reversed these transcriptional effects. In the current study, glucose
alone at high concentration slightly activated SREBP1 as shown in
Figure 4, an event that did not correlate with ER stress or
apoptosis. A much more significant activation of SREBP1 was
observed with glucose and palmitate together and this was shown
to be a function of induced ER stress since it was attenuated by
TUDCA (Figure 4C). These results only show an association of
SREBPI nuclear translocation, and do not document its causal
role. It is likely however that SREBPI nuclear translocation
participates in glucose/palmitate induced apoptosis, as previous
studies documented the causal role of SREBPI in ER stress
induced apoptosis in insulinoma cells [31]. SREBPI resides in the
ER membrane, where it is anchored by the labile protein INSIG1
[36]. The link between ER stress and SREBP1 activation has been
little studied. Lee et. al. using CHO cells [36] showed that
thapsigargin, a chemical that induces ER stress, activates SREBP1
due to rapid degradation of INSIGI [36]. We observed that
glucose and palmitate together appeared to reduce INSIGI
protein (data not shown), which likely contributed to augmentation
of nuclear SREBP1 under these conditions.

Similarly a synergistic effect of glucose and FFA was observed on
expression of the ER-associated stress marker ATF3. ATF3
expression paralleled suppression of IRS2 protein levels, and
induction of apoptosis measured by CHOP (Figure 3A-B), and
Caspase3 activation (Figure 3A). The association of ATF3 with ER
stress and cell death has been well documented [37] but there is
relatively little known related to ATF3 targets [14]. Recently, ATF3
was shown to suppress the IRS2 protein by binding to the IRS2
promoter [14] and implicated this mechanism in apoptosis induced
by agents such as y-interferon, TNF-a, or thapsigargin. Our
findings are consistent with the involvement of ATF3 in the
apoptotic effects of nutrient induced ER stress in islet cells. In this
context, we note that Cunha et. al. [33] did not find a pro-apoptotic
role of ATF3 in the context of palmitate treatment. Potential
explanations for this apparent difference include the difference in
glucose concentration (25 mM glucose in our study and 11 mM
glucose in theirs), the cells used (INS-r3 in our study and INS-1E in
theirs), and assays (activated Caspase3 in our study and propidium
iodide plus Hoechst stain). An interesting question is whether ATF3
is a direct repressor of Pdxl expression. Insulin signaling alters
Gsk3B and FoxO activity [16,32,38,39] and these proteins are
known regulators of Pdx] expression. As ATF3 represses IRS2 and
insulin signaling, at least part of ER stress and ATF3 induced Pdx1
suppression is due to decreased insulin signaling, and perhaps also
due to direct suppression of Pdx1 expression, but this latter question
remains to be determined by future experiments. Interestingly
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Figure 6. Loss-of-function of ATF3 and gain-of function of IRS2 reduce the effects of glucose and palmitate on apoptosis. (A) INS-r3
cells were infected with either control or ATF3 shRNA adenovirus 24-h prior to treatment with 400 uM palmitate+0.5% BSA and 25 mM glucose for
the indicated times. Total cell lysates were obtained and subjected to Western blot analysis with antibodies to the indicated proteins. The relative
ratio of IRS2 and cleaved Caspase3 expression over B-Actin was quantified by densitometry. The data obtained from three individual experiments are
expressed as means + S.EM. * p<<0.02, ** p<<0.012. (B) In a single experiment, primary mouse islets were infected with adenovirus expressing Bgal or
IRS2 expressing adenovirus prior to treatment with either control 0.5% BSA and 5.5 mM glucose or 400 uM palmitate+0.5% BSA and 25 mM glucose
for 72-h. “GL" refers to incubation in 25 mM glucose and 400 uM palmitate. Total cell lysates were subjected to Western blot using antibodies to
indicated proteins.

doi:10.1371/journal.pone.0018146.9006

ATTF3 induction is dependent on the P38 kinase pathway [15] which In the current studies we have shown a correlation among
is part of signaling transduced by the membrane fatty acid suppression of IRS2 protein levels (Figure 2), ATF3 expression
translocase CD36 and a role of CD36, which is induced by glucose, (Figure 3), and resultant induction of apoptosis. The causal
has been proposed in mediating palmitate induced apoptosis of  relationships among these events were demonstrated by Li. et. al.
kidney tubular epithelial cell [40]. The role of this pathway in islet [14] when insulinoma cells and/or mouse islets were transfected with

cells will need to be explored in future studies. adenoviruses expressing inducible gain- or loss-of-function of ATF3
':.@: PLoS ONE | www.plosone.org 11 April 2011 | Volume 6 | Issue 4 | e18146
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doi:10.1371/journal.pone.0018146.g007
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Figure 8. Working diagram illustrating some of the key steps
involved in “‘glucolipotoxicity’”” of p-cells. High glucose and FFA
together result in a vicious negative cycle that ultimately promotes B-
cell death. As suggested by our findings, high glucose addition to FFA
treated B-cells results in much more activation of SREBP1 than glucose
alone. SREBP1 enhances ACC expression with generation of malonyl-
CoA which impairs FFA oxidation. This in turn leads to augmented ER
stress with further activation of ER-localized SREBP1 as a result of
degradation of the anchoring protein Insigl. The excess non-
metabolized FFA due to more impairment of FFA oxidation would
partition in ER membranes compounding ER stress. In addition to
SREBP1, ER stress activates ATF3. Both nuclear SREBP1 and ATF3 result
in inhibition of IRS2, with concomitant impairment of insulin signaling,
activation of Gsk3B and reduction of Pdx1 leading to apoptosis.
doi:10.1371/journal.pone.0018146.9g008

and IRS2. Treatments that induced ATF3 activation and IRS2
suppression included induction of apoptosis by combined treatment
of msulinoma cells with y-interferon, TNF-o, or the ER stress
activator thapsigargin. These studies demonstrated that ATF3, like
the transcription factor CREB, alters IRS2 expression by binding to
the IRS2 promoter. In the current study, we have examined the role
of combined glucose and palmitate on this pathway (Figure 6).
Transduction with an adenovirus expressing shATF3 significantly
reduced this effect, while transduction with AdV-IRS2 ameliorated
the apoptotic effect, thus mechanistically linking this pathway.

In this study co-incubation of insulinoma cells with an adenovirus
expressing a kinase dead Gsk3p (Adv-Gsk3BKM, Figure 7) along
with high glucose and palmitate for 24 hours significantly reduced
cleaved Caspase3 and cell death. A previous study in IRS2 null mice
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AHBET 2 O 2R BRBIBEE W, 0
WEWCLD L, AFRBOI Vo —ABEDETR
D C-R7F FEZ, BEpHlEELFEICEWE
B ERTH(E2), HOMA-B L3 LE>
TEWEEHBEESRED sk o7, Z DR
Rpod, il LddrERHME COHOMA-
B DHMEHE L, BEK g MILE » 5+ 2 f5E
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3 BESEKEBERIZHER SN IBBOLERMIHREE

CM : confocal microscppy, OCT : optical coherence tomography,
OPT : optical projection tomography, BLI : bioluminescent imag-
ing, MRI . magnetic resonance imaging, PET : positron emission
tomography, SPECT : single photon emission computed tomogra-

phy.

~EEHmIEE LR, BiHEER2RES K
BRBCEBEXHZ CTERTALELTHRGRILET
Xz,

W, RIEFEOESCHE, B REBEOERL
WHERL S 2HELHEZ TE2(F3)0, OCT
® OCM TiZ, B REEOEERARER VNV E
TEDEMSFEERAMLELTWEEEZS, L
Lo, INSIBRETEZI2HEEASBREINT
B, OPT 3HHEOERE2R L LEND B,
WTNELTHE VORI REER2EBRDEEE
BT501k, EH502HWTHHEDE AT
ETH 3. BLI, MRI, PETZ8BWTiZ, v
NOEERD F £ TOBRBDHERETH 358, LEHH
fEEEIXEX DT KRERRAT 2 L~ VIR E >
TRy,

2. cdnfocal microscopy (FE£& S BEMES)

RFEELTVv—Y—BHLVONE D “L—
P EREERE GHESEES) t v
EhTws, RESEMETIE, ESUELZTOD
BRBE RNV E2EE L TRHESBEREL, £
BABEUANDONKIZE R —VThy b&h, EE
DH->IEIZTDEHRBB/BOND =D, B 2
Y7 A MSRERNCHET 3, o, BEHM

Szt 10) X b B1FE)

(Z FE) W HERENE L, HFHWBHREE/S Z
ENTE S, ERSEREE, BIREOKRES
2R33»ICEEIZHDOTHS, LoL, FEECR
BN ES FRIOEN LHTE RV DERLE
DEFICITEETHA I L, £ in vivo TD
BELrw ek s L, RIRESOBEEREHE
BREATWBEZELY, SOEIIEIREE
% in vivo THEET 2L WS ZEIZDOWTIREHR
fEER TR,

3. OCT (optical coherence tomography)
BB ITEWE D £ — v > AR GEFRIMFR DB
B) 2 4& 4R CENL T, 2ORE TR L
KEEEBRECRHET 2 HETHY, OCT LI
BhTws, ZHSREREL, BEoRE2 5
BAT D ENTELLVRVEH S, BEDME
w7u—72@BATAILIcLY, HRHIE
in vivo TOES KREEDHENTEC RS, 1
% O RIE I AHBEBEMED 1~2 mm LFEFEIT/NE
WZrThy, BIREEBHEOERIATT
i3 Z ORIBEDBERB LA TH 5.

4. OCM (optical coherence microscopy)
BT, FERD OCM OF M Th - I iE @tk
LAFy VEEMERBZRHET S LD,
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4 ix OCM (extended focus OCM) MRl EIE
FTREOHOBEHREFEHL (b), ThAE2FAOHEE) EAETEAACHSGFERLZ I LIZLD,
KETHENL LI R IDERW) 2ELZELNTES, EREARZEEY, BEEAIRIRE
RLTn3,

(ziik 12) & b 31 /H)

ex vivo DA 5T in vivo THELEIZDLIZ 3
TREBBEHETEDL LN T EBRER N
7219, 3DEHREEET L Lk, —E—HE
DZREDEERHLZ 0 TE2(H4D). in
vivo THIET 2 wid, BEE2BH ¥ 3 LE
BHBD, BREEATERE VCRIEETE W
2, S, WEXE CIERSHSTEIC R 5
b LAz,

5. OPT (optical projection tomography @ %

SRV EIRE AT

CT A ¥ v Y OFEEZHAB L RIS
AL IEMiz v 3RTTA A -V VTV RT A

ThH5, OPTRIcmBEONESEY YLD

E5 OPTIZ&3 ? 2 =
B 5 RRBORAT BN 3D AT R IIRRIC L LB A 5., ZOK

NOD(non obese diabetic) = 7 &

SEEMLE, 1 VA kDR 3, HEARBMECTRIKRETE, MRIZE
BREZT>Tw5, Zv—idEEo . > 2 4 N . 3
PNV ERLCED, T&iljté?‘% L7, & O‘Ui%/f)v@(ﬁﬁ%’dj
B, BT REEETS, Frig & 2B L Tir 5 FEE T 3 RTER B2 E-
Lo TRIRBORE SHRATE Tz, ZZRISARREIL 5~50 um TH Y, BESK
5. ,
BE2TACRBTE L v h B (B 5)0,

(ZHR 10) & © &%)
1BERBFOEF V<2 A TH 3 NOD(non

obese diabetic) ¥ ™7 A D £ MT R H3EE & o
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BoTwbZe®2O0PT TRLIEEWS Z LB
EERTWEY, ULhrLEREATE, BHECR
BRI EQNBETS LENDY, b POEE
TOMKRIGHE X £ 7CREBZ .,

6. BLI(bioluminescent imaging)

W7 27 —EREFERBRL T 5EECH
NEEEP2EHITI2ELEKATRERD
(Luciferin-Luciferase RI) 3fta & h, £DF
Yo 7 F VGBI T B Z EBEBETH
%3, BLI TR ZOMEFREBFBINL T 3,
BLIiZ, bbb rEpMifiE*ERERENCE=
VT TBRDRELNTERZLE W ERVD
D, BEpgMilaTALY 75— ¥ R2RET 5#E
FHETTAERHWS L, BOKEEREHKD X
FRFEELTHETE S Z EPHEI LT
219, LoL, £ bWy TEgHEEREN
WY 7127 —ERRBAIVHIEFHEDLIS
H#ETH 3,

7. MRI(magnetic resonance imaging)

Bbgk7 RFTRIETF A va—F 4~
FUREEREHEWT, MREBRTOEZRED
B EBRAA SN TE T,

CDS Bt THifEY ¥ 7 ¥ — RS
TR -T2 ERKAEAVSII L
T, NOD® 7 ADZKBK%E MRERTE =%
Vo7 TELIEBHEEINTINSY,

Jirdk 59 i, Resovist® &5 HilRD MR &
ERORTHIEN OB KREEREEL -8, Pk
NIZEAL, BIREBBEZ{To-TW3, BIK
EREEDOFEO MRI TR KBS ERFES 4
A=Y ELTRETERZ ER2HELTWS,
DFERZE N THRATE S0, 1EERRD
o REBHEEBEOEBRREER T 2HELELT
HfFEIh T3,

8. PET (positron emission tomography)

AERMOEFERE S KB IR L H T
CRAHBETH L, LIzB-oTERBIRIEZ, BB
MfsEN L So—72FELCAZEDa b
FAM2HREEXE, PETZL>TZOY SN
PREAMBEREL L TERT A7 Tu—FBLE
TH5.

Tu—7 e LT, BEaMRERMIZHER
LTWaEBHDIY F > FPEE, 7L (BRENH

E6 b MoHITB[11C]I-DTBZIZL DHEBND A A—
g
| BIEREES O RIERBEEHF CHENTEHBRY
LT3 (RENIRER 2R T).
(Xt 21) X D 51HE)

B EMERE R D, HEEXEETH S GLUT2
D EE T H % 2-deoxy-glucose ® Mannohe-
ptulose!”, ANF= )T VT EZEE(SURD DY
HRTHBSUED, V< MRYFURZERD
VA R, NEE 7S EEEEO Y AR
T % % DTBZ(dihydrotetrabenazine) 2 7 &£ %3
Fo—7L L TEMTHL I LBREENTY
5.

VMAT?2(vesicular monoamine transporter
type2) i HEHIRR DR Z W ETRRLICRBLT 5
P UAR—Y—T, BELMIBIDOFWERI D
EELTw3, EplildO~—2—LLTOD
VMAT2 Y —% 97 4 > 7 REHRERY F~F
D 11C-DTBZ 2% 5 L 7% O PET T, 18/
RFBE ORI DEEISIEE NI TERI
BETFLTWBEZEMRENTNS (F6)2Y,

¥ 7, BT, RIEFHZ LU/ GLP-12&8H% VY
YFERAWRILRIVEHRERZERETE
5%, RBEKEDINV-TBHEEL T
%22).
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Summary
Monitoring of pancreatic beta-cell cell death
Yasuharu Ohta®, Yukio Tanizawa®

Regulation of the pancreatic @8-cell mass involves a
balance of replication, apoptosis, and regeneration.
The mechanism underlying decreased B-cell mass in
type2 diabetes is increased apoptosis. However,
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apoptosis is a difficult process to measure because the spatial analysis.

dead cells are rapidly degraded. Therefore, studying (Rinsho Kensa 54 : 1040-1047, 2010]
remaining beta cell mass replaces quantification of
apoptosis. Acute insulin response after glucose load
appears to better predict beta-cell mass than fasting
measures, such as the HOMA-8. Imaging modalities
such as MRI and PET could be used clinically in the
near future as methodologies for non-invasive imaging
of islet mass. OPT would be more suitable for
monitoring islet mass and allow whole pancreas 3D

1, 2) Division of Endocrinclogy, Metabolism,
Hematological Science and Therapeutics,
Department of Bio-Signal Analysis, Yamagu-
chi University Graduate School of Medicine,
1-1-1 Minamikogushi, Ube, Yamaguchi 755-
8505, Japan
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