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Myasthenic syndrome caused

by plectinopathy

ABSTRACT

Background: Plectin crosslinks intermediate filaments to their targets in different tissues. De-
fects in plectin cause epidermolysis bullosa simplex (EBS), muscular dystrophy (MD), and some-
times pyloric atresia. Association of EBS with a myasthenic syndrome (MyS) was documented in a
single patient in 1299.

Objectives: To analyze the clinical, structural, and genetic aspects of a second and fatal case of
EBS associated with a MyS and search for the genetic basis of the disease in a previously re-
ported patient with EBS-MD-MyS.

Methods: Clinical observations; histochemical, immunocytochemical, and electron microscopy
studies of skeletal muscle and neuromuscular junction; and mutation analysis.

Results: An African American man had EBS since early infancy, and progressive muscle weak-
ness, hyperCKemia, and myasthenic symptoms refractory to therapy since age 3 years. Eventu-
ally he became motionless and died at age 42 years. At age 15 years, he had a marked EMG
decrement, and a reduced miniature endplate potential amplitude. The myopathy was associated
with dislocated muscle fiber organelles, structurally abnormal nuclei, focal plasmalemmal de-
fects, and focal calcium ingress into muscle fibers. The neuromuscular junctions showed destruc-
tion of the junctional folds, and remodeling. Mutation analysis demonstrated a known
p.Arg2319X and a novel ¢.12043dupG mutation in PLEC1. The EBS-MD-MyS patient reported
in 1999 also carried ¢.12043dupG and a novel p.GIn2057X mutation. The novel mutations were
absent in 200 Caucasian and 100 African American subjects.

Conclusions: The MyS in plectinopathy is attributed to destruction of the junctional folds and
the myopathy to defective anchoring of muscle fiber organelles and defects in sarcolemmal
integrity. Neurology™ 2011:76:327-336

GLOSSARY

Ab = antibodies; AChR = acetylcholine receptor; anti-C Ab = antibody recognizing the C-terminal plectin domain; anti-Rod
Ab = antibody recognizing the plectin rod domain; EBS = epidermolysis bullosa simplex; EP = endplate; IF = intermediate
filament; IgG = immunoglobulin G; MD = muscular dystrophy; MyS = myasthenic syndrome; P1 = patient 1; P2 = patient 2.

Plectin is a ~500 kDa dumbbell-shaped molecule with a central coiled-coil rod domain
flanked by globular N- and C-terminal domains. Owing to tissue and organelle-specific tran-
script isoforms, plectin is a versatile linker of cytoskeletal components to target organelles in
cells of different tissues.' In skeletal muscle, multiple alternatively spliced transcripts of exon
preceding common exon 2 link desmin intermediate filaments (IFs) to specific targets: the
outer nuclear membrane (isoform 1), the outer mitochondrial membrane (isoform 1b), Z disks
(isoform 1 d), and costameres in the sarcolemma (isoform 1f).? Plectin is also highly expressed
at the neuromuscular junction where it provides crucial structural support for the junctional
folds.% Plectin deficiency in muscle results in progressive muscular dystrophy (MD).*~'? Plectin
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is also highly expressed in intercalated disks in
the heart but only a single patient with
EBS/MD and cardiomyopathy was identified
to date.'® Plectin deficiency in skin causes epi-
dermolysis bullosa simplex (EBS).2° Some pa-
tients with EBS and MD (EBS-MD) also had
symptoms suggesting a myasthenic disor-
der®?'-23 but this was not suspected or con-
firmed by specific studies. The association of
EBS-MD with a myasthenic syndrome (MyS)
was well-documented in a single patient (P1)
in 1999.% Although numerous autosomal re-
cessive and one dominant mutation in PLEC
have been detected,?® the genetic basis of
EBS-MD-MyS in P1 was not identified. We
describe our findings in a second patient with
EBS-MD-MyS (P2), report additional obser-
vations in P1, and identify the genetic basis of
the disease in both patients.

METHODS All human studies described here were in accord
with the guidelines of the Institutional Review Board of the
Mayo Clinic.

Structural observations. Routine histochemical studies on
cryostat sections and electron microscopy studies were per-
formed as previously described.” Immunoglobulin G and the
C3 and C9 complement components were immunolocalized as
previously reported.??* We immunolocalized the last 50
C-terminal residues of plectin with 4 pg/mL goat polyclonal
C-20 antibody (anti-C Ab), and the plectin rod domain with 4
pg/mL 10F6 mouse monoclonal antibody (anti-Rod Ab) (both
from Santa Cruz Biotechnology), followed by 3 pg/mL biotinyl-
ated donkey antigoat or antimouse immunoglobulin G (IgG)
(Jackson ImmunoResearch Laboratories) and the ABC peroxi-
dase kit (Vector Laboratories). Intrafiber calcium excess was eval-
uated by the Alizarin red stain.”” Synaptic contact regions were
visualized on fixed, teased muscle fibers by a cytochemical reac-
tion for acetylcholinesterase.’® The acetylcholine recepror
(AChR) and plectin were colocalized at endplates (EPs) with
rhodamine-labeled a-bungarotoxin and the plectin anti-Rod Ab
followed by fluorescent goat antimouse IgG. EPs were localized
for electron microscopy? and quantitatively analyzed® by estab-
lished methods. Peroxidase-labeled a-bungarotoxin was used for
the ultrastructural localization of AChR.»

Molecular genetic studies. Genomic DNA was isolated
from blood of P1 and muscle of P2 and mRNA from intercostal
muscles of both by standard methods. PLEC nucleotides were
numbered according to the mRNA sequence (GenBank refer-
ence no: NM_000445). We used PCR primer pairs to amplify
and directly sequence the 32 exons and flanking noncoding re-
gions of PLEC isoform 1 and also first exons of isoforms 1b, 1d,
and 1f. We screened for the identified novel mutations in 200
Caucasian and 100 African American control subjects using
allele-specific PCR. To estimate expression of the rodless isoform
of PLEC at the mRNA level, we used real-time PCR and SYBR
green I (Roche) with 5" GTGTCATCCAGGAGTACGTG 3’
as the forward primer in exon 30, 5' AGCGACAGCAGAGT-
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GACCAT 3’ as the forward primer in exon 31 that encodes
the rod domain, 5" GCCTTCTCCTGCTCGATGAA 3’ as
the reverse primer in exon 32 for both forward primers, and
GAPDH as the housekeeping gene. All experiments were done

in triplicate.

RESULTS Clinical observations. P1 is an African
American woman. Her case was reported in 1999
when she was 23 years of age.* In brief, she was
diagnosed with EBS as an infant and her myas-
thenic symptoms began around the age of 9 years.
Since 1999, her weakness has worsened so she can
now only take a few steps, has dysphagia, is dys-
pneic on slight exertion and at night, and is resis-
tant to anticholinesterase drugs. However, her skin
symptoms are mild, with new skin blisters appear-
ing infrequently.

P2 is an African American man. He was a single
child without similarly affected family members.
He sucked poorly during infancy but this gradu-
ally improved. Since the age of 6 weeks, he had an
intermittent vesicular eruption over his skin and
oral mucosa and developed nail deformities. He
attained his' motor milestones on time, but had
significant fatigue on exertion since age 3 years. At
age 11 years he had difficulty running and rising
from the floor and serum creatine kinase level was
827 U/L (normal <60 U/L). Prednisone therapy
improved his strength but was discontinued be-
cause of abdominal pain. Nystatin therapy for
thrush worsened the weakness. At age 12 years, a
vastus medialis muscle specimen revealed a myop-
athy associated with necrotic and regenerating fi-
bers, a sural nerve specimen was normal, and a
skin biopsy showed EBS and secondary infection.
In 1981, at age 15 years, the patient was evaluated
at the Mayo Clinic. He now had reduced muscle
bulk, bilateral eyelid ptosis, restricted eye move-
ments, and mild facial and moderately severe dif-
fuse cervical and limb muscle weakness, and was
areflexic except at the ankles. Nerve conduction
studies were normal. Repetitive stimulation at 2
Hz showed a decremental response (67% in hy-
pothenar muscles) that was partially corrected by
IV edrophonium chloride. Serratus anterior and
intercostal muscles were biopsied. In vitro electro-
physiology study of the intercostal specimen by
Dr. Edward Lambert revealed reduction of the
mean miniature endplate potential amplitude to
50% of normal; the quantal content of the end-
plate potential was in the low-normal range. Tests
for anti-AChR antibodies were negative. A MyS
was diagnosed but therapy with pyridostigmine
bromide for a year was of no benefit. The weak-
ness progressed more rapidly throughout adoles-
cence and accelerated after routine illnesses. At age
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[ Figure 1 Patient photographs ]

(A, B) Patient at age 17 years. Note severe asymmetric bilateral ptosis, hyperactive frontalis muscle, facial paresis, open mouth, cubitus valgus, Achilles
tendon contractures, and diffuse muscle atrophy. (C, D) Patent at age 41 years. He has a tracheostomy, has facial diplegia, is unable to close his mouth or
open his eyes, and shows the chronic skin changes of epidermolysis bullosa simplex. He also has blisters on his lip and tongue and oral moniliasis.

17 years, he could barely walk (figure 1, A and B).
He was wheelchair-bound by age 18 years, and
respirator-dependent by age 26 years. After age 35
years, he had dysarthria and dysphagia and needed
a percutaneous gastrostomy. His cognitive func-
tions and cardiac status remained normal. Subse-
quently, he became motionless (figure 1C),
continued to have skin blisters (figure 1D), com-
municated with clicks and whispers, failed to re-
spond to 3,4-diaminopyridine combined with
pyridostigmine bromide, and died of pneumonia
at age 42 years.

Histochemistry, P2. Serratus anterior and intercos-
tal muscle specimens showed similar findings (fig-
ure 2, A and B). The muscle fiber diameters varied
from 6 pm to ~120 wm. There was a mild to
moderate increase of internal nuclei. Many nuclei
were larger than normal and appeared in subsar-
colemmal rows or clusters. Some fibers were ne-
crotic or regenerating or subdividing by splitting,
or displayed aberrant myofibrils. There was mild
to marked (figure 2B) increase of perimysial and
endomysial connective tissue. No immunoglobu-
lin G, C3, or C9 deposits were present at patient
endplates. In sections reacted for oxidative en-

zymes, some fibers showed attenuation or an irreg-
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ular distribution of enzyme activity. Both muscle
specimens showed type 1 fiber preponderance. Be-
cause plectin deficiency disconnects or weakens
the link between the sarcolemma and the underly-
ing cytoskeleton, it likely increases sarcolemmal
vulnerability to mechanical stress. We therefore
searched for signs of sarcolemmal injury evidenced
by subsarcolemmal calcium deposits®” and de-
tected these in scattered fibers in both patients
(figure 2C and figure e-1 [on the Neurology® Web

site at www.neurology.org]).

Plectin immunostains. These were performed on 6-
to 10-pm-thick acetone fixed frozen sections. In
1999, an antibody recognizing the rod domain of
plectin (gift from Dr. Owaribe) showed no immu-
noreactivity in P1 muscle fibers. As this antibody
was no longer available, we used the 10F6 anti-
body directed against the plectin rod domain
(anti-Rod Ab), and a C-20 antibody raised against
the last 50 C-terminal residues of plectin (anti-C
Ab), and immunolocalized plectin in P1, P2, and
normal muscle (see Methods). In normal muscle,
both antibodies immunostained the sarcolemma,
the intermyofibrillar network, capillaries, and vas-
cular smooth muscle (figure 2, E and H); the C-20

Ab also immunostained perineurium and myelin-
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Figure 2 Histochemistry and plectin localization studies in patient 2

(A, B) Note marked variation in fiber size, regenerating fiber elements (asterisks), endomysial fibrosis (B), and clusters of large nuclei at periphery of several
fibers. (C) Alizarin red stain reveals focal calcium deposits in 2 fibers. (D) Multiple small cholinesterase-reactive endplate regions arrayed over an extended
length of the fiber. Plectin was localized in normal control muscle (E, H) and patient intercostal muscle (F, G, ) with antibody recognizing the plectin rod
domain (anti-Rod Ab) (E-G) and antibody recognizing the C-terminal plectin domain (anti-C Ab) (H, I). (E, H) In normal muscle, plectin is localized to the
sarcolemma and sarcoplasm with both Abs. The anti-Rod Ab shows plectin-depleted and plectin-positive muscle fibers (F, G), whereas the anti-C Ab shows
sarcoplasmic loss and slight sarcolemmal expression of plectin in all muscle fibers (l). Bars indicate 50 um in all panels except in (G), where they indicate
100 wm.
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