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Fig. 3 The changes in the islet
morphology. In STZ-diabetic
mice, islets appear severely
disorganized with a significantly
increased proportion of
glucagon-positive cells (brown).
In contrast, islet morphology is
greatly recovered and the
typical islet morphology of the
core of f cells is seen with a
mantle of « cells in islet-
transplanted mice. Scale bar

100 pm

; Control

that these changes are a direct result of the increased S
cells due to normoglycemia.

Since the f cell increases through neogenesis and pro-
liferation, these determinants of f-cell increase were
examined. Because pre-existing S cells were destroyed
almost completely with STZ as shown in Fig. 2c, g, newly
born f cells and old B cells left in the islet with many «
cells are morphologically distinguishable. Newly born S
cells, as observed as scattered singlets-doublets of insulin-
positive cells or clusters less than 6 S cells across, were
frequently seen in transplanted mice (Fig. 4d). Dividing by
B cell number (1-3 and 4-6 B cells), both small B-cell
clusters were increased in transplanted mice (Fig. 4e),
suggesting that neogenesis of S cells was enhanced in
transplanted mice. Furthermore, using dual staining of
insulin and Ki67, a marker for f-cell proliferation, we

@ Springer

found that Ki67-positive islets were increased in trans-
planted mice (Fig. 4f), suggesting that B-cell proliferation
is enhanced in normoglycemia.

Acute damages in the liver and kidney

Since STZ induces cytotoxicity in multiple organs, including
liver and kidney [31-36], we finally examined the recovery
from these toxicities in the liver and kidney from both the
Detemir injected group and islet transplanted group. After
8 weeks, STZ 8 weeks mice showed dyslipidemia (Table 1),
but both treatments significantly reduced the elevated total
cholesterol. Liver weight/body weight and AST/ALT levels
were significantly higher in STZ 8 weeks and Detemir
injected mice, but normalized in transplanted mice
(Table 1). The liver section also showed hepatic steatosis
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(Fig. 5). The severity of degenerative changes was lessened
by islet transplantation in the islet-transplanted mice com-
pared to the STZ mice (Fig. 5).

Renal hypertrophy, which is expressed as the ratio of the
combined weight of the two kidneys to body weight, was
prominent in STZ mice (Table 2). Histologically, glomer-
ular hypertrophy, the characteristic phenomenon of diabe-
tes, was prominent, and glomerular size in the superficial
cortex is small in STZ mice (data not shown). BUN was
also significantly high in STZ mice. These acute damages
of renal function were restored in transplanted mice, but
not in Detemir-injected mice (Table 2). There was no
significant difference in serum creatinine and serum
albumin among the three groups, STZ, transplanted, and
Detemir-injected mice.

Table 1 The liver toxicity by STZ

Group Liver weight/body AST/ALT Total cholesterol
weight (x10%) (mg/dl)

STZ 7.0 + 0.39* 4.7 & 1.1* 152.8 & 11.2%

Insulin (Detemir) 6.4 + 0.10* 3.8 + 0.3* 108.0 & 1.7

Islet transplant 4.3 & 0.04 1.6 &£ 0.01 1069 + 8.2

Control 4.5 & 0.02 19+02 1088 £4.3

* P < 0.05 versus control
Discussion

In this study, we examined whether new f-cell formation
occurs when S cells face being severely destroyed and
hyperglycemia was restored with two different methods.
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Fig. 5 Acute damage and recovery of liver morphology. Hematox- b

ylin and eosin (H&E) staining of 16-week-old mice. STZ mice show
the swelling and vacuolization of hepatocytes with perinuclear
cytoplasmic pallor and dilated sinusoidal spaces. Scale bar 100 ym

Our initial studies confirmed the effect of high doses of
STZ on pancreatic § cells in time courses in mice. By
immunostaining, at 12 h after STZ injection, changes in
B-cell number were not observed, but at 3 days f cells were
lacking in the islet core, and at 1 week an almost total
absence of f cells was found. Islets were morphologically
abnormal with a few S cells left with an increased proportion
of « cells. Thus, single injection of a high dose of STZ was
effective to induce severe S-cell destruction and hypergly-
cemia due to insufficiency of insulin. This is an adequate
condition to examine the effect of insulin supply on new j-
cell formation by islet transplantation or Detemir injection.

We then examined two methods to maintain normogly-
cemia to compare with islet transplantation. Our first choice
was insulin pellet implant (90 day release), but it frequently
caused an acute hyperglycemia-hypoglycemia pattern in
pellet-implanted mice. The blood glucose levels of 11 mice
were back to hyperglycemia after several days, while 17
mice died with acute hypoglycemia. Since it was difficult to
maintain blood glucose levels in a stable and normal range
for a long period with insulin pellets, we then used the long-
acting human insulin analog, Detemir, with a smooth peak-
less profile of action. Detemir provides a constant basal
insulin supply that mimics physiological post-absorptive
basal insulin secretion because of its unique primary struc-
ture and mechanisms of reversible binding to plasma albu-
min and the injection site [26], which resulted in safe and
improved glycemic control in type 1 diabetes, with the
advantage of lower rates of nocturnal hypoglycemia [37-
45]. Indeed, in our mice, twice-daily Detemir provided stable
glycemic control, which is comparable to islet transplanta-
tion. Because of the long duration of action and carry-over
effect of Detemir, some mice needed to have lower doses at
the second injection of the day for good glucose curves.

Although Detemir injection could effectively reverse
hyperglycemia and glycemic control was successful during
experiments, there was no f-cell increase, new formation, or
recovery of islet morphology in Detemir-treated mice. Here
we demonstrate for the first time that the effects of Detemir
on the Bcell in the pancreas were very different from those of
islet transplantation. One possibility could be the low bind-
ing affinity to receptors and weak signal transduction of
Detemir. It has been reported that Detemir has only 16-18%
binding affinity of human insulin (100%) to insulin receptor
and IGF-I receptor [46]. Moreover, other study has demon-
strated that Detemir has remarkably lower induction of
phosphorylation of the insulin receptor, IRS-1, Akt, and
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Table 2 The acute damage of renal function by STZ

Group Kidney weight/body BUN Serum creatinine Serum albumin Urine volume Urine glucose
weight (x10%) (mg/d) (g/dl) (g/dly (ml) (mg/dl)

STZ 1.7 £ 0.11% 32.7 £ 1.4* 0.16 =+ 0.01* 3.0 £ 0.2* 23.5 & 0.6* ++++

Insulin (Detemir) 1.5 + 0.03 31.54 1.8 0.17 £ 0.01* 2.7 & 0.1* 6.0 & 0.9* +++

Islet transplant 1.2 £ 0.09 271+ 0.3 0.17 £ 0.01* 3.0 & 0.1% ND +

Control ' 14 4 0.03 259 + 0.3 3.7 £ 0.04 1.1 £0.2 -

ND not determined
* P < 0.05 versus control

GSK3, key signalling molecules involved in cell growth and
cell differentiation, than human insulin in myocytes, hepa-
tocytes, and vascular smooth muscle cells [47]. As aresult of
the low potential to activate insulin receptors and weak
signal transduction, the mitogenic potency of Detemir was
only 11-15% of human insulin (100%). Therefore, Detemir
may not have the potential to increase f cells. Since only the
effect of Detemir was examined in this study, further studies
of the effects of other insulin analogs such as Glargine, which
has a high binding affinity to the IGF-I receptor [46], will be
required to reveal mechanisms that promote S-cell increase
and survival.

In the present study, continuous hyperglycemia (8 weeks)
did not restore f-cell regeneration. Our results agree with a
previous study that confirmed that prolonged exposure to
elevated glucose levels (3—4 weeks) inhibits the prolifera-
tive capacity of f8 cells and increases DNA fragmentation in
cultured islets [48]. On the other hand, B-cell regeneration
was restored when hyperglycemia was reversed by islet
transplantation. It was striking that the number of f cells and
islets was increased and islet structure was greatly recovered.
This recovery involved both increased neogenesis and rep-
lication. Thus, islet transplantation was effective and pro-
vided not only stable glycemic control for a long period, but
also a trigger for the induction of new formation. The source
of new f cells after birth has been debated, and pancreatic
duct cells, bone marrow cells, and acinar cells have been
reported as potential progenitor cells [16, 49, 50]. Since the
embryonic islets are polyclonal [51], similar polyclonality in
the newly formed islets in adults would be expected.

Recently, it has been reported that glycemic control by
islet transplantation and insulin pellet implants could
increase f§-cell mass [52]. In that study, 200 islets or insulin
pellets were implanted into STZ-induced diabetic female
mice, and this showed that there was a significant increase
in B-cell mass in both treatment groups with a long treat-
ment period (120 days). However, it is unclear whether the
increased B cells were from neogenesis or replication of the
remaining cells, as the issue of new formation is not
addressed. In the present study, we saw the number of f
cells and islets was increased and the islet structure was
greatly recovered in the transplanted group with a shorter

0.13 £+ 0.01

treatment period (10 weeks), but not in the Detemir-treated
group. Differences between their study and this study are
that they used only 200 islets or insulin pellets for female
mice with less-restricted blood glucose control (<250 mg/
dl), whereas in our study, we used 500 islets or Detemir
injection for male mice with restricted blood glucose
control (<160 mg/dl). It is possible that mild transient
hyperglycemia might have enhanced f-cell replication and
cell size. In addition, it has been reported that there are
gender differences in f-cell death to STZ toxicity [S3].
Females were protected and retained a normal islet archi-
tecture after STZ injection (day 8), whereas males were
vulnerable to STZ. Thus, it is possible that in females the
B-cells could increase with small amounts of insulin or
insulin pellet.

The effectiveness of islet transplantation might be
explained by the properties and metabolic potencies of
insulin and the graft composition. Compared to other
insulin analogs at equivalent concentrations, insulin sup-
plied from the graft islet cells has a high potential for
binding affinity to insulin receptors and IGF-I receptors
[46], which induces phosphorylation of insulin receptor
[47]. Insulin receptor phosphorylation (activation) is
directly related to signal transduction strength [47], and
continuous activation of the insulin receptor is required for
mitogenic activity [54]. The importance of the relationship
between insulin and f-cell-specific insulin receptors in
B-cell mass is also demonstrated by knockout mice study
[55]. Thus, insulin from the graft could stimulate S-cell
proliferation and increase pS-cell mass through insulin
receptor and downstream processes. The second advantage
is that insulin from the graft can respond to the changes in
blood glucose levels. The third possibility could be the
graft composition. Islets contain both endocrine and non-
endocrine cell types, including endothelial cells, which
could contribute to revascularization of islet grafts [S6, 57].
On the other hand, recent study has shown a pure f-cell
graft could effectively reverse hyperglycemia and non-
B-cells are not essential [58]. However, it is not clear that
the residual islets in the pancreas can recover with a pure
B-cell transplantation. Therefore, the question still remains
whether other hormones secreted from non-J cells can also
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play a role in proliferation or new formation of pancreatic g
cells. Taken together, islet transplantation, pure p-cell
transplantation, or Detemir injection can effectively
reverse hyperglycemia, but only islet transplantation could
contribute to f-cell proliferation or new formation in the
pancreas.

We further demonstrated that only islet transplantation
could reverse the damaged liver and renal function and the
changed structures.

In conclusion, our data showed S-cell’s capability for
new formation and replication when S cells were severely
destroyed and hyperglycemia was reversed.

Our goal is to develop a regenerative therapy in which
enough f cells are served by proliferation or new formation
in the pancreas. What stimulates f cells to proliferate and
how B cells newly form (the mechanisms of neogenesis)
remain to be investigated.
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