BLOOD, 25 NOVEMBER 2010 + VOLUME 116, NUMBER 22

From www.bloodjournal.org at Hirosaki University on November 29, 2010. For personal use only.
PROGRESSION FROM TAM TO ML-DS AND GATA7 MUTATION

Table 1. Clinical features and mutation characteristics in TAM patients with GATA7 mutations

4633

Patient No. Sex WBC, x10%L Outcome GATAT mutation* Consequence of mutation Mutation type
{1324 F 63.9 CR 207 C>G Tyr69stop PTC1-3

i F 89.0 Early death 199 G>T Glu67stop PTC 1-3’

an E NA NA 174 ins 19 bp CAGCCACCGCTGCAGCTGC Frame shift at codon58, stop at codon 73 PTC1-3’

413 F 128.8 CR IVS1 to IVS2 del 1415 bp Splice mutant Splicing error
g F NA NA 49C>T Gin17stop PTC1-5’

613 E 248.6 NA Loss of 2nd exon Splice mutant Splicing error
7 F 31.2 CR Loss of 2nd exon Splice mutant Splicing error
81 M 199.6 CR —11to +33 del 44 bp No translation from Met1 Loss of 1st Met
913 M 44.9 Early death 45ins C Frame shift at codon15, stop at codon 39 PTC 1-5'

1013 M 50.9 CR 37G>T Glu13stop PTC1-5

i F 103.0 Early death 90-91 del AG Frame shift at codon 30, stop at codon 38 PTC 1-5’

1213 F 14.6 Evolved to ML-DS 116del A Frame shift at codon 39, stop at codon 136 PTC2

1313 M 423.0 CR 185 ins 22 bp GCTGCAGCTGCGGCACTGGCCT Frame shift at codon 62, stop at codon 74 PTC 1-3'

1413 M 201.2 CR 189 C>A Tyr63stop PTC1-3'

1513 M NA NA 1A>G No translation from Met1 Loss of 1st Met
1612 F 28.3 CR 189 C>A Tyr63stop PTC 1-3'

¥ M 203.0 Evolved to ML-DS ~ 38-39 del AG Frame shift at codon 13, stop at codon 38 PTC 1-5'

1813 M 31.3 CR 189C>A Tyr63stop PTC1-3

1913 M NA NA 90-91 del AG Frame shift at codon 30, stop at codon 38 PTC 1-5'

2013 F 114.0 Early death 187ins T Frame shift at codon 63, stop at codon 67 PTC1-3

212 b 26.0 Evolved to ML-DS 194 ins 20 bp GGCACTGGCCTACTACAGGG Frame shift at codon 65, stop at codon 143 PTC2

22% F 25.0 Evolved to ML-DS 194 ins 20 bp GGCACTGGCCTACTACAGGG Frame shift at codon 65, stop at codon 143 PTC2

23 F 49.9 CR 3G>T No translation from Met1 Loss of 1st Met
24 F 46.2 NA IVS1 3’ boundary AG>AA Splice mutant Splicing error
25 F 10.5 CR 194 ins 19 bp GCACTGGCCTACTACAGGG Frame shift at codon 65, stop at codon 73 PTC 1-3'

2624 F 244.0 Evolved to ML-DS 1A>G No translation from Met1 Loss of 1st Met
27 F 38.3 CR Loss of 2nd Exon Splice mutant Splicing error
2824 F 34.6 CR 1VS1 to exon2 del 148 bp Splice mutant Splicing error
29 M 25.9 Evolved to ML-DS 160ins TC Frame shift at codon 54, stop at codon 137 PTC2

30 F 52.3 Evolved to ML-DS 187 ins CCTAC Frame shift at codon 63, stop at codon 138 PTC2

Ll L F 221.0 CR 183-193 del 11 bp CTACTACAGGG Frame shift at codon 62, stop at codon 63 PTC 1-3'

32 M 149.7 CR 2T>G No translation from Met1 Loss of 1st Met
893 M 132.3 Evolvedto ML-DS  101-108 del 8 bp TCCCCTCT Frame shift at codon 34, stop at codon 36 PTC 1-5'

3424 F 220.0 Early death 90-91 del AG Frame shift at codon 30, stop at codon 38 PTC 1-5'

354 M 166.0 Early death IVS2 5’ boundary GT>CT Splice mutant Splicing error
362 M 57.6 Early death 193-199 GACGCTG>TAGTAGT Asp65stop PTC 1-3'

372 M 2476 Early death Exon2 to IVS2 del 218 bp Splice mutant Splicing error
382 M 93.3 Early death IVS1 3’ boundary AG>AA Splice mutant Splicing error
3924 M 290.8 Early death 186 ins 12 bp GGCACTGGCCTA Tyr62stop PTC1-3’

40 F 7.8 CR 2T>C No translation from Met1 Loss of 1st Met
412 M 136.6 Early death IVS2 5’ boundary GT>GC Splice mutant Splicing error
42 M 33.1 Early death 187 ins 8 bp TGGCCTAC Frame shift at codon 63, stop at codon 139 PTC2

43 M 9.0 CR 22ins G Frame shift at codon 8, stop at codon 39 PTC 1-5'

44 M 241 Evolved to ML-DS 149 ins 20 bp AGCAGCTTCCTCCACTGCCC Frame shift at codon 50, stop at codon 143 PTC2

4524 F 53.3 CR 173 C>TGCTGCAGTGTAGTA Frame shift at codon 58, stop at codon 141 PTC2

46 F 119.0 CR 1A>C No translation from Met1 Loss of 1st Met
47 M 33.0 CR 189 C>A Tyr63stop PTC 1-3

48 M 178.2 Early death 188 ins 22 bp GCAGCTGCGGCACTGGCCTACT Frame shift at codon 63, stop at codon 74 PTC 1-3

49 F 73.6 CR 3G>A No translation from Met1 Loss of 1st Met
50 F 12.9 CR 158 ins 7 bp AGCACAG Frame shift at codon 53, stop at codon 69 PTC 1-5

51 M 13.0 CR 154-161 del 8 bp ACAGCCAC Frame shift at codon 52, stop at codon 64 PTC 1-5

52 M 105.5 Early death 4G>T Glu2stop PTC 1-5

53 5 98.3 CR 4G>T Glu2stop PTC 1-5

54 F 356.9 CR 219A>C Splice mutant Splicing error
55 F 25.8 Evolved to ML-DS 157 ins CA Frame shift at codon 53, stop at codon 137 PTC2

56 M 97.4 Evolved to ML-DS 185-188 del 4 bp ACTA Frame shift at codon 62, stop at codon 135 PTC2

57 E 97.3 Early death 3G>A No translation from Met1 Loss of 1st Met
58 M NA CR 3G>A No translation from Met1 Loss of 1st Met
59 M 20.2 CR 150ins 5 bp TGGCT Frame shift at codon 50, stop at codon 52 PTC 1-5'

60 M 1334 CR 174 ins 19 bp CAAAGCAGCTGCAGCGGTG Frame shift at codon 58, stop at codon 73 PTC1-3

61 M NA CR 220G>T Splice mutant Splicing error
62 M 120.2 CR 220 G>A Splice mutant Splicing error
63 F 39.0 CR 97-139 del 43 bp Frame shift at codon 33, stop at codon 122 PTC2

64 F NA NA 156ins C Frame shift at codon 52, stop at codon 67 PTC 1-5'

65 F 32.4 CR 174 ins 7 bp CTGCAGC Frame shift at codon 58, stop at codon 69 PTC 1-3'

66 M 69.4 Early death 174-177 GGCA>TGCGGTGG Frame shift at codon 58, stop at codon 68 PTC 1-3

We previously reported the GATA T mutations of the indicated patients.

F indicates female; M, male; CR, complete remission; NA, not available; and VS, intervening sequence.

*For cDNA nucleotide numbering, nucleotide number 1 corresponds to the A of the ATG translation initiation codon in the reference sequence.
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Table 2. GATA1 expression vectors used in this study
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Name Patient no. GATA1 mutation* Last normal GATA1 amino acid PTC Mutation type
WG - - Ser413 - Normal

SP1 24,38 intron1 3’ boundary AG>AA Ser413 = Splicing error
SP2 41 intron2 5’ boundary GT>GC Ser413 - Splicing error
L 46 1A>C (Met1 is replaced by Val1) - Loss of 1st Met
P1-1 11,19, 34 90, 91 del AG Gly31 38 PTC 1-5'

P1-2 14,16, 18, 47 189 C>A Tyré2 63 PTC 1-3’

P1-3 25 194 ins 19 bp Arg64 73 PTC 1-3'

P1-4 17 38, 39 del AG Ser12 38 PTC 1-5'

P1-5 33 101-108 del 8 bp Phe33 36 PTC1-5'

P1-6 50 158ins 7 bp Tyr52 69 PTC 1-5

P1-7 3 174ins 19 bp Ala58 73 PTC 1-3’

P1-8 48 188ins 22 bp Try62 74 PTC 1-3'

P2-1 21,22 194 ins 20 bp Arg64 143 PTC2

P2-2 44 149ins 20 bp Ala49 143 PTC2

P2-3 29 160ins TC Ala53 137 PTC2

— indicates not applicable.

*For cDNA nucleotide numbering, nucleotide number 1 corresponds to the A of the ATG translation initiation codon in the reference sequence.

in cells transfected with PTC type 2 constructs, whereas the mRNA
levels in mutants that had lost the first methionine and PTC type
1 mutants were almost comparable to those of control minigene
constructs harboring wild type GATAI gene (Figure 2Aiii). Thus,
abundant proteins were produced from GATAI mRNAs in mutants
with splicing errors and those that lost the first methionine.
Conversely, relatively low levels of protein were produced by PTC
type 2 mutants because of inefficient translation and reduced levels
of message (Figure 2Ai,iii). However, in the case of PTC type
1 mutations, especially P1-1 and P1-4, we could find no correlation
between the amount of transcripts or translation efficiency and the
expression levels of GATA1s proteins (Figure 2Ai,iii).

GATA1s expression levels largely depend on the amount of the
alternative splicing form

To investigate the precise relationship between PTC type 1 mutations
and GATA1s protein levels, we examined more type 1 mutations

using the minigene constructs. Western blot analysis showed
relatively higher expression of the proteins in samples expressing
P1-5, P1-7, P1-8, P1-2, and P1-3 than the other constructs (Figure
2Bi). Each mutation in the mutant minigene construct is described
in Table 2. Interestingly, all samples that expressed higher levels of
GATA1ls protein exhibited intense signals at lower molecular
weights than the dominant GATA1 signal (Figure 2Biii). Because
the size of the lower molecular weight band was identical to that
observed in the splicing error mutant (Figure 2Biii), we speculated
that the signal might be derived from a transcript lacking exon
2 (Aexon 2) by alternative splicing. To examine that possibility, we
attempted Northern blot analysis using the GATA! exon 2 fragment
as a probe, and as expected, only the longer transcript was detected
(Figure 2Biv). To confirm the correlation between the amount of
Aexon 2 transcript and GATA s protein, we performed a quantita-
tive assessment by densitometric analysis. The results showed a
strong correlation between Aexon 2 transcript and GATA Is protein

Table 3. Findings at diagnosis and during the course of TAM were significantly associated with early death and the progression to leukemia

(univariate analysis)

Variable Total (n = 66) Early death (n = 16) P Progressed to ML-DS (n = 11) P
Sex

Male, n (%) 32 (48.5) 11 (68.8) 5 (45.5)

Female, n (%) 34 (51.5) 5(31.3) .088 6 (54.5) .947
Median gestational age, wk (range) 37.35 (30.0-40.6) 34.6 (30.0-38.4) 38.1 (32.6-40.6)

Term versus preterm

Term (= 37 weeks), n (%) 27 (58.7) 4(30.8) 5(71.4)

Preterm (< 37 weeks), n (%) 19 (41.3) 9(69.2) .021 2(28.6) 465
Median birth weight, kg (range) 2.5(1.4-3.5) 2.2 (1.6-2.7) 2.5(1.6-3.5)

Not LBW versus LBW

Not LBW ( = 2.5 kg), n (%) 24 (52.2) 3(23.1) 3(42.9)

LBW (< 2.5kg), n (%) 22 (47.8) 10 (76.9) .025 4(57.1) 184
Median WBC, x10%L (range) 69.4 (7.8-423.0) 104.3 (33.1-290.8) 26 (14.6-244.0)

WBC < 70 x 10%L vs WBC > 70 x 10%/L

WBC < 70 X 10%L, n (%) 30 (50.8) 4 (25.0) 7 (63.6)

WBC > 70 X 10%L, n (%) 29 (49.2) 12 (75.0) .020 4 (36.4) 755
Median peripheral blasts, % (range) 56.0 (4.0-94.0) 78.0 (8.0-93.0) .031 49.5 (6.0-66.0) 752
Median AST, IU/L (range) 61 (16-4341) 79 (41-3866) .620 51 (16-153) 553
Median ALT, IU/L (range) 39 (4-653) 41 (7-473) .455 12 (4-96) 615
Median T-Bil mg/dL (range) 6.3 (0.6-46.0) 6.06 (2.4-16.5) .922 3.01 (1.82-6.50) .023
Effusions, n (%) 16 of 44 (36.4) 8 of 11 (72.7) .007 10f 7 (14.3) 912
Bleeding diatheses, n (%) 13 of 45 (28.9) 8 of 12 (66.7) .001 10f 7 (14.3) 123

Some clinical data were not available. We defined the number of patients for whom clinical data was available as (n).
LBW indicates low birth weight; AST, aspartate transaminase; ALT, alanine transaminase; and T-Bil, total bilirubin.
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Figure 1. Effects of mutant transcripts of GATAT on the expression level of the
truncated protein. The GATAT mutations observed in TAM patients are classified
according to the types of transcripts. The translational efficiency of each transcript
was assessed by Western blot analysis in BHK-21 cells transfected with GATAT
cDNA expression vectors (top part of the panel) and Northern blot analysis (bottom
part of the panel), respectively. WG indicates wild type GATA1; SP, splicing error
mutation (Aexon 2); L, loss of first methionine mutation; P1, PTC type 1 mutation; P2,
PTC type 2 mutation. The details of the GATA1 mutations are summarized in Table 1.
NeoR indicates Neomycin phosphotransferase II.

levels (r = 0.892, P =.003), but not with the long transcript
containing exon2 nor total GATAI mRNA (supplemental Figure
1, available on the Blood Web site; see the Supplemental Materials
link at the top of the online article). Next, we performed RT-PCR
using primers recognizing both transcripts, and calculated the ratio
of Aexon 2 to the long transcript (Figure 2Bvi-vii). The intensive
short transcript was detected in all samples with higher expression
of GATAls (P1-5, P1-7, P1-8, P1-2, and P1-3; Figure 2Bvii).
Interestingly, most of these mutations were clustered in the
3’ region of exon 2 (Table 2, Figure 2Bvii). These results suggest
that the location of the mutation predicts the efficiency of
alternative splicing and GATA s expression levels.

To examine whether differential splicing efficiency could also
be observed in TAM blasts with PTC type 1 mutations, RT-PCR
analysis was performed using patients’ clinical samples. Intense
transcription of the short form was observed in the samples from
the patients who had GATAI mutations located on the 3" side of
exon 2 (+169 to +218 in mRNA from the ATG translation
initiation codon; Figure 3A-B). We refer to them as PTC type 1-3'
and the mutations located on the 5’ side of exon 2 as PTC type 1-5'.

Correlation of the phenotype and GATA1 mutations in
TAM patients

Based on these results, GATAI mutations were classified into
2 groups: a high GATA s expression group (GATAIs high group)
including the loss of first methionine type, the splicing error type,
and PTC type 1-3', and a low GATA1s expression group (GATATs
low group) including PTC type 1-5" and PTC type 2. We classified
TAM patients into these 2 groups in accordance with the GATATs
expression levels estimated from the mutations and compared their
clinical data. High counts of WBC and blast cells were significantly
associated with the GATA s high group (P = .004 and P = .008,
respectively; Table 4). Although high WBC count was correlated
with early death, there were no significant differences in the
cumulative incidence of early death between the 2 groups (Figure
4). Importantly, TAM patients in the GATAls low group had a
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significantly higher risk for the development of leukemia (P < .001;
Figure 4). Of 11 TAM patients who progressed to ML-DS, 10
belonged to the GATAls low group. Notably, 8 patients among
them had PTC type 2 mutations (Tables 1, 5).
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Figure 2. GATA1 mutations affect the expression level of the truncated protein.
(A) The expression levels of GATA1s protein and mRNA were assessed in BHK-21
cells transfected with human GATA1 minigene expression vectors carrying mutations
observed in TAM patients. Western blot analysis was performed with anti-
GATA1 (i) or anti-NeoR antibody (ii). Northern blot analysis was carried out with
GATAT1 exon 3-6 fragment (iii) or NeoR cDNA (iv) as probe. (B) The expression levels
of GATA1s protein and mRNA in BHK-21 cells transfected with human GATA7
minigene expression vectors with PTC type 1 mutation. Levels were assessed by
Western blot analysis with anti-GATA1 antibody (i), anti-NeoR antibody (ii). Northern
blot analysis was performed with GATA1 exon 3-6 (iii), exon 2 (iv), or NeoR cDNA (v).
To detect the transcripts derived from the human GATA7 minigene expression
construct, RT-PCR analysis was carried out using primers described in “RT-PCR” (vi).
Ex 2(+) and Ex 2(—) indicate PCR products or transcripts with or without exon 2,
respectively. Ratio of Ex 2(—)/(+) was calculated from the results of a densitometric
analysis of the RT-PCR. The asterisk denotes unavailable data (vii).
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Figure 3. The location of the PTC type 1 mutation affects the efficiency of
alternative splicing in TAM blast cells. (A) The location of the GATA1 mutation in
each TAM patient. Details of the mutation in each sample are described in Table
1. (B) RT-PCR analysis of GATAT in TAM blast cells harboring PTC type 1 mutations.
RT-PCR was performed using primers recognizing both the long transcript including
exon 2 and Aexon 2 (top). All of the patient samples consisted of mononuclear cells
from peripheral blood. The numbers in parentheses indicate the number of nucleo-
tides in mRNA from the translation initiation codon. Ex 2(+) and Ex 2(—) indicate PCR
products with or without exon 2, respectively (middle). Ratio of Ex 2(—)/(+) was
calculated from the results of a densitometric analysis of the RT-PCR (bottom). Note
that the intense bands of the short form were observed in the samples from the
patients who have GATA 1 mutations located on the 3’ side of exon 2 (lanes 7-11).

To validate this observation, we examined the proportion of
mutation types in 40 ML-DS patients observed in the same period
of time as this surveillance. The results showed a significantly
higher incidence of GATA 1s low type mutations in ML-DS than in
TAM (P = .039; Table 5). These results further support the present
findings that quantitative differences in the mutant protein have a
significant effect on the risk of progression to ML-DS.

Table 4. Correlations between patient covariates and GATA1
expression levels

GATA1s expression group

High (n = 40) Low (n = 26) P
Sex: male/female, n 19/21 13/13 843*
Gestational age, wk 37.3 (30.0-40.0) 37.9 (32.6-40.6) 487
Birth weight, kg 2.5(1.6-3.3) 2.5(1.4-3.5) 698
WBC, x109%/L 105.65 (7.8-423.0) 39.0 (9.0-220.0) 004
Number of blasts, X 10°/L 72.1 (0.42-301.6) 13.4 (0.45-189.2) .008
AST, IU/L 68.5 (23-501) 46.5 (16-4341) 113
ALT, IUL 41.0 (5-407) 12.5 (4-653) .075
T-Bil mg/dL 6.7 (0.6-15.3) 4.65 (1.82-46.0) 270
Effusions, n (%) 11 of 27 (40.7) 50f 17 (29.4) 447t
Bleeding diatheses, n (%) 8 of 29 (27.6) 5of 16 (31.3) .5281

Values are given as the median (range). P values estimated by Mann-Whitney
Utest.

*Pearson ¥ test.

tFisher exact test.
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Figure 4. Cumulative incidence of early death and of ML-DS in children with
TAM. Based on the estimated GATA1s expression levels, patients were classified in
2 groups: GATA1s high and low groups. TAM patients in the GATA1s low group had a
significantly higher risk for the development of leukemia (P (gray) < .001).

Discussion

In TAM, GATAI mutations lead to the expression of proteins
lacking the N-terminal transactivation domain. In addition to this
qualitative change, we showed here that the mutations affect the
expression level of the truncated protein. The mutations were
classified into 2 groups according to the estimated GATAls
expression level. Comparison of the clinical features between the
2 groups revealed that GATA1s low mutations were significantly
associated with a high risk of progression to ML-DS and lower
counts of both WBC and blast cells. These results suggest that
quantitative differences in protein expression caused by GATAI
mutations have significant effects on the phenotype of TAM.

GATA1s was shown previously to be produced from wild-type
GATAI through 2 mechanisms: use of the alternative translation
initiation site at codon 84 of the full-length transcript and alterna-
tive splicing of exon 2.!226 However, the translation efficiencies of
GATAIs from the full-length of mRNA and short transcripts have
not been investigated. Our results clearly showed that the Aexon
2 transcript produced GATA1s much more abundantly than did the
full-length transcript. The translation efficiencies of GATA1s from
full-length transcripts containing PTC were also lower than the
alternative spliced form. These results support our contention that
GATAIs expression levels largely depend on the amount of the
Aexon 2 transcript. Thus, one cannot predict the expression level of
GATA s protein from the total amount of the transcript.

The differences in the quantities of GATA1s proteins expressed
by PTC type 1-5" and -3’ mutations revealed the importance of the
location of the mutation for splicing efficiency and protein
expression. The splicing efficiency is regulated by cis-elements
located in exons and introns (referred to as exonic and intronic
splicing enhancers or silencers), and transacting factors recogniz-
ing these elements.””-?® The PTC type 1-3' mutations induced
efficient skipping of exon 2 (Figures 2Bvi-vii, 3A-B). These
mutations might affect exonic splicing enhancers or silencers
located in exon 2. To predict the splicing pattern from the mutations
more accurately, the elucidation of cis-elements and transacting
splicing factors, which regulate the splicing of exon 2 of GATAI,
will be very important.
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Table 5. Summary of outcomes and GATA7 mutation types in TAM patients
Outcome of TAM TAM ML-DS
Mutation type CR Early death Evolved to ML-DS NA Total (n = 66) Total (n = 40)
High group
Loss of 1st Met, n (%) 7 1 1 1 10 (15.2) 3{7.5)
Splicing error, n (%) 7 4 0 2 13 (19.7) 40 (15.2) 6 (15.0) 16 (40.0)
PTC 1-3", n (%) 10 6 0 1 17 (25.8) 7 (17.5)
Low group
SPTC 1-5', n (%) 6 4 2 3 15 (22.7) 26 (39.4) 14 (35.0) 24 (60.0)
PTC 2, n (%) 2 1 8 0 11 (16.7) 10 (25.0)

The nonsense mediated RNA decay pathway (NMD), a cellular
mechanism for detection of PTC and prevention of translation from
aberrant transcripts,?-° might regulate the expression of GATA1s
protein derived from PTC type 2 mutations, which contained PTCs
after the second methionine at codon 84. We consistently detected
low amounts of transcripts of GATA! in samples expressing PTC
type 2 mutations, whereas the expression levels of GATA mRNA
from PTC type 1 mutations were comparable with that from
wild-type GATAI (Figure 2Aiii). These results suggest that the
location of PTC relative to alternative translation initiation sites is
important for effective NMD surveillance.

Available evidence indicates that acute leukemia arises from
cooperation between one class of mutations that interferes with
differentiation (class II mutations) and another class that confers a
proliferative advantage to cells (class I mutations).>! Recent reports
showed that introducing high levels of exogenous GATAI lacking
the N-terminus did not reduce the aberrant growth of GATA1-null
megakaryocytes, but instead induced differentiation.?>33 This obser-
vation suggested that abundant GATA1s protein functions like a
class I mutation in TAM blasts. In contrast, reducing GATAI
expression leads to differentiation arrest and aberrant growth of
megakaryocytic cells.’®2° The present data suggest that GATA1s is
expressed at very low levels in TAM blasts with GATAIs low
mutations. These levels may not be sufficient to provoke normal
maturation. Together, these findings suggest that the low expres-
sion of GATA1s might function like class II mutations in TAM
blasts. Additional class I mutations or epigenetic alterations might
be more effective in the development of leukemia in blast cells
expressing GATA1s at low levels.

In the present study, we identified a subgroup of TAM patients
with a higher risk of developing ML-DS. Of 66 children,
11 (16.7%) with TAM subsequently developed ML-DS and 10 of
them belonged to the GATA s low group harboring the PTC type
2 or PTC type 1-5' mutations. Surprisingly, 8 of 11 patients
(73%) with the PTC type 2 mutations developed ML-DS (Tables
1, 5), whereas 2 of 15 patients (13.3%) with PTC type 1-5'
mutations developed leukemia. The estimated expression levels of
GATA s from PTC type 2 mutations were lower than those from
PTC type 1-5' mutations (Figures 1, 2Ai). These results suggest
that the type 2 mutations may be a more significant risk factor for
developing ML-DS (supplemental Figure 2). However, our classifi-
cation of GATAI mutations mainly rested on extrapolation from in
vitro transfection experiments (Figures 1-2) and RT-PCR analyses
of a small number of patient samples (Figure 3). The stability of the
transcripts and the splicing efficiency of the second exon of GATAI
will be regulated through complex mechanisms. To confirm our
findings, precise mapping of the mutations that affect the expres-
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sion levels of GATA1s and a prospective study with a large series
of TAM patients are necessary.

Finally, we proposed the hypothesis that the quantitative
differences in GATAls protein expression caused by mutations
have a significant effect on the phenotype of TAM. The observa-
tions described here provide valuable information about the roles
of GATAI mutations on multistep leukemogenesis in DS patients.
Moreover, the results might have implications for management of
leukemia observed in DS infants and children. Because the blast
cells in both TAM and subsequent ML-DS appear highly sensitive
to cytarabine,*** the preleukemic clone could be treated with
low-dose cytarabine without severe side effects, and elimination of
the preleukemic clone might prevent progression to leukemia.
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Myeloid Proliferation Related to Down Syndrome in the Updated 2008 WHO Classification
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Abstract Approximately 10% of Down syndrome (DS) neonates manifest a hematologic disorder referred to as tran-
sient abnormal myelopoiesis (TAM)/transient myeloproliferative disorder (TMD). Because this disorder resolves spon-
taneously, it is considered to have a good prognosis. In fact, 10-20% of these cases are life threatening or fatal. In
20% of the affected cases, acute megakaryoblastic leukemia (AMKL) subsequently develops before 4 years of age.
The morphologic, immunophenotypic and genetic features of TAM are biologically identical to those of DS-AML. On
the other hand, DS-AMKL has unique morphologic, immunophenotypic, clinical and molecular features, including
GATAI mwation, that justify its separation from other AMKL. In Japan, more than 90% of cases with DS-AMKL
achieved a complete remission, and the estimated 4-year event-free survival rate was 80%. Therefore this disorder is
unique to children with DS. For the first time “myeloid proliferations related to DS” was classified as a distinct entity
which includes (1) TAM and (2) myeloid leukemia associated with DS in the updated 2008 WHO Classification 4th
edition. We introduce these new criteria and add a supplementary explanation.

BB o EBRR (DS) TR 0%, FERNc—atBHRENMEE (TAM) &5V E—8BKH
BERREIEZE® (TMD) &TRidh 3 —BHEDBAMBIKIEERIET 5. TAM REAATEYT 2 bONEL Fik
BIFEEASNTVSA, EBL 10~20%CHIEME bOMH 5, TAM ERAE L 1 IEF O 20%H5 4 &
Tl BRRERERY (MDS) P2tERFREAMA (AMKL) <BiTY 5. TAM OFREHEE %
BEER, BEFRES,S L AMKL EXBIATEA L, —7 DS-AMKL i3, HRUPEL RFERBRE,
GATAl BIEFERZED - T RIZFN « EBRAFES SO AMKL & BRF&h 5. HATIE DS.
AMKL (2, 7Rfehis 2550 1AL ¥iid T b MR AR A 90%L) L, 4 EMFEFR S 80%EHA TV 3.
5 Lo, 2008 FEHEITO WHO 2EIE 4 T, DS BRI ESHRREE G LT L fomBie L
< (1) TAM, (2) DS BESitamFicagiahi. CoFSNEkELETORSEMA .
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proliferative disorder, TMD) &BRidh 5 —B¥:0FEAI
WRILERIET 5. TAM RERWET 260088 F
BRIFEEZ SN TVEHY, HEERIBENLbOMH D,
EOMFHIZE D & S ERET I PEROMCTEIE
HEBURBLELL > TV B. TAM ORISR O 20%
A, 4%E TIENBEAIERE (MDS) PRMERHE
REAMMA (AMKL) 13179 5. TAM D BRI FLE
¥, QEHBEN, BEFRED, S L AMKL & XHH
TENLL, TAM TREER 21 M) v I LSl ciERIC

L7305, MDS $ AMKL Ti3ERIC et E
WHRH SN 37, DS-AMKL 84 2 )
A E < IBFRAAEL L L TV 3,

L, DS DAMRDS FHEBIC LTI EIFELC
EMBRSMISILY, DS-MDS/AML 348N T, fbo
AML & BRI >TWVWARZ EARES N, 2008 {EHIT D
WHO ##EHE 4 BRic DS icBd# L /- B B6 R i
Myeloid proliferation related to Down syndrome] #A5( U %
THL L 2FHEE LTaishib- 1, HHEEE8AA
L&+ ORERENA -,

(DS (CB8E L /- BREIESEEE Myeloid prolif-
eration related to Down syndrome_|—3§%:>

DS Tl, non-DS &WXTHMMBRIED ) 2 7 58
10~100 £ LH4 347, #0 ) R 7 @A - THHE
BKThad. 4BEKHBO non-DS TIERAM: Y »<dqMmiE
(ALL) &RidditEcmis (AML) ol®Biz 41 TS
9, [BCHEHEO DS T 1.0:1.2 TREFETS 3.

5K O DS Tk AMKL 5 non-DS &b & #
150 EDHETHIET 5. 4RKXBTIIDS D AML @
70%!2 AMKL T» 3 Dic% L T, non-DS TDZDH|A
l33~6%TH 3., DS-AMKL 13, HRUEMEE RiEHRH
B, GATAI RIZTEREED - N FRUEHEN), RN
B, o, hoRlo AMKL LREBEhTHWAY, Ch

50X X & ¥ DS M EINE A4, WHO 80
bR HoAMBEE L Tk 3L S - TV 3,
4IERG D DS-AML 1213, WAFLHE % o AMKL 45
%<, THiZ/MA T DS OFERDOH 10%I<1d TAM/
TMD &BRIEh 5, TEHERIIC DS-AMKL & (3X5IT & 4
WIHEMTELET 3%,

CORFRIBEHE,I S 3 P ATHRICREY T 20, &
WHH - LEEFD 20~30%13, 1~3 ELIRICEREE SR
L7 AMKL 2%fE4 5. DS RT3 b U 7o #5iEHsiE
Hahad, ChooFEBICEERTRENHY, DS
WIZIBALL E AMLOE L S L RIET 22 & 422
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SRR, REHBYY, SELGEENSE 2 39F
EMFNFEVLETH Y, FRBESVBYRARA
MITbNAERETH A",

1. —BHUBHRPIMAE  Transient abnormal
myelopoiesis (TAM)/transient myeloproliferative
disorder (TMD)

B { TAM (3, AML &2EERREY, EEMIENTE
VDS OFHERICHHERETS 5, FHREEKHKER
DFHEES > T3,

7% D TAM 13 DS OFAER DK 10%IcRfES 5. =
AR Yy —TREAYUSTEOFERICL
NICRIET 5.

FRERMVRRE - WI8RRIC 3, IVIMRBVEED & - & b—
BOISHART, o ERRAEE Ry D s O, FAL
AlliERIGEE G~5 FHul, LELIE10Hu L) 22
L, FEREBRIEHEL D bAKMO RS LITLIEF.
GOHE S L THFIMEA S D, Fhiz, L2, BEE
TEMERE, MWL, ST SH 5. LEOH
80%I3 1% 3 # RUUIMICBARTING 34, —Hidth%
BrL, $GBFENLERERE L 3.

REER, REELBT | TAM O¥RIEE, thiERE
RO, Z<ODS-AML LBEILTH 5. KKilis
K OB OFERIE, MM IFEEM T, HESAE
BRI E 7L 7L WS HIREESEL (Fig 1), oh
SOFRPERFERTH B L ERE LTV S, FKili
THIEERMEBIEERT LD bH 0, BRiTIIRERSE,
ERERRHIARIC LT LIS RIER 220 5", TAM OFR
BT RERRYEERTY. RN~ -H-13E{D
#i£#T CD34, CD56, CD117, CD13, CD33, CD7, CD4 dim,
CD42, TPO-R, IL-3R, CD36, CD61, CD71 HSRk & 72 %
#%, myeloperoxidase, CDI5, CD14, glycophorin A %5f&#E
TH 5. $30%DERTHLA-DR BB Td 5. B
ERROZWNIC DL CD41 ik & it CD61 HLik o 2 Wt
fEAsE .

WS D21 P YV 3 —ITINA T GATAL BHE - el
RN TAM OFKICHET Y, BET LAY/
&7 L4 T DS-AML & TAM ORICEBOMEHH 5
EVIMEND BN, FRBRIATLLLY,

TR ETFRINTF | SRICARGET 2558 H 324,
I~3 EfiZ, ThooD20~30%H5 AML 1T 5™,
TAM IS B{LERRE BV FSEETLEhT L L,

2. DS BEREiERIMA : Myecloid leukemia associ-

ated with Down syndrome (ML-DS)

FERE 5 EAKM T, DS Y non-DS R & H~T 50

BEMNHETHS, DSRTHnon-DS REBME, H  ([SOHETAMAMMBICA H LTV, DS-AML (3,
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Fig. 1 Peripheral blood smear from 18-day-old infant with DS and TAM

A blood test revealed a white blood cell count of 11,300/l (blast 11%), a hemoglobin concentration of 9.2 g/dl and a
platelet count of 3.0 X 10%u1. Immunophenotypic analysis showed the presence of CD7, CD13, CD33, CD34, CD41, CD56,
and HLA-DR. Cytogenetic study showed trisomy 21 as the sole abnormality. GATA/ mutation was detected. The process
resolved spontaneously over a period of 22 days. A: Two blasts showing basophilic cytoplasm. The intermediately differ-
entiated blast has a cytoplasmic bleb (right). B: More undifferentiated blasts without blebs are also shown (right). (These

pictures were provided from Hasegawa and Manabe)

Fig. 2 Bone marrow smear from ML associated with DS in a 2-year-old boy who has no history of TAM

The bone marrow aspiration was dry tap. Immunophenotypic analysis showed that blasts were positive for CD7, CD13,
CD33, and CD56, but negative for CD34 and CD41. In addition to trisomy 21, another chromosomal abnormality was de-
tected. The GATA I mutation was detected. A: An intermediately differentiated blast showing basophilic cytoplasm, distinct
nucleoi and cytoplasmic blebbing as show here (left). B: The undifferentiated blast doesn’t have a cytoplasmic bleb (left).
The erythroblast has coarse chromatin (right). (These pictures were provided from Hasegawa and Manabe)

“ig. 3 Bone marrow biopsy in a patient with ML associated with DS (reproduced from Pediatric MDS CD Atlas 2002

edited by Committee for MDS in The Japanese Socicty of Pediatric Hematology)
A: A biopsy showed proliferation of leukemic blasts. B: On a biopsy specimen by silver stain, myelofibrosis, ranging from

reticulin to collagenous is seen.
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WAMKL T Y, FERHEHMA DS ckiF 58
BME® 50%icd E3. DS Tid MDS & AML ORJICH:
YIPERASIS O, Lshi- THEEZRXN L TLHT 3
CEIEMKIBLL, FRICOARBICLIIOILELEEANL
W, COLHINRBMIRDS REHBRESOTHD, ML-
DS ici3, MDS & AML DFEHEEA TV 3,

W DS ICHIT B ML ORISR S ik TICHRIET
3. DS DO#) 1~2%M 5 % TIT AML 2RAEL, pAE
@ AML/MDS D #20%13 DS BT 5", ML-DS I
TAM OBEED & 2 JLD 20~30%Ic TAM FHiE& 1~3
DRICFIET 5.

EEERIASE - COBRBDE L, 3RETICRIET 2.
Bl DIFERA 20% K G OH S REFRRIERT, M/MR
BLMEIRIEIR &85, —#ic, DNRAGHEMERH D
(RCC) 1Z#H% ¢ 5 fif 121 M55 W A3 2 BR D B 58] 72 MDS &
1238 o I8 TR o ST T T .

FRESH By B aiamAEicid, okl
RCC DFfii % b AV FERORIMAS ISV, FRINERAH
AR TH 5. BRI — i D A IMER R/ DEE
LD LB L L BEANH S,

AML DI5&, FIRE & ICRIFRRATRMAHEF
AREMICTEES 5. RIMERIE LIE LIEFHSHIEARNR
¥F, & EICRBRINEKERT, MMIEEERDL,
EAM/MEMSEES L 3,

BHFH TR, AMFEFROBER, AEASDLR
BASEE b, MR EDFEEOERIET, MlaHE
EHMEET S (Fig. 2). MHRIEICH SRR /oE
WEKZSAETRMS I ELEBEETSON S, Hi
(3185 myeloperoxidase FE¥ETH 5. FRIMERATHAKIL,
Lid LITEHEREZILS, K, =8, HoWhit:s
CRERERT. BFHEKRMAOREENAONDE T E
bbb,

B O ISEIRBEORE L X v + 7 — 7 THKE
h, BftieRsIE#EE LS (Fig 3). RIOBREMIEFR
HEBEMEVEFITHIML, HAOERE & bIRDT 3.
IFPERFR O RHBIRIC H AR EDT 5. FERHMHE
ICREL TV 2541, EBERORERMENICASH
3. AMKL T3, BEEERMBREM OV /NRID/NERK
BRE LT®RMEL LERICHML, &ECHiEXKERONE
mzEs5.

GEFEBR . DS-AMKL O#lfaid, TAM OFER & [
ROZBRYERTY. KA -2 -RBE OEMAT
CDI117, CDI13, CD33, CD7, CD4, CD42, TPO-R, IL-3R,
CD36, CD41, CD61 CD71 AsRh#tk & 72 3 A5, myeloperoxi-
dase, CDI15, CDI4, glycophorin A (3B&#TH 5. L, L
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TAM & 2759, CD34 (3 50%12, CD56 & CD4l (38 &
Z 30%DIER TR TH 5. DS Dthd Tl AML DO
fatz, BOBO AML AHiic—E T3 RBAULERT. B
MKk D REHBMFENLHICEE L TE, TAM B,
CD41 & CD61 HERFHRRDOLHICLSIKHERTH 3,
BEF 21 Y Y I —1CMA T, &EEETF GATAL
23— FT2REFOKMERE DS O TAM /213
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AML {3 GATAI Bi=TFERMIL “EH D" MDS/AML
EEZLNTWVWAS, ML-DS T3, trisomy 8 (3 13~44%
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Th&FERTF 4 RRMD GATAI BIZFERDDH
% ML-DS i3, {bFFECHTIRIEBLL, ZDOTiE
{2 non-DS ® AML &L TE THRIFTH 3. ML-
DSix, ML-DSICBL /7o b a—-ATERENE~E
TH5. GATAI @IZFERDH 3 ER RO ML-DS (3,
non-DS @ AML & L L TFEMBARBTH 3.

DS @ TAM 8 & U AMKL Diagk &
BEOBKICOINT

KE, BA, 3 -0 /.50 TAM 264 AOHELH
ZM®  HE TAM (RERERT 255, 10~20%H%T
+ 5. BIREEST S TAM OEM)3, KRAR, AMERE
10 Fipl PLEidh, TEORERE, i, &t
BE, BARKELU3HATRLERLEVERNST,
cytarabine /D R (1 mg/kg/day 7 B DEFHOBFH
M RENR TV B,

HAT/MNRMiESH S MDS ZE LA LE 212 ORER
7 v — FRAEZTV, 2003~2005 FEICFEAE L /2 DS
D TAM B IOV THRARBAR LT 7. 73 Flch
19 1 (26%) MFELC L, 166 (22%) (& TAM ORHIEIC
EEERT 2 RARTERTH - /2. TAM HEREH
LI 5D 2 HA MDS, 11 Hd AMKL 2 RIEL, A2
BrL 7210 B 9 Blic GATAI @I FEEMAB SN, F
HEARBRETE, EREE 37 WA ZEAMERE 10
Tt LLE, BEEYNVE Y SmgdlPIE, 25FETSH-
f:. TAM OEEF OBFRRBERET 300, HIEL
BEGBRO I HIC, FIARMBERC & 2 ERIDE L B
fbs h{EEREROML KB AIC BT 2HETH 57

—7%, DS-AMKL T3FHROFEAKRIHMZL, Hif
G E GG - HA/NR AML LRIRE 7 v — 7 D ik
(pirarubicin 25 mg/m* 2 H, cytarabine 100 mg/m* 7 H,
ctoposide 150 mg/m* 3 H) T, FIRRGA#EIIL 97.2%, &
REGR (EFS) b 80%LL L L BHFRAEIRLELTVL S,
T HABKT- 13 monosomy 7 TdH » 1z, WHO S T3,
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Fig. 4 A modified model for the progression of TAM and AMKL in Down syndrome™
Trisomy 21 is the first event of lcukemogenesis of DS. The subsequent mutation of GATA/ in the fetus period is the

second hit, and contributes to the development of TAM.
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Acute myeloid leukemia (AML) is heterogeneous in clinical
features and molecular pathogenesis. Cooperating alterations of
several genes, including oncogenes or tumor suppressor genes,
lead to AML development." AML leukemogenesis is thought to
require at least two different types of genetic change: class |
mutations, which confer a proliferative or survival advantage;
and class 1l mutations, which block myeloid differentiation
and provide self-renewability." In hematological malignancies
with 11p15 translocations, the nucleoporin (NUP) 98 gene is
reportedly fused to various partner genes, often including
homeobox genes, such as HOXA9, A1, A13, C11, C13, D11,
D13 and PMX1.> With respect to the oncogenic mechanism of
NUP98-HOX fusion proteins, a previous study using a murine
bone marrow transplantation assay revealed that NUP98-
HOXA9, -HOXD13 and -PMX1 fusion proteins induce myelo-
dysplastic syndrome (MDS) or myeloproliferative neoplasm
(MPN), which progress to AML.? This latency period indicates
that additional genetic events might be required for leukemic
transformation. Therefore, we examined somatic mutations of
the FLT3, KIT, WT1, RUNX1, CEBPA, NPM1, NRAS, KRAS and
MLL genes, which are prevalent in AML, in leukemia patients
with NUP98 fusion genes. This study was approved by local
ethical committee.

Sixteen patients with chromosomal 11p15 translocations
included nine with NUP98-HOXA9, two with NUP98-
HOXA13, two with NUP98-HOXAT1 and one each with
NUP98-HOXC11, NUP98-HOXD11, NUP98-HOXD13 or
NUP98-NSD3 (Table 1). The partner gene fused to NUP98
could not be detected in one patient with t(4;11)(q21;p15);
however, fluorescent in situ hybridization analysis using a probe
containing NUP98 showed split signals (data not shown). No
patients had any additional chromosomal abnormality except
for chromosomal 11p15 translocations (Supplementary data).
Two patients with t(7;11)(p15;p15) had double NUP98 fusion
transcripts: patient (PN) 13 had simultaneous NUP98-HOXA9
and NUP98-HOXA13 fusions, and PN14 had simultaneous
NUP98-HOXA9 and NUP98-HOXAT11 fusions. In all, 15 of the
16 patients with NUP98-related hematological malignancies
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WT1 and KIT mutations in hematological

were diagnosed as having myeloid malignancies, and the other
patient (PN16) were initially diagnosed as having T-cell non-
Hodgkin’s lymphoma with t(4;11)(q21;p15), and transformed
into acute myelomonocytic leukemia with the same t(4;11)
(lineage switch). Patients with myeloid malignancies consisted
of 10 patients with AML, 2 patients with MDS and 3 patients
with MPN.

We examined the internal tandem duplications (ITDs) and
tyrosine kinase domain (TKD) mutations of the FLT3 gene in 16
patients, and detected ITDs in nine (56.3%) patients, and TKD
mutations in none (Table 1, Figure 1a). The incidence of FLT3-
ITD in our study was much higher than that in an AML cohort
reported previously (12-35%)." A high frequency of FLT3-ITD
was previously reported in 30-35% of AML patients with either
normal karyotype or with t(15;17)(q21;q11) resulting in PML-
RARA, and in 70% of AML patients with t(6;9)(p23;q34) resulting
in DEK-CAN/NUP214." Interestingly, both NUP98 and NUP214
encode a part of the nucleoporin complex. The general activation
effects on reporters of the DEK-CAN/NUP214 fusion protein are
specific for myeloid cells.> Moreover, in murine bone marrow
transplantation assays, NUP98-related fusion proteins such as
NUP98-HOXA9, -HOXD13 and -PMX1 induced MDS or MPN,
which progressed to AML.?> These results demonstrate that the
nucleoporin-related proteins share a common ability for myeloid
differentiation. Furthermore, the very tight correlation between
nucleoporin-related fusion genes and FLT3-ITD suggest that FLT3-
ITD may contribute to the myeloid leukemogenesis involved in
nucleoporin-related fusions.

We further examined mutations of the KIT, WTI, AMLI,
CEBPA, NPMI1, NRAS, KRAS and MLL genes,* which are
prevalent in AML. KIT, NRAS and KRAS mutations were found
in four (25.0%), three (18.8%) and two (12.5%) patients,
respectively (Table 1, Figure 1b). WT1 aberrations were found
in eight patients (50.0%; Table 1, Figure 1c). No mutations were
found in the other four genes (RUNX1, CEBPA, NPM1 and MLL).
The mutations in KIT were all missense mutations including
Val399lle, Met541Leu and Asp816Val, and all mutations
of NRAS and KRAS were Gly13Asp. All of KIT, NRAS and
KRAS mutations were heterozygous. The aberrations in WTT
comprised a frameshift insertion of exon 7 in four patients,
missense mutation of exon 9 in one, deletion of exon 5 in one
and deletion of the whole cording region in two. Frameshift and
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Table 1 Clinical features and additional mutations of patients with NUP98-related leukemias
PN Age Sex Disease WBCat Karyotype Fusion partner CR Relapse Therapy Prognosis FLT3 KIT Wwr1 NRAS KRAS

diagnosis gene of NUP98
PN1 14 M AML-M1 12500  t(11;12) HOXCT1 yes  yes  Chemo+SCT Death ITD  Val399lle del wT WT
PN2 12 F  AML-M2 133100  t(7;11) HOXA9 yes  yes  Chemo+SCT Death WT WT WT  Glyl3Asp  WT
PN3 183 M AML-M2 480000 1(7;11) HOXA9 yes yes Chemo+SCT Death ITD  Met541Leu ins4bpfsX WT WT
PN4 13 F AML-M2 147000 t(7;11) HOXA9 yes yes Chemo+SCT Alive WT WT WT WT WT
PN5 15 M AML-M2 22700  t(7;11) HOXAQ yes  no  Chemo+SCT Alive wWT WT WT WT  Gly13Asp
PN6 57 M AML-M2 252000  t(7;11) HOXA13 yes  yes Chemo Death ITD WT wT wT wT
PN7 38 M AML-M2 6400 t(7;11) HOXA9 yes yes Chemo+SCT Death ITD  Asp816Val  ins4bpfsX WT WT
PN8 15 M AML-M4 187900 t(2;11) HOXD11 yes no Chemo+SCT Alive WT WT ins4bpfsX WT Gly13Asp
PN9 56 M AML-M4 204500 1(7;11) HOXA9 yes yes Chemo Lost to follow-up  ITD WT WT WT WT
PN1O 62 M AML-M4 6500 t(2;11) HOXD13 yes  no Chemo Alive m WT WT WT WT
PN11 60 M RA 6250 t(8;11) NSD3 no ND Chemo Death ITD  Met541Leu ins4bpfsX WT WT
PN12 69 F  RAEB 2500 H(7;11) HOXA9 no ND Chemo Death WT wWT wWT WT WT
PN13 45 M  CMML 29800  t(7:11) HOXA9/HOXA13 yes  yes Chemo Death I WT  Ag250Trp  WT WT
PN14 58 F CMLPh-) 11200  t7;11) HOXA9/HOXAT1 yes  no Chemo Alive D WT del wWT WT
PNI5 3 F  JMML 39400  t(7;11) HOXAT1 yes no  Chemo+SCT Alive WT WT del exon5 Glyl3Asp  WT
PN16 51 F T-NHL 2600 t(4;11) undetermined  yes yes Chemo+SCT Death WT WT WT Gly13Asp WT
Abbreviations: AML, acute myeloid leukemia; Chemo, chemotherapy; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia;
CR, complete remission; del, deletion; F, female; JMML, Juvenile myelomonocystic leukemia; M, male; ND, not determined; Ph-, Philadelphia
chromosome; PN, patient number; RA, refractory anemia; RAEB-t, refractory anemia with excess of blasts in transformation; SCT, stem cell
transplantation; T-NHL, T-cell non-Hodgkin's lymphoma; WBC, white blood cell; WT, wild type.
1(11;12), t(11;12)(p15;913); t(2;11), t(2;11)(@31;p15); t(4;11), 1(4;11)(G21;p15); 1(7;11), t(7;1 1)(p15;p15); 1(8;11), t(8;11; p11; p15).

a M PNL PN2 PN6 PN7 PN8 PN11 PN12
p—— ¢
b Val399lle Asp816Val Met541Leu
ATTCTGAC STCAATE(T  AGC( AGAG=CATCAAGA TTATTGIGTGATTCTG
Ah T A
c Wild type 4bpinsertion Arg250Trp
(GGTCGGLATCTGAGAL (GGI(GGTLGGLAT(TGA TTCTCL L GGT((GAC
- AT
Figure 1 FLT3-ITD, KIT and RAS mutations, and WT1 aberrations. (a) Identification of FLT3-ITD by reverse transcription PCR. M, size marker;
arrow indicates wild-type allele. (b) KIT mutations. All figures show the sequence of PCR products. (¢) WTT aberrations. Left panel shows wild type
of WTT7 exon 7. Middle panel shows 4-bp insertion in exon 7 of WTT. Right panel shows WTT missense mutation. Left and middle panels show the
sequence of each plasmid subclone, and right panel shows that of PCR products.
missense mutation of WTT are heterozygous, whereas deletion Interestingly, five of the six patients with WTT aberrations had
was homozygous. FLT3-ITD, KIT and RAS mutations reportedly FLT3-ITD, and three of the five patients with both FLT3-ITD and
confer cellular proliferative abilities." In our study, 14 patients WTT aberrations had a KIT mutation, although the simultaneous
(88%) had at least one mutation involved in cellular proli- FLT3-ITD and KIT mutations are reportedly very rare'. These
feration (FLT3, KIT or RAS). Recently, Chou et al.® reported results suggest that the NUP98-related leukemias share a distinct
that the NUP98-HOXA9 fusion is strongly associated with KRAS ~ molecular subgroup in leukemias. In addition, all four patients
and WTT mutations. Nras and Kras mutations were frequently with KIT mutations had both FLT3-ITD (P=0.04) and WTT1
found in AML developed in transgenic mice expressing NUP98-  aberrations (P=0.03), whereas all five patients with RAS
HOXD13.° These results indicate that NUP98-related leukemias mutations did not have FLT3-ITD. In all, 14 (88%) of the 16
have a high frequency of mutations involved in growth patients had either FLT3-ITD or RAS mutations, but they were
advantage. mutually exclusive as described in previous papers.’ These
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