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ONLINE METHODS

Human subjects, mice and cells. The study involving human samples was
approved by the Ethics Committee of Hirosaki University Graduate School
of Medicine, and all clinical samples were obtained with informed consent.
C57BL/6 mice were purchased from CREA Japan. NGF-FKBP-Fas transgenic
mice!? (Jackson Laboratories), Csflr-deficient mice'? (provided by E.R.S.),
PU.1-null (§fpil~"~) and PU.1 conditionally deficient (Sfpil floxed) mice?
(provided by D.G.T.), CreERT2 knock-in mice (TaconicArtemis GmbH)*® and
MOZ-deficient mice® were backcrossed to C57BL/6 mice at least five times.
Mouse experiments were performed in a specific pathogen—free environment
at the Japan National Cancer Center animal facility according to institutional
guidelines and with approval of the Japan National Cancer Center Animal
Ethics Committee. PUER cells?® were provided by H. Singh.

Generation of acute myeloid leukemia mouse models. MSCV-MOZ-TIF2-
IRES-EGFP, MSCV-N-Myc-IRES-EGFP, MSCV-CSF1R-pgk-pac and MSCV-
PU.1-pgk-pac constructs were generated by inserting cDNAs encoding
MOZ-TIF2, N-Myc, CSFIR or PU.1 into the appropriate vector. The con-
structs were transfected into Plat-E cells*! cells using the FuGENE 6 reagent
(Roche Diagnostics) and supernatants containing retrovirus were collected
48 h after transfection. c-Kit* cells (1 x 10° cells) were selected from bone mar-
row or fetal liver cells using CD117-specific MicroBeads (Miltenyi Biotec); the
cells were then incubated with retroviruses using RetroNectin (Takara Bio) for
24 h in StemPro-34 serum-free medium (Invitrogen) containing cytokines
(20 ng ml~" stem cell factor (PeproTech), 10 ng ml~! interleukin-6 (PeproTech),
10 ng ml~! interleukin-3 (a gift from Kirin Pharmaceuticals)). The infected
cells were then transplanted together with bone marrow cells (2 x 10°) into
lethally irradiated (9 Gy) 6- to 8-week-old C57BL/6 mice by intravenous
injection. Secondary transplants were performed by intravenous injection of
bone marrow cells from primary AML mice into sublethally irradiated (6 Gy)
C57BL/6 mice.

Administration of AP20187, imatinib or Ki20227. AP20187 (a gift from
Ariad Pharmaceuticals; 10 mg per kg body weight) was administered daily by
intravenous injection for 5 d, and then 1 mg per kg body weight AP20187 was
administered every 3 d thereafter as described previously!'’. Mice were orally
administered imatinib mesylate (Novartis Pharmaceuticals; 100 mg per kg body
weight), Ki20227 (ref. 13) (a gift from Kirin Pharmaceuticals; 20 mg per kg
body weight) or solvent twice daily from 7 d after transplantation.

Immunofluorescent staining, detection of side population cells, flow cyto-
metric analysis and cell sorting. Bone marrow cells from mice with AML
were preincubated with rat IgG and then incubated on ice with the following
staining reagents: antibody to CD115 (AFS98) conjugated to phycoeryth-
rin (PE) (eBioscience), antibody to Mac-1 (M1/70) conjugated to PE-Cy7
(eBioscience), antibody to Gr-1(RB6-8C5) conjugated to allophycocyanin
(APC) (BD Pharmingen) and antibody to c-Kit (2B8) conjugated to APC
(BD Pharmingen). For the detection of side population cells, bone marrow
cells were stained with 5 g ml~! Hoechst 33342 in the presence or absence of
50 uM verapamil at 37 °C for 60 min. Flow cytometric analysis and cell sorting
were performed using the JSAN cell sorter (Baybioscience) and the results were
analyzed with FlowJo software (Tree Star).

Reporter analysis. CSFIR-luciferase constructs were generated by insertion
of CSFIR promoter constructs, either wild type or lacking the PU.1-binding

site’2, into pGL4.10 (luc2) (Promega). SaOS2 cells (a gift from T. Taya) were
transfected with CSFIR-luciferase constructs and pGL4.75 (hRL-CMV)
(Promega) together with various expression constructs (pLNCX-AML1
(ref. 18), pLNCX-PU.1 (ref. 33), pLNCX-MOZ!%, pLNCX-MOZ-TIF2
(ref. 18) and pLNCX-MOZ-CBP'8) in 24-well plates, and luciferase activity was
assayed 24 h after transfection using the microplate luminometer GLOMAX
(Promega). The results shown for the reporter assays represent average values
for relative luciferase activity generated from at least three independent experi-
ments; relative values were obtained by normalizing to the luciferase activity
of phRL-CMV, which served as an internal control.

Immunoprecipitation and immunoblotting. For Flag tag immunoprecipitation
experiments, cells were lysed in a lysis buffer containing 250 mM NaCl, 20 mM
sodium phosphate (pH 7.0), 30 mM sodium pyrophosphate, 10 mM NaF,
0.1% NP-40, 5 mM dithiothreitol, 1 mM phenylmethanesulfonylfluoride and
Complete protease inhibitor (Roche). Cell lysates were incubated with Flag-
specific antibody—conjugated agarose beads (Sigma) and rotated at 10 r.p.m.
(TAITEC RT-50) at 4 °C overnight. The adsorbed beads were washed three
times with lysis buffer. Precipitated proteins were eluted from the beads by Flag
peptide and dissolved with the same volume of 2x SDS sample buffer. When
immunoprecipitation was not performed, total protein lysates were prepared
in 2x SDS sample buffer. Antibodies were detected by chemiluminescence with
ECL plus Detection Reagents (Amersham Biosciences). The primary antibodies
used in this study were Flag-specific antibody (M2) (Sigma), hemagglutinin-
specific antibody (3F10) (Roche) and MOZ-specific antibody'®, which was
generated by immunizing rabbit with peptides corresponding residue 441-460 of
human MOZ.

GST pull-down assay. The HindIII-Clal fragment corresponding to the
N-terminal region (1-664) of MOZ was cloned into the pSP64polyA
vector. [338]-MOZ (1-664) was produced by incubating pSP64polyA-MOZ
with [3°S]-methionine using the TNT Coupled Rabbit Reticulocyte Lysate
System (Promega). pGEX-6P-PU.1 and pGEX-6P-AML1 were generated by
subcloning full-length human PU.1 and AML1 ¢DNAs into pGEX-6P (GE
Healthcare). GST, GST-PU.1 and GST-AMLI were produced in Escherichia coli
BL21 containing pGEX-6P, pGEX-6P-PU.1 and pGEX-6P-AMLI, respectively.
The [*°S]-MOZ (1-664) protein was incubated with GST-, GST-PU.1- or
GST-AMLI1-conjugated glutathione-agarose at 4 °C for 60 min in lysis buffer,
washed three times with lysis buffer, analyzed by SDS-PAGE and detected
by autoradiography.

Statistical analyses. We performed unpaired two-tailed Student’s ¢ tests for com-
parisons and a log-rank test for survival data with JMP8 software (SAS Institute).
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To identify oncogenes in leukemias, we performed large-
scale resequencing of the leukemia genome using DNA
sequence arrays that determine ~9Mbp of sequence
corresponding to the exons or exon—intron boundaries of
5648 protein-coding genes. Hybridization of genomic
DNA from CD34-positive blasts of acute myeloid
leukemia (n=19) or myeloproliferative disorder (n=1)
with the arrays identified 9148 nonsynonymous nucleotide
changes. Subsequent analysis showed that most of these
changes were also present in the genomic DNA of the
paired controls, with 11 somatic changes identified only in
the leukemic blasts. One of these latter changes results in
a Met-to-Ile substitution at amino-acid position 511 of
Janus kinase 3 (JAK3), and the JAK3(MS511I) protein
exhibited transforming potential both in vitro and in vivo.
Further screening for J4K3 mutations showed novel and
known transforming changes in a total of 9 out of 286
cases of leukemia. Our experiments also showed a somatic
change responsible for an Arg-to-His substitution at
amino-acid position 882 of DNA methyltransferase 3A,
which resulted in a loss of DNA methylation activity of
>50%. Our data have thus shown a unique profile of gene
mutations in human leukemia.

Oncogene advance online publication, 19 April 2010;
doi:10.1038/0nc.2010.117

Keywords: resequencing; AML; JAK3; DNMT3A

Introduction

Leukemias are clonal disorders of hematopoietic stem
cells or immature progenitors. Several subtypes of
leukemia are associated with disease-specific karyotype
anomalies in the malignant blasts. Most cases of acute

Correspondence: Dr H Mano, Division of Functional Genomics,
Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi
329-0498, Japan.

E-mail: hmano@)jichi.ac.jp

Received 6 May 2009; revised 1 January 2010; accepted 17 March 2010

promyelocytic leukemia a subtype of acute myeloid
leukemia (AML), for instance, are associated with a
t(15;17) chromosomal rearrangement that results in the
production of the PML-RARA fusion-type oncoprotein
(Tallman and Altman, 2008). Similarly, another subtype
of AML is associated with a t(8;21) rearrangement,
resulting in the production of the oncogenic RUNXI-
CBFAZ2TI protein (Nimer and Moore, 2004).

The karyotype of leukemic blasts is an important
determinant of the long-term prognosis of affected
individuals. AML with t(15;17), t(8;21) or inv(16)
rearrangements thus constitutes a subgroup of leuke-
mias with a ‘favorable’ karyotype, with a 5-year survival
rate of >60%, whereas AML with an ‘adverse’
karyotype (monosomy 7, monosomy 5 or complex
anomalies) has a 5-year survival rate of only <15%
(Grimwade et al., 1998). The prognosis of AML with a
normal karyotype (constituting ~50% of all AML
cases) is substantially worse than that with a favorable
karyotype, with a 5-year survival rate of 24% (Byrd
et al., 2002), indicating that blasts with a normal
karyotype may contain transforming genes generated
as a result of (1) sequence alterations, (2) epigenetic
abnormalities or (3) small chromosomal rearrangements
not detectable by the G-banding technique. Indeed,
several genes, including NPMI and KIT, have been
found to be mutated and activated in AML blasts with a
normal karyotype (Schlenk et al., 2008).

The identification of transforming genes in AML will
require large-scale resequencing of the blast genome.
Although a new generation of sequencing technologies
is now available, whole-genome resequencing of many
samples remains a demanding task (Bentley e al., 2008;
Wheeler et al., 2008). Although DNA microarray-based
sequencing is suitable for analysis of multiple samples,
currently available platforms are limited in the number of
nucleotides that each array is able to probe. To overcome
such limitations, we have now applied the extra-large arrays
(‘wafers’) manufactured by Perlegen Sciences (Mountain
View, CA, USA) (originally developed for typing of
single-nucleotide polymorphisms) (Patil et al., 2001) to
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resequencing of the human genome. Our two-step
analysis of human leukemia specimens (n=20) has
identified a novel transforming mutation in the gene for
Janus kinase 3 (JAK3) and a hypomorphic mutation in
that for DNA methyltransferase 3A (DNMT3A).

Results

Sequencing strategy

Oligonucleotide probes on the sequencing wafer for the
first phase of our study were designed to detect
nonsynonymous nucleotide changes in the coding exons
of the genome. Intronic sequences (GT in the splicing
donor sequence AG-GT and AG in the splicing acceptor
sequence AG-G) adjacent to coding exons were also
interrogated with the wafer to capture splicing anoma-
lies. Genes examined by the wafer included those known
to be mutated in cancer and reported in the catalog of
somatic mutations in cancer (COSMIC, http://www.
sanger.ac.uk/genetics/cgp/cosmic) as of September 2006
(n=338) and those related to the regulation of DNA
repair (n=419), chromatin structure (n=299), redox
regulation (n=102), epigenetic regulation (n=44), cell
signaling (n=2490), protein kinases (n=314), gene
transcription (n=797), cell cycle (n=297), apoptosis
(n=312), DNA replication (n = 144) or other functions
(n=92) (Figure la). A total of 5648 genes were thus
analyzed with the wafer.

To efficiently isolate oncogenes generated by point
mutation using our sequencing array, we selected
leukemic blasts with a karyotype characterized by few
chromosome anomalies and by few copy number varia-
tions of chromosomes, as determined by comparative
genomic hybridization with single-nucleotide polymorph-
ism-typing arrays (Supplementary Figure S1). We isolated
15 cases of de novo AML, 4 cases of AML that developed
from myelodysplastic syndrome, and 1 case of myelopro-
liferative disorder negative for the JAK2(V617F) and
MPL(W515L) mutations (Kralovics et al., 2005; Pikman
et al., 2006) (Supplementary Table S1).

From cach of these 20 individuals enrolled in the study,
we purified immature blasts positive for the surface
expression of CD34 (leukemic fraction) as well as a paired
control fraction of mature T cells positive for the surface
expression of CD4. Although monocytes-macrophages
may also express a low level of CD4 at the cell surface, our
magnetic bead-based purification system preferentially
enriched mature T cells with a high level of CD4
expression; contamination of the mature T-cell fraction
with monocytes-macrophages was judged to be <9% by
flow cytometry (Supplementary Figure S2).

Given the potential presence of substantial numbers
of unreported single-nucleotide polymorphisms in the
human genome, we adopted a two-step analysis to select
somatic changes (Figure 1b). In phase I, genomic DNA
was isolated from the CD34* fraction, subjected to mid-
range PCR amplification and hybridized with the wafer
to examine ~9 Mbp of nucleotide sequence. In phase II,
we constructed a smaller wafer to investigate only the
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Figure 1 Resequencing of the leukemia genome with wafers.
(a) Genes interrogated by the phase I wafer (n=5648) included
those listed in the COSMIC database and those categorized on the
basis of function of the encoded protein as indicated. (b) CD34+
and CD4* cell fractions were purified from individuals with
leukemia (7=20). Genomic DNA of the former fractions was
assayed with the phase I wafer including ~9Mbp of sequence,
resulting in the isolation of 9148 nonsynonymous nucleotide
changes in 3403 independent genes. The phase II wafer was then
constructed to analyze these 9148 changes and was hybridized with
genomic DNA from both CD34* and CD4~ fractions separately.
Only 11 mutations were found to be present in the former fraction
but not in the latter.

nucleotides shown to be changed in phase I relative to
the human reference sequence. Genomic DNA isolated
from leukemic blasts and paired control fractions was
then analyzed individually with the phase II wafer. We
assumed that a nucleotide change was a germline
polymorphism if it was observed in both leukemic and
control fractions of the same individual, and that it was
a somatic mutation if it was observed in the former
fraction but not in the latter.

Identification of the JAK3(MS5111) mutation

Screening of the leukemic blasts of the 20 individuals for
point mutations in phase I yielded 9148 nonsynonymous
changes among 3403 independent genes, a frequency
similar to that observed in other large-scale resequen-
cing studies performed with capillary sequencers
(Sjoblom et al., 2006; Greenman et al., 2007). However,
analysis of CD4* fractions showed that most of these
sequence changes were also present in the paired control
genome, leaving only 11 nonsynonymous somatic
mutations in 11 genes (Supplementary Table S2). Such
small number of somatic mutations is in a good
agreement with the eight somatic mutations found in
AML through whole-genome resequencing using the



Illumina Genome Analyser (Illumina, San Diego, CA,
USA) (Ley et al., 2008). All of our 11 somatic changes
were confirmed by analysis of both genomic DNA and
c¢DNA of the corresponding specimens with a capillary
sequencer (data not shown). These data thus support the
necessity of examining paired noncancerous specimens
to pinpoint somatic changes in the cancer genome.

One of the gene mutations found only in the CD34*
fractions results in a Met-to-Ile change at amino-acid
position 511 of JAK3. A heterozygous JA4K3 mutation
responsible for the amino-acid change was confirmed in
both genomic DNA and cDNA from the CD34*
fraction, but not in those from the corresponding
CD4* fraction of patient ID JMO07 (Supplementary
Figure S3), who had de novo AML (M1 subtype) and
a normal karyotype (Supplementary Table Sl1). In
contrast to JAK?2, activating mutations in which are
preferentially associated with myeloproliferative disor-
der, several gain-of-function mutations (such as I87T,
P132T, Q501H, A572V, R657Q and V7221) of JAK3
have recently been associated with acute megakaryo-
blastic leukemia of children (Walters et al., 2006; Sato
et al., 2008). Other JAK3 mutations (such as A573V and
A593T) were also identified in the same disorder, and an
M576L substitution was detected in an adult with acute
megakaryocytic leukemia (AML, M7 subtype) (Kiyoi
et al., 2007), although the transforming potential of
these changes remains unknown.

Given that the MSIII mutant of JAK3 has not
previously been described and that the relevance of
JAK3 to the pathogenesis of adult AML has not been
extensively investigated, we first focused on the function
of JAK3(M5111). The M511 residue is located in the
linker region between the Src homology 2 (SH2) domain
and the pseudokinase domain of JAK3 (Figure 2a). The
transforming mutation QS501H that is associated with
juvenile acute megakaryoblastic leukemia (Sato et al.,
2008) is also located in this region. Given that JAK3 is
abundant in and has an essential role in the development
of lymphocytes (Russell et al., 1995), we examined the
expression level of JAK3 in AML blasts. The gene was
expressed at a high level in most AML specimens (n = 52),
with its expression level being greater than that of JAK2 in
all but three cases (Supplementary Figure S3).

To examine the transforming potential of JAK3(MS5111),
we introduced the mutant or wild-type protein into
the interleukin-3 (IL-3)-dependent mouse cell line
32D (Greenberger et al., 1983). Although 32D cells
forced to express wild-type JAK3 underwent rapid
apoptosis after withdrawal of IL-3, those expressing
JAK3(M5I11T) continued to grow even in the absence of
IL-3, although at a reduced rate compared with that of
cells expressing the artificially generated, highly trans-
forming mutant JAK3(V674A) (Choi et al., 2007)
(Supplementary Figure S3). 32D cells differentiate into
terminal granulocytes in the presence of granulocyte
colony-stimulating factor. However, cells expressing the
MS5I1I or V674A mutant of JAK3 maintained an
exponential rate of growth, without any sign of
differentiation, in the presence of granulocyte colony-
stimulating factor (Figure 2b, Supplementary Figure S3),
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supporting the notion that the MS511I mutant has
transforming potential.

To directly examine the leukemogenic activity of
JAK3(M5111), we generated a recombinant retrovirus
encoding this mutant and used it to infect murine
hematopoietic stem cells. Reconstitution of the bone
marrow of lethally irradiated mice with such infected
cells resulted in marked lymphocytosis in peripheral
blood and enlargement of the spleen in the recipient
animals (Figure 2c¢). The cells in the peripheral blood,
spleen and bone marrow of the recipients responsible for
these phenotypes manifested a medium-sized, blastic
morphology, and flow cytometric analysis revealed them
to be CD8* T cells (Figure 2¢). The clonal nature of
these proliferating T cells was further confirmed by
Southern blot analysis (Supplementary Figure S4),
indicative of the development of T-cell acute lympho-
blastic leukemia in the recipient mice.

To assess the prevalence of J4K3 mutations in adult
leukemia, we further examined the nucleotide sequence
of the entire coding region of JAK3 cDNA in an
additional 266 specimens of leukemic blasts. The coding
region of JAK3 cDNA was successfully amplified by
PCR from 83 specimens. We could further identify 4
distinct JAK3 sequence changes in 8 of these 83 samples:
1 case with G62S, 4 cases with Q501H, 2 cases with
R657Q and 1 case with R918C (Figure 2a). Taking into
account the 20 cases evaluated in the phase I analysis,
we thus identified a total of 9 cases with a mutant form
of JAK3 (3.1%) among 286 cases of leukemia (Supple-
mentary Table S3). Our identification of known
transforming JAK3 mutants (Q501H and R657Q)
originally associated with acute megakaryoblastic
leukemia prompted us to determine the prevalence of
these two changes in another cohort of AML (n=148),
revealing two cases with JAK3(Q501H) and one case
with JAK3(R657Q). In addition, analysis of a hemato-
poietic cell line (KCL22) (Kubonishi and Miyoshi, 1983)
established from a patient with chronic myeloid
leukemia in BC revealed yet another mutation
(L1017M) of JAK3 (Figure 2a).

To directly compare the transforming potential of
these various JAK3 mutants, we introduced each
protein into the IL-3-dependent mouse B-cell line BA/
F3 and examined the growth properties of the resulting
transfectants. Whereas all cells expressing the JAK3
mutants proliferated in a similar manner in the presence
of IL-3 (data not shown), culture without IL-3 revealed
marked differences in the transforming potential among
the mutants. JAK3(M511I) was the most efficient
oncokinase, with a transforming activity similar to that
of JAK3(V674A). The frequent mutants JAK3(Q501H)
and JAK3(R657Q) exhibited weaker but still pro-
nounced transforming potential, whereas the remaining
mutants (G62S, R918C and L1017M) showed an even
lower potential (Figure 2d).

Somatic mutations of DNMT3A
Another somatic mutation identified in the phase II data
set was a heterozygous change in DNMT3A that results
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Figure 2 Identification of JAK3 mutants in leukemia. (a) Amino-acid substitutions detected in this study are shown relative to the
domain organization of JAK3. The mutations M5111I (one case) and Q501H (four cases) are located in the linker region between the
SH2 and pseudokinase domains of JAK 3, whereas G62S (one case), R657Q (two cases) and R918C (one case) are located in the amino-
terminal region, the pseudokinase domain and the kinase domain, respectively. The KCL22 cell line also harbors an L1017M mutation
within the kinase domain of JAK3. Previously known activating mutations of JAK3 (Q501H and R657Q) are indicated by red
rectangles. (b) Mouse 32D cells expressing wild-type human JAK3 or the JAK3(MS511I) mutant were incubated with G-CSF (0.5ng/
ml) for 14 days, stained with Wright-Giemsa solution and examined by light microscopy. Scale bars, 20 um. (¢) C57BL/6 mice were
irradiated and then injected intravenously with syngeneic CD34-KSL hematopoietic stem cells infected with a retrovirus encoding
JAK3(MS511I) or the corresponding empty virus (control). The number of white blood cells in peripheral blood was counted at the
indicated times thereafter; data are means + s.d. for 10 mice in each group (upper left panel). Peripheral blood, spleen and bone marrow
isolated from recipient mice 3 months after cell injection were stained with the Wright-Giemsa solution (peripheral blood) or
hematoxylin—eosin (spleen and bone marrow) and were then examined by light microscopy (upper right panel); scale bars represent 10,
200 and 50 um, respectively. Mononuclear cells isolated from peripheral blood, thymus, spleen and bone marrow of recipient mice 3
months after cell injection were subjected to flow cytometric analysis of surface expression of CD4 and CD8a (lower panel). (d) Control
BA/F3 cells (—) or those expressing the indicated JAK 3 mutants were cultured without IL-3 for the indicated times, after which the cell
number was determined. Data are means + s.d. of triplicates from a representative experiment.

in an R882H substitution in the encoded protein
(Figure 3a, Supplementary Figure S5). DNMT3A,
together with DNMT3B, has an essential role in
de novo methylation of the human genome (Okano
et al., 1999), and an aberrant methylation profile
(hypermethylation of CpG islands and hypomethylation
of other regions) is a hallmark of cancer cells (El-Osta,
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2004). Despite a direct linkage between such methyla-
tion changes and silencing of tumor-suppressor genes in
cancer, the molecular mechanism responsible for such
abnormal methylation remains unknown. Our data thus
provide the first evidence of somatic mutation of a DNA
methyltransferase gene in cancer cells. Mutations in the
catalytic domain of DNMT3B have been shown to be
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Figure 3 Identification of a DNMT3A mutant in leukemia.
(a) Domain organization of human DNMT3A showing that the
R 882 residue found to be mutated in leukemia is conserved among
human (h) and mouse (m) members of the DNMT3 family.
DNMT3A contains a tetrapeptide PWWP domain, polybromo
homology domain (PHD) and methyltransferase (MTase) domain.
The R882 residue is located in the homodimerization region
present within the MTase domain. (b) Wild-type (WT) and R882H
forms of DNMT3A were expressed in and purified from insect cells
and then subjected to an in vitro assay of methyltransferase activity.
Data are means +s.d. of triplicates from a representative experi-
ment. The P-value was determined by Student’s r-test. (¢) Lysates
of HEK293 cells expressing Myc epitope-tagged DNMT3L and
wild-type or R882H forms of DNMT3A, as indicated, were
subjected to immunoprecipitation (IP) with antibodies to Myc or to
DNMT3A, and the resulting precipitates were subjected to
immunoblot analysis (IB) with antibodies to DNMT3A. The
position of DNMT3A (wild-type or mutant) is indicated by an
open arrow.

responsible for a hereditary syndrome characterized by
ICF (immunodeficiency, instability of the centromeric
region of chromosomes and facial anomalies) in humans
(Ehrlich, 2003). One of the mutation sites of DNMT3B
(R823) associated with the ICF syndrome corresponds
to the residue of DNMT3A (R882) shown to be mutated
in this study.

The R882 residue of DNMT3A is considered to
participate in the homodimerization and activation of
the protein (Jia et al., 2007) (Figure 3a). To determine
whether the R882H mutation affects the catalytic
activity of DNMT3A, we expressed mutant and wild-
type proteins separately in insect cells, purified them to
near homogeneity and subjected them to an in vitro
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assay of methyltransferase activity with a synthetic
substrate (Suetake ez al., 2003). The catalytic activity of
DNMT3A(R882H) was <350% of that of the wild-type
protein (Figure 3b). DNMT3L acts as a coactivator for
the methyltransferase activity of DNMT3A or
DNMT3B through its association with the latter
proteins (Jia et al., 2007). The R882H mutation did
not affect the interaction of DNMT3A with DNMT3L
in transfected mammalian cells (Figure 3c) or its
sensitivity to DNMT3L as examined by the in vitro
assay of methyltransferase activity (data not shown).
These data thus suggested that the R882H mutation
directly inhibits the enzymatic activity of DNMT3A.

Screening of another cohort of leukemia cases (n = 54)
for mutant forms of DNMT3A revealed another two
patients with a mutation of the same amino acid
(R882H in one patient and R882C in the other)
(Supplementary Table S4). Therefore, we identified a
total of 3 cases with an R882 mutation (4.1%) among 74
cases of leukemia. Screening for mutations of DNMT3B
failed to detect any somatic changes in the same
individuals (data not shown), suggesting that DNMT3A4
is a preferential target in leukemia.

Multistep transformation in leukemia

Although >99% of nucleotide changes in the phase I
data were also observed in the paired CD4* cells, it is
unlikely that all of these changes are actually germline
polymorphisms because they include established onco-
genic mutations. They thus include 190 nucleotide
changes previously described in cancer cells (Supple-
mentary Table S5), such as those giving rise to
NRAS(Q61H) in patient ID JM17 and to
FLT3(D835Y) in patient ID JMO08 (Figure 4a). Given
that both NRAS(Q61H) and FLT3(D835Y) are well-
characterized oncoproteins (Yamamoto ez al., 2001),
it is unlikely that these individuals harbored such nucleo-
tide changes in the germ line. There are at least two
possible explanations for these findings. First, it is
possible that purification of the CD4* fraction was not
efficient, with the result that this fraction was con-
taminated by CD34 cells. However, the CD4 expres-
sion ratio for the CD4* and CD34* fractions of each
individual was >17.1 (median=40.1) (Figure 4b), and
contamination of the CD4* fraction with CD34" cells
at such a level would not likely produce detectable
changes in Sanger sequencing outputs (compare, for
instance, the signal intensities of the normal and mutant
alleles in Figure 4a).

Furthermore, although CD4 expression has been
occasionally observed in AML blasts (Schwonzen
et al., 2007), quantitation of CD4 and CD34 mRNA
within our purified CD34+ fractions failed to detect a
significant level of the former message in the blasts
(Supplementary Figure S6). Therefore, it is unlikely that
contamination of CD4* leukemic blasts within the
purified, control CD4* fraction substantially affected
the sequencing results in our phase II experiment.

Rather, it is more likely that leukemia may develop in
a stepwise manner with a substantial time interval
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Figure 4 Proposed stepwise nature of leukemogenesis. (a) Sequencing electrophoretograms for the regions surrounding codon 61
of NRAS or codon 835 of FLT3 in genomic DNA from the CD34* and CD4 " fractions of patient IDs JM17 and JMOS, respectively.
Heterozygous nucleotide changes that give rise to NRAS(Q61H) or FLT3(D835Y) were detected in both fractions of the
corresponding patients. (b) The amount of CD4 mRNA in the CD4* (control) and CD34* (leukemia) fractions of leukemia patients
(with a substantial amount of control GAPDH mRNA) was quantitated by reverse transcription and real-time PCR analysis and
expressed as the control/leukemia ratio. (¢) Hematopoietic stem cells (HSCs) give rise to a wide range of mature blood cells. Even after
the first hit (mutation) of the genome, HSCs retain their full differentiation capacity, and therefore produce differentiated cells
harboring this first hit. After the second hit, the affected cell fraction undergoes full transformation to leukemia. (d) Sequencing
electrophoretograms for the genome of CD34* and CD4" fractions from patient ID JMO03 showing a heterozygous mutation for
KIT(N822K) before chemotherapy but not after.
between steps (Figure 4c). If a first hit occurs in the  genomic DNA of both CD34* and CD4* fractions
genome of hematopoietic stem (or progenitor) cells and  from this patient harbored a heterozygous mutation of
if such a somatic change does not result directly in the KIT that results in the production of a constitutively
generation of full-blown leukemia, the preleukemic  activated mutant protein, KIT(N822K) (Shimada et al.,
clones may give rise to terminally differentiated blood ~ 2006) (Figure 4d). The same change was also detected in
cells (including CD4* cells). After a certain period, a ~ ¢DNA prepared from the CD34* fraction (data not
second (or possibly a third) hit occurs in the immature  shown). Leukemic blasts in this patient were sensitive to
cells and triggers the rapid growth of leukemic clones  standard chemotherapeutic regimens, and the patient
without differentiation. In such a scenario, terminally underwent complete remission. Examination of CD34+
differentiated ‘normal’ cells may still harbor the first hit ~ and CD4* fractions obtained during the remission
in their genome. period revealed that the N822K codon change was no
Support for this latter possibility was provided by  longer detectable not only in the CD34* fraction but
patient ID JM03, who had AML (M2 subtype) with a  also in the CD4* fraction (Figure 4d). These data thus
t(8;21) chromosome anomaly. Before chemotherapy, the ~ support the scenario shown in Figure 4c: The N§22K
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change represents the first hit and was present in
differentiated blood cells, and the corresponding pre-
leukemic clones were simultaneously eradicated together
with the leukemic clones by chemotherapy.

On the other hand, as shown in Supplementary Tables
SI and S2, a heterozygous mutation for NRAS(G12S)
was found only in the CD34* fraction, but not in the
CD4* fraction of the patient ID JM16. Conventional
chemotherapy for this patient eradicated the leukemic
blasts carrying the mutation (Supplementary Figure S7),
also confirming that a successful treatment results in the
disappearance of cells with a (possible) ‘second hit’.

Our hypothesis of the stepwise leukemogenesis is also
consistent with the previous detection of the RUNXI-
CBFA2T1 oncogene in differentiated blood cells
(Kwong et al., 1996; Miyamoto et al., 1996, 2000).

Discussion

Our large-scale genomic resequencing of human leuke-
mia specimens with DNA microarrays has identified
recurrent nucleotide changes responsible for the genera-
tion of JAK3 and DNMT3A mutants. Whereas JAK3
mutants were unexpectedly found in adult AML, their
transforming ability, and possibly their contribution to
leukemogenesis, varied substantially. However, our
bone marrow transplantation experiments showed that
at least one of these JAK3 mutants (M511I) directly
participates in the development of leukemia. Identifica-
tion of the M5111 mutation of JAK3 in the leukemic
fraction but not in the control fraction of patient ID
JMO7 suggests that this mutation may be the second hit
triggering AML. Given that the blasts of this patient
had a normal karyotype, it is likely that the first hit is
present in the genome of both fractions. Karyotyping of
other patients with J4K3 mutations showed a total of
three cases with a normal karyotype, one case with
t(8;21), and one case with a numerical anomaly of
several chromosomes (Supplementary Table S3), sug-
gesting that J4K3 mutations may be preferentially
associated with leukemia with a normal karyotype.

Although JAK3(MS511I) was identified in AML, our
bone marrow transplantation experiments with hemato-
poietic stem cells expressing this mutant yielded T-cell
acute lymphoblastic leukemia. In contrast to human
leukemia, in which JAK3 changes may constitute a
second hit (probably in progenitor cells), JAK3(MS5I1I)
may have been expressed in all hematopoietic cells of the
recipient mice. JAK3(MS511I) thus likely triggered
leukemia within a T-cell fraction the intracellular
context of which is optimized for JAK3 signaling.

It has been frequently observed that transgenic mouse
or bone marrow transplantation experiments for leuke-
mic oncogenes do not accurately recapitulate the
original leukemia subtypes (Wong and Witte, 2001).
Transgenic mice expressing p2l0B®ABL for instance,
usually develop T-cell lymphoma or acute lymphoblastic
leukemia, not chronic myeloid leukemia. Further-
more, bone marrow transplantation with hematopoietic
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progenitor cells expressing p210®°®A8L! often leads to
development of lymphoma, AML, acute lymphoblastic
leukemia or macrophage tumors. Generation of malig-
nancy in such systems may, thus, be elaborately
influenced by mouse strains, promoter fragments for
artificial expression and/or cell types to be used for gene
transduction.

Our detection of recurrent DNMT3A hypomorphic
mutations in leukemia clones may indicate the presence
of an abnormal methylation profile in the genome of
such blasts. However, given the limited amount of the
specimens available, we were able to investigate micro-
satellite stability only at certain loci (Koinuma et al.,
2005), revealing no apparent microsatellite instability
(data not shown). We also generated BA/F3 cells
expressing wild-type or R882H forms of DNMT3A to
compare the methylation status of some CpG islands in
the genome; again, we detected no discernable differ-
ences between the two cell preparations (data not
shown). However, given that BA/F3 cells contained

two copies of wild-type Dnmt3a in addition to multiple

copies of mutant DNMT3A4, whereas the leukemic blasts
likely harbor one copy each of the wild-type and mutant
DNMT3A alleles, the clinical relevance of the R&82
mutant requires further examination under the latter
condition. Cell proliferation/differentiation is indeed
influenced substantially by the copy number of DNMT3
genes (Okano ez al., 1999; Ehrlich, 2003).

Our observations indicate the importance of prepar-
ing paired normal fractions in large-scale resequencing
projects, but they also reveal a difficulty in the
preparation of bona fide ‘normal’ fractions in the case
of leukemic disorders. Our data thus indicate that
nonleukemic blood cells may harbor early genomic hits,
rendering them inappropriate as controls. Furthermore,
a substantial proportion of fingernail DNA was recently
shown to be derived from donor cells among recipients
of allogeneic stem cell transplants (Imanishi et al., 2007),
indicating that nonblood cells may contain DNA
derived from transplanted cells. Therefore, it is possible
that buccal, fingernail or even hair cells may not be
suitable as normal cell controls. In contrast to solid
tumors, for which blood cells are appropriate as paired
normal fractions, leukemic disorders require that cau-
tion be taken to discriminate somatic nucleotide changes
from germline polymorphisms.

Materials and methods

Wafer sequencing

CD34* and CD4* fractions were isolated from leukemic
individuals using CD34microbeads and CD4microbeads,
respectively, and a MidiMACS separator (Miltenyi Biotec,
Gladbach, Germany). All clinical specimens were obtained
with written informed consent, and the study was approved by
the ethics committees of both the Jichi Medical University and
the Nagasaki University. DNA sequencing wafers were
designed and processed at Perlegen Sciences. Genes to be
interrogated on the wafers were selected from the Entrez Gene
database (http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene)

~
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by searching with various keywords characteristic to each
subcategory (such as DNA repair, regulation of chromatin
structure, etc.), followed by manual inspection. The final gene
list for the wafers is shown in Supplementary Table S6.
Construction of the wafers, quality control analysis and data
processing are described in Supplementary Text.

JAK3 analysis

Complementary DNAs for JAK3 mutants were generated
using a QuikChange site-directed mutagenesis kit (Stratagene,
La Jolla, CA, USA) and ligated into the pMX retroviral vector
(Onishi et al., 1996). Ecotropic recombinant retroviruses
encoding each mutant were produced in BOSC23 cells
transfected with the corresponding pMX-based plasmid and
were used to infect BA/F3 or 32D cells as described previously
(Choit et al., 2007). Both types of cell were cultured in RPMI
1640 medium supplemented with 10% fetal bovine serum
(both from Life Technologies, Carlsbad, CA, USA) and mouse
IL-3 (Sigma, St Loius, MO, USA) at 10 Units/ml; differentia-
tion of 32D cells was induced by culture in the presence
of serum and mouse granulocyte colony-stimulating factor
(Sigma) at 0.5ng/ml. A concentrated preparation of a
retrovirus with a VSV-G envelope and encoding both
JAK3(M5111) and enhanced green fluorescent protein was
used to infect CD34- c-Kit* Sca-1* Lineage-marker-
(CD34-KSL) hematopoietic stem cells isolated from the bone
marrow of CS57BL/6 mice, and the infected cells were
transplanted into lethally irradiated mice congenic for the
Ly5 locus (Iwama et al., 2004). CD4, JAK2 and JAK3 mRNAs
were quantitated by reverse transcription and real-time PCR
analysis using an ABI7900HT system (Life Technologies) and
with the primers 5¥-CTGGAATCCAACATCAAGGTTCTG-3
and 5-AATTGTAGAGGAGGCGAACAGGAG-3 for CD4,
5'-CTCCAGAATCACTGACAGAGAGCA-3' and 5-CCAC
TCGAAGAGCTAGATCCCTAA-3 for JAK2 and 5-GAGC
TCTTCACCTACTGCGACAAA-3" and 5¥-AGCTATGAAA
AGGACAGGGAGTGG-3 for JAK3; the c¢DNA for
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was
also amplified with the primers 5-GTCAGTGGTGGACC
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DNMT3A analysis
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Prevalence and prognostic impact of allelic imbalances associated with leukemic
transformation of Philadelphia chromosome—negative myeloproliferative
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Philadelphia chromosome-negative my-
eloproliferative neoplasms (MPNs) includ-
ing polycythemia vera, essential thrombo-
cythemia, and primary myelofibrosis
show an inherent tendency for transfor-
mation into leukemia (MPN-blast phase),
which is hypothesized to be accompa-
nied by acquisition of additional genomic
lesions. We, therefore, examined chromo-
somal abnormalities by high-resolution
single nucleotide polymorphism (SNP) ar-
ray in 88 MPN patients, as well as 71 cases
with MPN-blast phase, and correlated

these findings with their clinical parame-
ters. Frequent genomic alterations were
found in MPN after leukemic transforma-
tion with up to 3-fold more genomic
changes per sample compared with
samples in chronic phase (P < .001). We
identified commonly altered regions in-
volved in disease progression including
not only established targets (ETV6, TP53,
and RUNX1)but also new candidate genes
on 7q, 16q, 19p, and 21q. Moreover, tri-
somy 8 or amplification of 8g24 (MYC)
was almost exclusively detected in

JAK2V617F- cases with MPN-blast phase.
Remarkably, copy number—neutral loss of
heterozygosity (CNN-LOH) on either 7q or
9p including homozygous JAK2V617F
was related to decreased survival after
leukemic transformation (P = .01 and
P = .016, respectively). Our high-density
SNP-array analysis of MPN genomes in
the chronic compared with leukemic stage
identified novel target genes and pro-
vided prognostic insights associated with
the evolution to leukemia. (Blood. 2010;
115(14):2882-2890)

Introduction

Philadelphia chromosome-negative myeloproliferative neoplasms
(MPN5s) including polycythemia vera (PV), essential thrombocyto-
sis (ET), and primary myelofibrosis (PMF) are defined as clonal
hematopoietic stem cell disorders and characterized by increased
proliferation of terminally differentiated myeloid cells. The ty-
rosine kinase JAK?2 is directly linked to the pathogenesis of MPN
with the identification of JAK2V6I7F as a recurring gain-of-
function mutation."? Almost all cases with PV, and roughly 50% of
patients with ET and PMF, carry this specific mutation localized on
chromosome 9p24.

The long-term outcome of patients with acute myeloid leukemia
(AML) secondary to MPN, myelodysplastic syndrome (MDS), or
treatment with cytotoxic agents is relatively poor compared with

patients with de novo AML. Patients with de novo and secondary
AML have a similar spectrum of cytogenetic abnormalities, but the
occurrence of cytogenetic changes associated with unfavorable risk
such as 5q—, —7/7q—, trisomy 8, or complex karyotype is higher
in secondary AML.** However, so far only a small number of
studies with limited number of cases have explored the chromo-
somal alterations and/or clinical markers associated with accelera-
tion to blast phase of patients with MPN.

Previously, we developed the copy number analyzer for
Affymetrix GeneChip (CNAG) program and the new algorithm
allele-specific copy number analysis using anonymous references
(AsCNAR).56 These techniques in combination with high-density
single nucleotide polymorphism (SNP) array provide a robust and
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Table 1. Clinical features of MPN/MPN-blast phase cases (unmatched and matched)

Unmatched MPN Unmatched MPN-blast phase Matched MPN Matched MPN-blast phase

All cases, no. (%) 77 (56) 60 (44) 11 (50) 11 (50)
MPN diagnosis no. (%)

PV samples 21 (27) 17 (28) 2(18) 2(18)

ET samples 31 (40) 18 (30) 1(09) 1(09)

PMF samples 25(33) 25 (42) 8 (73) 8 (73)
Sex, M:F

PV samples 1:2 1:1 14 121

ET samples 1:2 1:1 0:1 0:1

PMF samples 2:1 2:1 2:1 2:1
Mean age at diagnosis, y, = SD*

PV 87 *:5 68 £5 — —

ET 596 69 £7 — —

PMF 57'x 6 659 59 =9 657
Mean blast count in bone marrow, = SD, no. (%)*

PV samples <5% 70 £ 20 — 2

ET samples <5% 66 = 23 — —

PMF samples <5% w21 < 5% 66 + 24
JAK2V617F (+) no. (%)

PV samples 21/21 (100) 14/17 (82)1 2/2 (100) 1/2 (50)

ET samples 18/31 (58) 6/18 (33) 0/1 (0) 0/1 (0)

PMF samples 16/25 (64) 12/25 (48) 5/8 (62.5) 4/8 (50)
c-MPL mutation positive, no. (%)

PV samples 1/21 (5)t 0/17 (0) 0/2 (0) 0/2 (0)

ET samples 0/31(0) 1/18 (6) 0/1 (0) 0/1 (0)

PMF samples 3/25 (12) 2/25 (8) 1/8 (12.5) 1/8 (12.5)

MPN indicates myeloproliferative neoplasm; PV, polycythemia vera; ET, essential thrombocytosis; M, male; F, female; and PMF, primary myelofibrosis.
*Data are available for 27 unmatched MPN (10 PV, 10 ET, and 7 PMF) and 54 unmatched MPN-blast phase (15 PV, 18 ET, and 21 PMF) cases, and 8 matched MPN (PMF)

cases.

TThis c-MPL mutation in a PV patient has already been validated and reported by Kawamata et al.8
#Significantly fewer cases with JAK2V617F in blast phase vs chronic phase (P=.045).

detailed approach to detect large and small copy number changes,
as well as copy number—neutral loss of heterozygosity (CNN-
LOH). To obtain a comprehensive profile of genomic alterations
associated with leukemic transformation in MPN, we applied this
interrogational method and performed a systemic analysis of
159 samples obtained from patients either in chronic phase or blast
phase of MPN.

Methods

Patients and clinical samples

In total, samples from 148 patients were analyzed by SNP-array. One
hundred fifty-nine samples were obtained, of which 88 (55%) were diag-
nosed with MPN in chronic phase (23 PV, 32 ET, 33 PMF) and 71 (45%),
with MPN in blast phase (19 PV, 19 ET, 33 PMF). Diagnosis was based on
the World Health Organization criteria,” and an overview of patients,
including clinical data, is given in Table 1. This study received institutional
review board approval from the Cedars-Sinai Medical Center, and informed
consent was obtained from all patients in accordance with the Declaration
of Helsinki. Given the relatively high incidence of homozygous JAK2VI7F
patients diagnosed with ET (3/18 in chronic phase, 2/6 in blast phase),
which is usually lower for this disorder,” we suggest that at least some cases
diagnosed with ET may have been incorrect.

Samples were provided by (1) Department of Hematology, Mayo Clinic
(n = 35); (2) Brigham and Women'’s Hospital, Harvard University, School
of Medicine (n = 46); (3) Department of Hematology, Archet Hospital
(n = 44); (4) MLL Munich Leukemia Laboratory, (n = 14); (5) Division of
Hematology-Oncology, Chang Gung Memorial Hospital (n = 14); and
(6) Division of Hematology, Sheba Medical Center and Sackler School of
Medicine, Tel-Aviv University (n = 6).

SNP-Chip analysis

A total of 159 tumor specimens (MPN and/or MPN-blast phase) were
analyzed on GeneChip SNP genotyping microarrays (GeneChip Mapping
50K and/or 250K arrays; Affymetrix) as described previously.® After
appropriate normalization of mean array intensities, signal ratios were
calculated between tumors and anonymous normal references in an
allele-specific manner. Genome-wide determination of allele-specific copy
numbers (AsCNs) and detection of CNN-LOH at each SNP were inferred
from the observed signal ratios based on the hidden Markov model using
CNAG/AsCNAR algorithms (http://www.genome.umin.jp).>® For cluster-
ing of patient samples with regard to the status of copy number changes, as
well as CNN-LOH, CNAG-Graph software (Tokyo University) was used.
Size, position, and location of genes were identified with the University of
California, Santa Cruz (UCSC) Genome Browser (http:/genome.ucsc.
edu)'® and Ensemble Genome Browser (http:/www.ensembl.org).!! Germline
copy number changes previously described as copy number variants at Database
of Genomic Variants (http:/projects.tcag.ca/variation)'> and UCSC Genome
Browser were excluded. SNP-array data used in this study are available in the
Gene Expression Omnibus (GEO) database under accession number GSE19647. 13

Comparison of 50K versus 250K SNP-Chip analysis in MPN
chronic phase

SNP-array analysis of 46 of our MPN samples (10 PV, 20 ET, 16 PMF;
kindly provided by D.G.G. at Brigham and Women’s Hospital, Harvard
University) has already been reported by our group.® At that time, only 50K
arrays were available, whereas later in this study, the 250K arrays were
accessible and used to analyze additionally 42 MPN and 71 MPN-blast
phase samples. Because no significant differences in either number of
deletions, duplications/amplifications, or CNN-LOH per case were found as
analyzed by the SOK compared with 250K array (supplemental Table 1,
available on the Blood website; see the Supplemental Materials link at the
top of the online article), we combined the analysis of both platforms in our
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results. Supplemental Table 2 lists all individual samples and the array that
was used.

Cytogenetics

Routine cytogenetic analysis with conventional banding techniques was
performed in 35 of 88 MPN (10/23 PV, 10/32 ET, 15/33 PMF) and 63 of
71 MPN-blast phase (15/19 PV, 18/19 ET, 30/33 PMF) cases according to
standard procedures as previously described.'* No routine fluorescent in
situ hybridization (FISH) panel was applied, but in some cases, however,
FISH analysis was performed to supplement conventional cytogenetic
analysis (supplemental Table 2).

Allele-specific PCR for JAK2V617F mutation

For the detection of JAK2V617F, allele-specific polymerase chain reaction
(PCR) was performed according to the previously reported method.!3

Direct mutation screening

Primers were designed to amplify and sequence coding exons and splice
junctions of the following genes: TET2, ¢-CBL, TP53, and RUNX1. We
screened only the 11 matched samples that showed genomic changes in the
particular gene regions. Primer details are available from the corresponding
author (N.H.T.).

We evaluated all MPN and MPN-blast phase patients with 1pCNN-
LOH for the MPLW515 mutation (exon 10) by direct sequencing. If no
mutation was detected in this cohort, we also screened the other coding
exons of the c-MPL gene previously shown to be mutated in MPN.®

Validation of acquired genomic copy number changes
including CNN-LOH

To confirm the somatic origin of genomic copy number changes, quantita-
tive genomic real-time (QG RT)-PCR was performed on the genomic DNA
from the hybridized MPN and matched MPN-blast phase samples accord-
ing to the calculation method described by Weksberg et al.!® For example,
we used primers for the RUNXI gene (21q22.12; supplemental Figure 1A)
as well as TET2 gene (4q24; data not shown) and a random region on
chromosome 21q21.1 and 4p15.1, respectively, as a reference in patient 121.

Detection of acquired CNN-LOH was also validated by QG RT-PCR
and subsequently by nucleotide sequencing. Three SNP sequences (rs919275,
rs10854117, and rs10854117) on chromosome 19p in case 36 at diagnosis
of PV, as well as at leukemic transformation, were determined (supplemen-
tal Figure 1B). The genomic region of each SNP site was amplified, and
products were purified and sequenced (supplemental Figure 1C). In
addition, we confirmed loss of CNN-LOH on 9p after leukemic transforma-
tion in matched case 120 using SNP sequences rs3858029, rs1360461, and
rs10818814 on chromosome 9 (data not shown).

Homozygous deletions of CUTLI and SH2B2 (case 138) as well as
PIG-A (case 121) in both MPN and/or MPN-blast phase samples were also
confirmed by QG RT-PCR (supplemental Figure 2). Primers for these
experiments will be provided upon request.

Statistical analysis

Wilcoxon rank sum tests were used to assess differences in continuous
variables, and categoric variables were assessed using chi-square tests, all
with a significance level of a = .05. The methods of estimations included
the standard deviation (* SD) of the sampling distribution. Asterisks
shown in the figures indicate significant differences of experimental groups
in comparison with the corresponding control condition (*P < .0S;
#kP < (001). Survival analysis was performed using the Kaplan-Meier
method, and survival curves were compared using the log-rank test.

Results

Lower frequency of JAK2V617F and 9p alterations after
leukemic transformation

In the present study, we examined 159 samples (88 MPN and 71 MPN-
blast phase) from a total of 148 patients. An overview of the clinical

BLOOD, 8 APRIL 2010 + VOLUME 115, NUMBER 14

features of matched and unmatched cases including sex, age, leukemic
blast infiltration, and mutational status (JAK2V6I7F, ¢-MPL) is pro-
vided in Table 1. The sex ratio of male and female patients in chronic
phase was 1:2 for PV and ET, whereas after transformation, the ratio
was balanced with 1:1. For PMF patients, the male-to-female ratio was
2:1 in both MPN chronic and blast phase.

Overall, the incidence of JAK2V617F was almost 20% less in
the blast phase compared with the chronic phase for both the
matched and unmatched MPN cases (unmatched cases: P < .05;
Figure 1A). Cases that were negative for JAK2V617F were also
exclusively negative for 9p duplication, trisomy 9, or 9pCNN-LOH
in the chronic as well as leukemic stage of MPN. 9pCNN-LOH was
noted approximately 3 to 4 times more often than 9p duplication
and/or trisomy 9 in JAK2V617F* MPN cases during either the
chronic or blast phase (Figure 1A), but the frequency of 9pCNN-
LOH was significantly less in the blast crisis compared with the
chronic phase of unmatched PMF and PV patients (supplemental
Table 3). In contrast, unmatched ET cases had about the same
frequency of 9pCNN-LOH in the chronic phase versus the blast
phase of the disease. Furthermore, in the analysis of the 11 matched
MPN cases, 7 were positive for JAK2V617F (64%), 4 had 9p
CNN-LOH (37%), and 1 had 9p duplication (9%) at first diagnosis
(Figure 1A). In comparison, 2 of these patients were JAK2V617F*
with either trisomy 9 or 9pCNN-LOH during their chronic phase
(1 PV, 1 PMF), but no longer had detectable JAK2V617F with a
normal chromosome 9 after leukemic evolution (Figure 1B).

JAK2V617F mutational status had no impact on time to
transformation or survival

In the evaluation of clinical data for MPN-blast phase patients, no
significant correlation was noted between the prevalence of
JAK2V617F at transformation and either age, percentage of
leukemic blast cells in the marrow, or pretreatment with alkylating
agents and/or hydroxyurea (data not shown). Moreover, we found
no statistical association between either time to leukemic transfor-
mation or overall survival and the JAK2V617F status at transforma-
tion in PV, ET, or PMF patients. The overall survival of MPN-blast
phase patients with JAK2V617F versus blast phase patients without
this mutation is provided in Figure 2A (P = .6). In addition, with
respect to the comparably low frequency of MPLWS515-positive
MPN-blast phase patients (6%), we noted no impact of the c-MPL
mutational status on either time to transformation (data not shown)
or the overall survival in MPN patients who underwent leukemic
transformation (P = .5; Figure 2B).

However, regardless of the mutational status of MPN-blast
phase patients, we noted that the time from diagnosis of MPN to
leukemic transformation was significantly shorter in those with
pre-existing PMF (median, 58 months) compared with patients
with either prior PV (median, 98 months) or ET (median,
110 months; P = .01). This earlier transformation resulted in a
decreased overall survival from the time of diagnosis of the
underlying MPN in leukemic patients with preceding PMF patients
compared with preceding PV or ET (P = .02; Figure 2C), which is
congruent with previously published results.!”

Increased number of additional genomic changes after
leukemic transformation

Altogether, a relatively low number of genomic alterations was
found by SNP-array analysis in the chronic phase of the MPN
samples (Figure 3A). In contrast, 2 to 3 times more abnormalities
per sample were detected after leukemic evolution in both matched
and unmatched cases with MPN (both P < .001; Figure 3A). We
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Figure 1. Frequency of JAK2V617F and associated alterations on chromosome 9. (A) Diagrams represent matched and unmatched MPN cases in chronic versus blast
phase. Indicated are frequencies of JAK2V617F and association to 9p duplication (dupl)/ftrisomy 9 or 9pCNN-LOH. Data and statistical evaluation for underlying MPN
subgroups are shown in supplemental Table 3. (B) CNAG software represents duplication (red) and CNN-LOH (green) on 9p detected in 11 patients with matched samples
(chronic MPN vs MPN-blast phase). In addition, allele-specific PCR for the detection of JAK2V617F was performed in these samples. Arrows indicate 2 MPN patients who were
initially positive for JAK2V617F in association with 9p imbalances; leukemic transformation was accompanied with loss of JAK2V617F and a normal chromosome 9.
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Figure 2. Overall survival of MPN patients with subsequent transformation to
blast crisis. Kaplan-Meier plots of all MPN-blast phase patients from the diagnosis of
pre-existing MPN were stratified for (A) the presence or absence of a JAK2V617F
mutation at transformation, (B) the presence or absence of a MPLW515L mutation at
transformation, and (C) the underlying type of MPN.

found no statistical relationship between the JAK2V617F status and
the number of genomic changes in matched as well as unmatched
samples (data not shown). However, samples from ET patients had
fewer copy number changes than those from either PV or PMF
patients in the chronic phase, which was highly significant in the
unmatched cases (P < .001; Figure 3A, supplemental Figure 3A).
After leukemic transformation, a similar number of SNP-array
changes occurred in cases with prior ET compared with those with
pre-existing PV and PMF (unmatched cases: P = .59). Statistical
evaluation of the matched samples divided into each subentity was
not possible because of the small number of cases (Figure 3Aii and
supplemental Figure 3B). A subanalysis of the number of either
deletions, duplications/amplifications, or CNN-LOH per case,
matched and unmatched, is shown in supplemental Figure 3.
Compared with the cytogenetic data, SNP-array analysis de-
tected more than 2-fold of additional chromosomal changes in the
MPN samples of either chronic or blast phase, whereas SNP-array
practically captured all cytogenetic abnormalities (Figure 3B).

Candidate genes involved in leukemic transformation of MPN
patients

SNP-chip analysis detected several additionally altered regions in
patients after leukemic evolution compared with the MPN chronic
phase in both unmatched (Figure 4; supplemental Figure 4) and
matched (Figure 5A) cases. The altered regions included chromo-
some 8q (MYC), 12p (ETV6), 17p (TPS3), and 21q (RUNXI),
which are already known to be involved in leukemogenesis.!8-22
Trisomy 8 was detected in 12% of unmatched and 9% of matched
cases in MPN-blast phase; interestingly, almost all these samples
were negative for JAK2V617F. PMF patient 148, who was also
JAK2V617F~, showed amplification of 8q24.21 in blast crisis
involving the MYC gene. MPN-blast phase patients with trisomy
8 did not show an inferior outcome compared with cases without
this abnormality (P = .11; data not shown).

In 20% of unmatched cases in MPN-blast phase, deletions
(12%) or CNN-LOH (8%) occurred on chromosome 17 including
TP53 at p13.1. Deletions on the short arm of chromosome 17 were
detected significantly often in MPN-blast phase patients who
received prior treatment with hydroxyurea with or without the
addition of alkylating agents (P = .035, Table 2). Supplemental
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Figure 4. Overview of gains and losses detected by CNAG software. Indicated
are the most common altered regions in unmatched MPN-blast phase patients
(n = 60; right-sided cytobands) compared with unmatched MPN patients (n = 77,
left-sided cytobands). Each line represents 1sample with either deletion (blue),
duplication/amplification (red), or CNN-LOH (green). Candidate genes of the minimal
altered regions are highlighted by arrows.

On chromosome 21, SNP-chip analysis revealed either dele-
tions or CNN-LOH in 8% of unmatched cases in MPN-blast phase
involving the transcription factor RUNXI at q22.12. Patient 121
acquired a small deletion of that locus in the leukemic sample (Figure
5A) associated with a mutation of the Runt domain of the RUNXI gene
on the remaining allele (Q392Stop codon; Figure 5Bii).

Deletion or CNN-LOH on 4q24 spanning the TET2 gene was
detected in 6% of unmatched blast phase cases and 1% in chronic
phase. One TET2 mutation was found by nucleotide sequencing in
the matched MPN samples. JAK2V617F~ case 121 had no
genomicimbalances on 4q at diagnosis of PMF, but acquired a
microdeletion (1 Mbp) on 4q24 (TET2) after leukemic evolution
1 year later (Figure 5A). The remaining allele had a TET2
frameshift mutation (N486T; Figure 5Biii), and the mutation was
absent in the matched PMF sample.

CNN-LOH involving 11q23.3, which has been shown to be
strongly associated with ¢-CBL mutations,? had an even lower
frequency, with only 2% of unmatched MPN cases in either chronic
phase or blast crisis. The JAK2V6I7F~ patient 132 had 11q
CNN-LOH with a homozygous c-CBL missense mutation (Y371H)
in the MPN-blast phase sample. Both the CNN-LOH and the
mutation were absent in the corresponding chronic phase, 2 years
before disease progression (Figure 5A-Biv).

Besides these already well-known targets, SNP-array analysis
detected commonly altered regions on chromosomes 1, 7, 16, 19,
and 21 encompassing potentially new candidate genes involved in
MPN transformation. These imbalances were either absent or at
least very infrequent in the chronic phase of the disease (Figures
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Figure 5. Gains and losses in matched MPN samples
and mutational analysis. (A) Most commonly altered
genomic regions in MPN samples (left sample column)
compared with matched blast phase samples (right
sample column) evolved from 11 patients (2 PV, 1ET,
8 PMF). Each line represents 1 sample with either dele-
tion (blue), duplication/amplification (red), or CNN-LOH
(green). (Bi) Hemizygous TP53 mutation detected in
MPN-blast phase sample of case 120 associated with
acquired 17q deletion, which was not present in the MPN &
phase of case 120. (ii) Hemizygous RUNX7 mutation
detected in MPN-blast phase sample (case 121) associ-
ated with acquired deletion at 22q22.1, which was not
present in the MPN phase of case 121. (jii) Hemizygous
TET2 mutation detected in MPN-blast phase sample of
case 121 associated with acquired cryptic deletion on
424, which was not present in the MPN phase of
case 121. (iv) Homozygous c-CBL mutation detected in
MPN-blast phase sample of case 132 associated with
acquired 11q CNN-LOH, which was not present in the
MPN phase of case 132.
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4 and 5A, supplemental Figure 4). Ten percent of unmatched and
18% of matched MPN-blast phase cases had either duplication/
amplification or CNN-LOH on 19p. The commonly involved
region spanned a small locus (2 Mbp) at 19p13.2, where, among
others, the genes PINI, ICAMI, and CDC37, which have been
associated with carcinogenesis, are located.?*20 In addition, the
minimal region (1.8 Mbp) of amplifications/duplications/trisomy
on chromosome 21 detected in 8% of unmatched and 9% matched

Table 2. Pretreatment in 47 MPN-blast phase cases and frequency
of 17p and 7q deletions

Pretreatment
Hydroxyurea - + - +
Alkylating agents = — + +
SNP-array alteration (17p vs 7q)
No del(17)(p), no del(7(q) 17 16 0 1
del(7)(q) 2 2 2 2
del(17)(p) 0 4* 0 1
del(17)(p) and del(7)(q) 0 0 0 0

Numbers of blast-phase patients are presented.

MPN indicates myeloproliferative neoplasm; and SNP, single nucleotide polymor-
phism.

*Atotal of 5 cases with del(17)(p) pretreated with hydroxyurea (P = .035).

¢-CBL, Y371H, missense TAC-»CAC

MPN-blast phase samples harbored the oncogenic transcription
regulator ERG (q22.2).

Complete or partial deletion (—7/7q—), as well as CNN-
LOH of the long arm of chromosome 7, was one of the most
common abnormalities detected by SNP-array analysis in up to
25% of unmatched and 27% matched samples evolved in the
blast phase. SNP-array also revealed 3 unmatched cases (32, 87,
and 116) with a heterozygous microdeletion encompassing the
7q22.1 locus, which was not detectable by cytogenetic analysis.
Moreover, case 138 with 7qCNN-LOH had a homozygous
deletion on 7q22.1 in both the matched MPN and MPN-blast
phase samples (supplemental Figure 2A). The minimally deleted
region spanned a small region of 0.88 Mbp at 7q22.1 covering
only 2 target genes, CUTLI and SH2B2. The homozygous
deletion of these genes in patient 138 was confirmed by QG
RT-PCR (supplemental Figure 2B). Deletions of the long
arm of chromosome 7 were found more often in MPN-blast
phase patients pretreated with hydroxyurea and/or alkylating
agents, but the findings were not statistically significant (P = .2;
Table 2).

Also worth mentioning, 1 microdeletion encompassing the
chromosome X-linked P/G-A gene occurred in male patient 121 at
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Figure 6. Survival analysis in MPN-blast phase. (A) Survival from the time of
diagnosis of blast phase in transformed MPN patients with normal chromosome
7 (normal 7q) compared with either monosomy 7 (—7)/deletion of 7q (7q—) or
7qCNN-LOH. (B) Survival from the time of diagnosis of blast phase in transformed
MPN patients with homozygous JAK2VE17F" associated with 9pCNN-LOH com-
pared with either heterozygous JAK2VE17F with 9p duplication/trisomy 9 or no
abnormality, or patients without the mutation (JAK2 wild type). Median survival
(months) and the case numbers for each group (transformed PV, ET, or PMF) are
listed in supplemental Table 5.

leukemic transformation (supplemental Figure 2C). This patient
had a normal chromosome X in his chronic phase of PMF.

CNN-LOH is a marker of poor survival in MPN patients after
leukemic evolution

SNP-array technology provides efficient and effective detection of
segmental CNN-LOH. In the present study, the most prominent
regions for CNN-LOH besides chromosome 9p (JAKZ) were on
7q and 17p (TP53) in patients with MPN-blast phase. In marked
contrast to CNN-LOH on 9p, CNN-LOH on 7q or 17p almost never
occurred in the chronic phase of the disorder in matched and
unmatched samples. As mentioned previously, cases with CNN-
LOH and/or deletion of 17p were associated with either complex
karyotype or isochromosome 17 and decreased survival.

As also expected, survival in the MPN-blast phase was signifi-
cantly decreased in patients with —7/7q— (median, 3.75 months)
compared with those without chromosome 7 alterations (median,
9 months; P = .008). In addition, the unbalanced translocation,
der(1;7)(q10;p10), a nonrandom chromosomal abnormality rarely
found in AML, was detected by SNP-chip and FISH in 7% of
unmatched samples after leukemic evolution and was also associ-
ated with an inferior outcome compared with patients without
chromosome 7 imbalances (P = .014). Strikingly, survival contin-
ued to be significantly decreased in MPN-blast phase, when cases
with only 7qCNN-LOH were compared with those with a normal
7q (P = .01; Figure 6A; supplemental Table 5).

The JAK2V617F mutational status in terms of heterozygosity or
homozygosity appeared to have no influence on the duration to
leukemic evolution. Regardless of the underlying MPN subgroup,
no statistical difference in the time to leukemic transformation was
found comparing JAK2V6I7F* patients with normal chromo-
some 9 to mutant positive blast phase patients with either 9p
duplication/trisomy 9 (P = .28) or 9pCNN-LOH (P = .21). In-
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stead, we found that homozygous JAK2V617F had an impact on
survival after MPN transformation. Blast phase patients with
9pCNN-LOH resulting in a homozygous JAK2 mutation had a
worse outcome (median, 4 months) compared with JAK2V6I7F*
MPN-blast phase patients with either 9p duplication/trisomy
9 (median, 7.5 months) or no abnormality on 9p (median, 9 months),
as well as patients without JAK2V6I7F (median, 7 months,
P = .016; Figure 6B; supplemental Table 5). Homozygous
JAK2V617F in association with CNN-LOH diagnosed at leukemic
transformation was independent of known risk factors such as 59—,
—7/7q—, or complex karyotype (P > .05).

Discussion

Oncogenic JAK2 signaling is an important event in MPN.!2
Recently, we and others showed that homozygosity for JAK2V617F
is closely related to chromosome 9pCNN-LOH in MPN pa-
tients.!68° However, the transformation process of MPN to MPN-
blast phase is not well understood.

Recent findings suggested that transition from heterozygosity to
homozygosity for JAK2V617F is associated with a hyperprolifera-
tive disease profile and may be important for disease progression,
at least from PV to secondary myelofibrosis.2” Moreover, Barosi et
al showed in a longitudinal prospective study that the presence of a
JAK2V617F hematopoietic clone was significantly associated with
leukemic transformation in PMF.28 This is in contrast to our present
findings showing that not only the mutational status of JAK2V617F,
but also 9pCNN-LOH with homozygous JAK2V617F, had no
impact on the time to leukemic transformation in patients with
MPN-blast phase. In addition, 2 of the 11 matched MPN samples,
initially positive for JAK2V617F with either trisomy 9 or 9pCNN-
LOH, became negative for these abnormalities after leukemic
transformation. Although only tested in unpaired samples, PMF
and PV samples also showed a significantly smaller number of both
JAK2V617F* and 9pCNN-LOH in the blast phase compared with
the chronic phase. Interestingly, and also contrary to the previously
cited studies, Tefferi et al noted a significant association between a
low JAK2VG617F allelic burden and evolution to blast phase in a
large cohort of PMF patients.?® Even though these data are not
completely congruent with our findings, the results of Tefferi et al
and our results point to the coexistence of a more dominant
JAK2V617F-negative clone with a higher propensity to undergo
clonal evolution. This is congruent with recent studies indicating
that JAK2V6I7F* MPN can result in JAK2V617F~ MPN-blast
phase.?03! But still, some of our matched cases with JAK2V617F*
had no change in abnormalities including JAK2 mutational status
as well as 9pCNN-LOH, allowing the existence of a common
pre-JAK2V617F clone. Taken together, the presence of JAK2V617F
appears not to be a prerequisite for leukemic transformation of
MPN, suggesting that additional genetic events are required for full
transformation.

SNP-array analysis was able to capture practically all cytoge-
netic abnormalities and to uncover additional lesions with poten-
tially important clinical implications. The number of genomic
alterations was more than 2 to 3 times greater in the blast phase as
in the chronic phase of matched and unmatched cases with MPN.
Noticeably, ET patients had fewer alterations in their chronic phase
samples compared with the PV and PMF cases, whereas the
number was comparable in all 3 MPN subgroups after their
transformation. Being aware of the increased number of new
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genomic changes enables investigators to focus on the identifica-
tion of causative genes associated with the evolution of MPN to
leukemia.

Commonly altered regions in blast crisis samples were detected
on chromosomes 8, 12, 17, and 21 encompassing MYC, ETV6,
TP53, and RUNXI, respectively, which are already known to be
involved in the development of de novo and secondary AML..18-22
Gain of chromosomal material at 8q24.21 was almost exclusively
found in JAK2V617F~ samples, suggesting that increased activity
of MYC might allow selection of clones that do not require the
JAK2 gain-of-function mutation. Furthermore, deletion of 17p
(TP53) was significantly associated with prior exposure to hydroxy-
urea as well as a complex karyotype in samples with MPN-blast
crisis, which is in accordance with recent results.>3? Interestingly,
not only deletion, but also 17pCNN-LOH, was associated with a
complex karyotype, a poor prognostic marker in myeloid
malignancies.

In addition, regions on chromosomes 1q, 7q, 16q, 19p, and 21q
were frequently altered in the evolution to the leukemic phase and
may harbor promising new candidate genes. Abnormalities involv-
ing chromosome 7 are frequently detectable in de novo and
secondary AML,*-37 and preceding studies have found a critical
breakpoint region involving a locus at centromeric band 7q22,
whereas the telomeric breakpoint varies from g32 to q36. Interest-
ingly, the minimal deleted region in our cohort was located at
7q22.1 encompassing only 2 promising target genes, SH2B2 (previ-
ously named APS) and CUTLI. SH2B2 regulates and enhances
JAK2-mediated cellular responses, and the CUTLI gene encodes
for a CUT family member of the homeodomain proteins that can
repress the expression of developmentally regulated myeloid
genes.*® Moreover, genome-wide inspection for minimal regions of
duplications/amplifications and CNN-LOH revealed several inter-
esting genes, such as PINI, ICAM1, and CDC37 on 19p as well as
ERG on 21q. Whereas the latter 3 targets have been shown to
possess potential progrowth activity in de novo AML and/or
MDS,?32640 PIN] is known to be overexpressed in a variety of
cancers and may act as an oncogene via promotion of cell cycle
progression and proliferation.?

Mutations of the ¢-CBL gene are tightly associated with
11gCNN-LOH and are commonly diagnosed in patients with
chronic myelomonocytic leukemia.?3#142 Although MPN shares clinical
as well as hematologic features with chronic myelomonocytic leukemia,
we detected 11qCNN-LOH only in a minority of our study population,
suggesting that c-CBL mutations are rare events leading to transforma-
tion of chronic MPN to leukemic blast phase.

In contrast to recent findings showing frequent LOH on 4q associ-
ated with 7ET2 mutations in patients diagnosed with MDS/MPN,* we
detected CNN-LOH or deletions at 4q24 (TET2) only in a minority of
our patients in the chronic as well as blast phase of MPN. Nevertheless,
our study was not sufficient to explore these findings in more detail and
make conclusions on tumor suppressor TE7Z and its potential role in
leukemic transformation.

However, with regard to the variety of detected allelic imbal-
ances, we suggest that no single candidate gene or molecular
pathway is sufficient and necessary to cause transformation of
chronic MPN to blast phase. Like de novo AML, MPN-blast phase
appears to be a heterogeneous disease prone to have evolved
multiple mechanisms to provide a proliferative advantage to the
abnormal leukemic clone.

CNN-LOH involving chromosomal regions that are also fre-
quently affected by deletions may have prognostic implications
similar to the deletions visible by karyotyping. In our study,
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prognostic evaluation was based mainly on SNP-array data from
blast phase samples without the incorporation of SNP-array results
from the matched chronic phase. Moreover, we implied the
survival and clinical outcome only of MPN patients who under-
went leukemic transformation, without comparison with survival
and outcome in untransformed chronic phase. However, as expected,
blast phase patients with loss of chromosomal material on 7q showed
poor survival, because this is known to be predictive for rapid
progression and poor response in AML therapy.3537 MPN-blast phase
patients with cytogenetically undetectable 7qCNN-LOH had compa-
rable survival rates to those with —7/7q— in their leukemic cells, which
is in accordance with previously published data.**

In addition, 9pCNN-LOH with homozygous JAK2 mutation
was also linked to an inferior outcome in MPN-blast crisis in
comparison with patients with either heterozygous JAK2V617F or
wild-type JAK2. In contrast to LOH on 17, the prognostic impact
of 9pCNN-LOH was independent of established risk factors such
as —7/7q—, 5q—, or complex karyotype. Although JAK2V617F in
association with 9pCNN-LOH appeared to have no impact on the
time to MPN transformation, we suggest that the homozygous
driver mutation in combination with additional newly acquired
aberrations in terms of a second hit may have an implication on the
clinical course of MPN-blast phase patients.

In conclusion, high-density SNP-array technology allowed
precise identification of chromosomal aberrations, including CNN-
LOH, and complemented conventional cytogenetic techniques in
patients with chronic and transformed MPN. Our analysis provided
prognostic details to further improve clinical prognosis, as well as
novel interesting candidate genes potentially involved in the
transformation of MPN.
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