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Figure 2 (a) Products of RT-PCR performed using primers to amplify USH2A cDNA between exons 31 and 35. The c.6485+5G>A mutation caused
skipping of exon 33 (160 bp) and was presumed to create a premature stop codon in exon 34 through a frameshift. (b) Products of RT-PCR performed using
primers to amplify USH2A cDNA between exons 41 and 44. The ¢.8559-2A > G mutation caused skipping of exon 43 (123 bp) and was presumed to create
a 41-amino-acid deletion. Boxes with a number represent the exons. The solid and dotted lines that connect exons show the manner of splicing in the wild
type and mutant, respectively. The distance between exons does not indicate the actual intron sizes. The open arrows indicate the PCR primers, and the
closed arrows indicate mutations in introns. M, molecular marker (100 bp ladder); C, control; P, patient; WT, wild type; Mut, mutant.

Generally, mRNA is very useful for mutation analysis, especially in
the case of coding-sequence mutations in large multi-exon genes,
splicing mutations and regulatory-region mutations that affect the
expression levels. Of these, the use of mRNA to determine the effect of
a mutation on splicing as we revealed in this report is the most
important advantage because we still cannot accurately predict spli-
cing changes from DNA sequence alterations, especially if the altera-
tions occur at a distance from splicing donor/acceptor sites® or within
exonic splicing enhancers.®

Thus, mRNA extracted from hair roots is a potentially powerful and
convenient tool for mutation analysis in USH-causing genes. Further,
it is also reasonable to hypothesize that the mRNA of genes that cause
deafness can be detected in hair roots, and this may facilitate easier
and more accurate mutation analysis.
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Mutation analysis of the MYOZ7A and CDH23 genes
in Japanese patients with Usher syndrome type 1
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Katsuhiro Hosono?*, Kunihiro Mizuta', Hiroyuki Mineta! and Shinsei Minoshima?

Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1
(USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of
the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of
mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of
MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four

of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion
causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23
mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these
genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.
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INTRODUCTION

Usher syndrome (USH) is an autosomal recessive disorder character-
ized by retinitis pigmentosa (RP) and hearing loss (HL), with or
without vestibular dysfunction.! It is the most common cause of
combined deafness and blindness in industrialized countries, with a
general prevalence of 3.5-6.2 per 100 000 live births.>” The syndrome
is clinically and genetically heterogeneous and can be classified into
three clinical subtypes on the basis of the severity and progression of
HL and the presence or absence of vestibular dysfunction.®-°

USH type 1 (USH1) is characterized by congenital severe-to-
profound HL and vestibular dysfunction; it is the second common
type after USH type 2 and accounts for 25-44% of the USH cases.”!!
Five causative genes have been identified: myosin VIIA (HUGO gene
symbol MYO7A); Usher syndrome 1C, harmonin (USHIC); cadherin-
related 23 (CDH23); protocadherin-related 15 (PCDH15); and Usher
syndrome 1G, Sans (USHIG).'?~'8 Mutations in these genes have been
observed in patients with USH1 from various ethnic origins, including
Caucasian, African and Asian.'® However, there have been no reports
of mutation analysis for any responsible genes for USH1 in Japanese
patients.

Of the five causative genes, the mutation frequency of MYO7A is the
highest (39-55% of the total cases), followed by that of CDH23
(19-35% of the total cases).?>?! These two genes account for approxi-
mately 70-80% of the USH1 cases that have been analyzed.?%?!

The aim of this study was to analyze mutations in the MYO7A and
CDH?23 genes in Japanese patients with USH1.

MATERIALS AND METHODS

Subjects and diagnosis

Five unrelated Japanese patients (C103, C224, C312, C517 and C720) from
various regions of Japan were referred to Hamamatsu University School of
Medicine for genetic diagnosis of USH. All patients met the following criteria
for USH1: RP, congenital severe-to-profound HL and vestibular dysfunction.®
The clinical evaluation of the affected patients consisted of elicitation of the
medical history, and ophthalmological and audiovestibular examinations. The
medical history included the age at onset of walking, age at diagnosis of HL,
nature of HL and age at diagnosis of RP.

The ophthalmological evaluation consisted of best-corrected visual acuity
measurement, slit-lamp microscopy, ophthalmoscopy, Goldmann perimetry
and electroretinography. Visual fields were evaluated by Goldmann perimetry
of both eyes, and the isopters for the V/4e, Ill/4e and I/4e test targets were
measured. Electroretinography was performed according to the International
Society for Clinical Electrophysiology of Vision protocol.?2

The auditory examination consisted of otoscopy, pure-tone audiometry
(125-8000 Hz) and tympanometry. The severity of HL was classified using the
pure-tone average over 500, 1000, 2000 and 4000 Hz in the better hearing ear as
follows: normal hearing, <20dB; mild HL, 21-40dB; moderate HL,
41-70dB; severe HL, 71-90dB; and profound HL, >91dB.

Vestibular function was evaluated on the basis of the medical history
concerning childhood motor development and the results of caloric tests.
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Caloric stimulation of each ear was performed with cold water (20°C, 5ml) PCR and sequencing is available on request. Using direct sequencing or
and the results were classified according to the peak slow-phase velocity as  restriction enzyme-based assay, we tested the Japanese control chromosomes
follows: normal, >20°/s; canal paresis, <20°/s.2> For the patient diagnosed  for all the novel mutations identified during the mutation analysis.
with canal paresis, stronger stimulation with iced water (4 °C, 5 ml) was used to
determine the presence of a residual response. Reverse-transcription PCR of CDH23
For all patients, parent samples were obtained for segregation analysis. A set  Reverse-transcription PCR (RT-PCR) of CDH23 was preformed using total
of 135 control subjects, selected from Japanese individuals with no visual or  RNA extracted from hair roots as described previously.?> The PCR primers
hearing impairment, was used to assess the frequency of nucleotide sequence  yyere newly designed: forward primer, GCTTTTGGTGCTGATCTCTGGATGC
variations. The institutional review board of Hamamatsu University School of  ocated in exon 1; reverse primer, TGGTCGCTGACAGAGAACTCCACG in
Medicine approved this study, and written informed consent was obtained  exon 4. The amplification condition was as follows: denaturation at 94 °C for
from all subjects before enrollment. 2min; 40 cycles of treatment at 98 °C for 10, 64 °C for 30s and 68°C for
1 min; and final extension at 68 “C for 5 min.
Mutation analysis
Genomic DNA was extracted from peripheral lymphocytes by using standard RESULTS
procedures. In brief, the DNA samples were first screened for mutations in ~ Mutation analysis
MYO7A, and the negative cases were screened for CDH23 mutations. All exons ~ Mutation analysis of MYO7A and CDH23 in the five unrelated
(MYO7A, 49 exons; CDH23, 69 exons) and their flanking sequences were  Japanese patients revealed five probable pathogenic mutations in
amplified by PCR. The PCR products were purified with Wizard SV .Gel and  four patients (Tables 1 and 2; Figure 1). Of these, two mutations
PCR Clean-Up System (Promega, Madison, WI, USA) or treated with Exo- (,, Ty11947SerfsX23 in CDH23 and p.Ala771Ser in MYO7A) were
nuclease I and Antarctic Phosphatase (New England Biolabs, Ipswich, MA, : :
. . . . . . novel (Table 2). The former was a large deletion affecting 3 exons
USA). Direct sequencing was performed using the BigDye Terminator version ; : . s
3.1 Cycle Sequencing Kit on an ABI 3100 Autosequencer (Applied Biosystems, (Figure 2). The mutation was fou.nc! in a homozygous sta‘te, which is
Foster City, CA, USA). PCR amplification of MYO7A was performed using the ~Probably accounted by consanguinity (Supplementary Figure 1). As
primers described by Kumar et al2* with a slight modification. The PCR  the deletion caused the loss of 3 exons, resulted in a frameshift
primers for CDH23 amplification were newly designed. Information of the ~ generating a premature stop codon at 23-codon downstream and
nucleotide sequence and appropriate annealing condition of all primers for ~was not identified in 64 control chromosomes, it was considered
Table 1 Clinical information of patients with probable pathogenic mutations
Visual
Mutations Age® acuity
Responsible Visual Fundus of Severity Caloric
Patient Age Sex gene Allele 1 Allele 2 Walking HL RP Right Left field ERG the eye Cataract  of HL test
Homozygotes®
C517 26 M CDH23 p.Tyrl942  p.Tyr1942 22 2 3 01 0.1 5-10°with Extinguished Typical RP No Profound  CP
SerfsX23 SerfsX23 residual temporal
field (V/4e)
C720 13 F CDH23 p.Arg2107X p.Arg2107X 24 2 12 0.7 0.6 10-15°(V/de) Extinguished Typical RP No Profound CP
Compound heterozygotes
C312 36 F MYO7A p.Argl50X p.Argl883GIn 24 2 10 0.5 0.7 57 (V/de) Extinguished Typical RP Both eyes Profound CP
Heterozygote
Cl103 39 M MYO7A p.Ala771Ser Unknown® 18 3 27 04 0.3 10-15°with Extinguished Typical RP Both eyes Profound CP
residual temporal
field (111/4e)
Abbreviations: CP, canal paresis; ERG, electroretinography; HL, hearing loss; RP, retinitis pigmentosa.
2Age at onset of walking (months) and at diagnosis of HL and RP (years) are shown.
bThe family of patient C517 has c inity (see S tary Figure 1), whereas that of patient C720 does not.
“The ic allele ined und d.
Table 2 Probable pathogenic mutations identified in the Japanese patients with USH1 examined in this study
Responsible Predicted Mutation Exon Conservation in Number of  Alleles in control
gene Nucleotide change translation effect type number Domair®  h/d/r/m/c/z species® alleles chromosomes Reference
CDH23 c.5821-?_6253+7del5078 p.Tyr1942SerfsX23  Deletion 44-46 EC18 2 0/64 This report
.6319C>T p-Arg2107X Nonsense 47  EC20 2 0/64 %
MYO7A c.448C>T p.Argl150X Nonsense 5 Motor 1 0/64 12
c.2311G>T p.Ala771Ser Missense 20 1Q A/AAIAN/A 1 0/270 This report
c.5648G>A p.Arg1883Gin Missense 41 MyTH4  R/R/R/R/R/R 1 0/200 21
2Detailed locations of the mutations are shown in Figure 1.
bh/di/miciz denote g/rat/m /chick fish myosin 11Va orthologs, respectively.
Journal of Human Genetics
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a pArg150X p.Ala771Ser p.Arg1883GIn
«mn@ yTHd| FERM @m FERM
Q

b p.Tyr1942SerfsX23  p.Arg2107X

| |

EC1 EC18 EC20 EC27

™

Figure 1 (a) Schema of myosin Vlla domains with mutations identified in MYO7A. The p.Argl50X, p.Ala771Ser and p.Argl883GIn mutations were located
in the Motor domain, 1Q motif and MyTH4 domain, respectively. 1Q, isoleucine-glutamine motif; CC, coiled-coil domain; MyTH4, myosin tail homology 4
domain; FERM, 4.1, ezrin, radixin, moesin domain; SH3, Src homology 3 domain. (b) Schema of cadherin 23 domains with mutations identified in COH23.
The p.Tyr1942SerfsX23 mutation changed Tyr1942 located in EC18 to Ser and created a premature stop codon at 23-codon downstream. The p.Arg2107X
mutation was located in EC20. EC, extracellular domain; TM, transmembrane domain.

c.5821 -2280 c.5821 -2261 c.525f*403 c4625il¢422
= -3
g -{ie}{ o |-G
| S— | I——— |
f

i Deletion of 5078 nucleotides

1
GCTMTTTTTGTATTTTTAG

Figure 2 Schema of mutation p.Tyr1942SerfsX23 in the CDH23 gene. The deletion occurred between introns 43 and 46, and both boundaries had
20-nucleotide sequence string GCTAATTTTTGTATTTTTAG. Upstream and downstream strings were located between ¢.5821-2280 and c¢.5821-2261 and
between ¢.6253+403 and c.6253+422, respectively. Although the precise breakpoints could not be determined, the deletion size was elucidated to be
5078 nucleotides. The deletion was notated as ¢.5821-?_6253+?del5078. The boxes with a number represent exons. The distance between exons does not
indicate the actual intronic sizes. The open arrowheads indicate the primer pairs used for PCR to amplify exons 43-47.

Table 3 Presumed nonpathogenic alterations that have never been
reported

pathogenic. The other novel mutation (p.Ala771Ser in MYO7A) was
considered pathogenic because it was not detected in 270 control
chromosomes and Ala771 has been found to be almost conserved in

various vertebrates (Table 2). Another mutation in patient C103 Predicted
remained unclear. The remaining mutations (P Argl50X and translation Exon/Intron Number of Alleles in control
Nucleotide change effect number alleles chromosomes

p-Argl883Gln in MYO7A, and p.Arg2107X in CDH23) were pre-
viously reported and none of them was detected in the Japanese
control chromosomes (Table 2).

Alterations in MYO7A among 5 patients (C103, C224, €312, C517 and C720)

€.1691-125_126insT Intron 14 5

In addition to the probable pathogenic mutations listed in Table 2, c.1797+55A>G Intron 15 3
various sequence alterations were identified in MYO7A and CDH23 ¢.3783C>T p.Prol1261Pro Exon 30 1 1/270

(Table 3; Supplementary Tables 1 and 2). These alterations were ¢.5944457G>A Intron 43 5

predicted to be nonpathogenic for various reasons. Some of them €.5944+67C>T Intron 43 5

have been reported as polymorphism in previous reports (Supple-

mentary Tables 1 and 2). The newly identified alteration in exon 30 of  Alterations in CDH23 among 4 patients (C103, C224, €517 and C720)

MYO7A (p.Prol1261Pro) was also found in the control chromosomes. c.68-3C>T Intron 1 1 0/270
The newly found alterations in introns, except for c.68-3C>T in €.3370-46T>C Intron 27 4
CDH23 of patient C224, were distant from splicing donor or acceptor C.4206+61T>A Intron 32 8
sites. The exception was not detected in any of the 270 control ~ ¢-4207-90G>A Intron 32 4
€.4489-98delA Intron 35 3

chromosomes but was considered benign because the RT-PCR
analysis revealed that the alteration had no influence on splicing
(Figure 3).

fields were symmetrically constricted, pigmentary degeneration was

Clinical findings

All four patients in whom at least one mutant allele was detected had
been diagnosed with RP by ophthalmologists at ages 3-27 years
(mean *s.d., 13.0% 10.1 years; Table 1). In all the patients, the visual
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typical of RP with peripheral bone-spicule pigmentation and standard
combined electroretinography was extinguished. The best-corrected
visual acuity ranged from 0.7 to 0.1. Two patients (C312 and C103)
reported having cataracts, but none underwent cataract surgery.
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X
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Figure 3 Products of reverse-transcription PCR (RT-PCR) performed using
primers to amplify CDH23 complementary DNA (cDNA) between exons 1
and 4. Agarose gel electrophoresis of the RT-PCR products revealed a single
band with the proper size predicted from the normal sequence, indicating
that the nucleotide change (c.68-3C>T) had no effect on splicing and was
presumably nonpathogenic. PCR was performed using 2ug cDNA (total
volume, 20pl) with 40 cycles. The boxes with a number represent exons.
The distance between exons does not indicate the actual intronic sizes.
The open arrowheads indicate the PCR primers, and the arrow indicates
the nucleotide change. M, molecular marker (100-bp ladder); C, control;
P, patient.

The patients were diagnosed with hearing impairment by otorhi-
nolaryngologists at ages 2-3 years (2.3 +0.5 years; Table 1). Despite
using hearing aids immediately after the diagnosis, all the patients did
not develop speech ability and used sign language to communicate.
Tympanometry yielded normal results, consistent with the clinical
findings of a normal tympanic membrane and middle ear cavity.
Audiograms showed bilateral profound sensorineural HL in all the
patients. None of the patients complained of progressive HL.

All the patients reported delayed walking, with starting ages ranging
from 18 to 24 months (22 + 2.8 months; Table 1). The caloric test with
cold water revealed canal paresis in all the patients, and no response
was induced with the iced water. These results indicated that all the
patients had congenital vestibular dysfunction.

DISCUSSION
This is the first report on mutation analysis of MYO7A and CDH23 in
Japanese patients with USH1. We found at least one mutant allele in
four of the five patients in either of the genes. Although the number of
patients examined was small, this frequency (80%) is similar to that
among Caucasians, indicating that mutation screening for these genes
is a highly sensitive method for diagnosing USH1 among the Japanese.
Of the five mutations identified in this study, three mutations
(p-Argl50X and p.Argl883GIn in MYO7A, and p.Arg2107X in
CDH23) were previously identified in European-Caucasians.!»21:26
All of these mutations occurred by transition (C/G—T/A) at CpG
sites and were considered to be recurrent, which meets the fact that
they are not specific to a particular ethnic group. This finding is
consistent with a result of an analysis by Baux et al,*” who reported
that a high proportion of MYO7A and CDH23 mutations are
represented by single base-pair substitutions and that 51.5 and
48.5% of them in MYO7A and CDH23, respectively, involve a CpG
dinucleotide. Interestingly, neither of the two novel mutations found
in the present study is of the transition type.

Mutation analysis of the MYO7A and CDH23 genes
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Mutation p.Tyr1942SerfsX23 (in CDH23) was found by PCR using
a specially designed primer pair far distant from each other. After
failing to amplify each of exons 44-46 in patient C517, we hypothe-
sized the homozygous deletion of a long genomic region including at
least exons 44—46. We successfully obtained an amplified product
using a primer pair, one (forward) in intron 42 and the other (reverse)
in intron 47 (Figure 2). Sequence analysis showed that the amplified
DNA contains intact exon 43, truncated intron 43, truncated intron 46
and intact exon 47, indicating a deletion from introns 43 to 46. The
boundary between truncated introns 43 and 46 had 20-nudleotide
sequence string GCTAATTTTTGTATTTTTAG. Interestingly, the same
20-nucleotide sequences exist in normal introns 43 and 46, and lie
within AluSx repetitive sequences. It is speculated that the deletion
occurred with Alu-mediated recombination. We could not determine
the precise breakpoints in both introns because of the exact sequence
identity around possible breakpoints, but the deletion size was
elucidated to be 5078 nucleotides regardless of the position of break.
We notated the deletion as c.5821-?_6253+?del5078 according to a
nomenclature guideline recommended by the Human Genome Varia-
tion Society (http://www.hgvs.org/mutnomen/).?

The deleted sequence in p.Tyr1942SerfsX23 included exons 44, 45
and 46 (103, 126 and 204 nucleotides long, respectively) and the total
deletion size in mRNA was 433 nucleotides. Therefore, the mutation
was presumed to create a premature stop codon at 23-codon down-
stream in exon 47 by a frameshift. This is the first large deletion to be
found in CDH23. We could detect the mutation because of the loss of
the same exons in both alleles by consanguinity. However, a large
deletion of this type in only one allele cannot be easily detected by
PCR because of the existence of the normal allele. In addition, we
found a mutation p.Arg2107X in CDH23 of patient C720. Both of
these mutations are of a truncated type (nonsense, deletion/insertion
with frameshift, or splicing). This finding is consistent with the
previously reported genotype/phenotype relationship for CDH23: at
least one of the two mutations is of a truncated type in USH1 cases,
and both mutations are of a missense type in nonsyndromic
HL cases.”

In conclusion, the mutation analysis of MYO7A and CDH23 led to
the identification of five mutations in four patients. This frequency
(80%) indicates that mutation screening for these genes is a highly
sensitive method for diagnosing USH1 among the Japanese. One novel
mutation, p.Tyr1942SerfsX23 of CDH23, was a large deletion causing
the loss of 3 exons: the homozygosity resulting from consanguinity
probably led to the relatively easy identification. It is possible that
similar exonal deletions latently exist in a compound heterozygous
state in some USH]1 cases in which only one mutation has been found.
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An Atypical Usher Syndrome Type 2 Patient with USHZ2A Mutations

Hiroshi Nakanishi, Yoshinori Takizawa, Yasuyuki Hashimoto,
Kunihiro Mizuta and Hiroyuki Mineta

(Hamamatsu University School of Medicine)

Satoshi Iwasaki

(Hamamatsu Red Cross Hospital)

Usher syndrome (USH) is an autosomal recessive disorder characterized by hearing loss and retinitis
pigmentosa. USH can be classified into 3 clinical subtypes (USH type 1-3: USH1-3) on the basis of the
severity and progression of hearing loss and the presence or absence of vestibular dysfunction.

We conducted a mutation analysis of USHZA, one of the disease-causing genes of USH2, and iden-
tified ¢.8559-2A>G and p.Trp3150X in a heterozygous state in a USH patient. Though USHZ2 is character-
ized by non-progressive moderate-to-severe hearing loss and normal vestibular dysfunction, the patient
showed atypical USH2 phenotype-rapidly progressive hearing loss. In atypical patients, environmental
factors or modifier genes are presumed to influence the clinical findings. Because the patient had no his-
tory of noise exposure, ototoxic medication, or ultraviolet exposure, modifier genes were likely to have
influenced the atypical phenotype with USHZA mutations.

Considering MYO7A, CDHZ3, and USH3A as modifier genes, we conducted a mutation analysis of
these genes. We identified 16, 44, and 2 sequence alterations in MYO7A, CDHZ3, and USH3A, respec-
tively, none of which was presumed to be a mutation.

Though we could not identify the causes of the atypical phenotype, we considered it very important
in the expansion of the genetic analysis of USH that the causes of atypical USH patients should be iden-
tified.

Key words : Usher syndrome, USHZA, hearing loss, retinitis pigmentosa
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