1998; Savkur et al., 2001; Kimura et al., 2005; Lin et al., 2006). Lin and colleagues
report that alternative transcripts observed in myotonic dystrophy are all fetal
1soforms (Lin et al., 2006). Muscleblind normally translocates from cytoplasm to
nucleus in the postnatal period to induce adult-type splicings, and lack of muscleblind

in nucleus due to sequestration to RNA foci recapitulates fetal splicing patterns.

5.2 Alzheimer’s disease (AD) and frontotemporal dementia with parkinsonism
linked to chromosome 17 (FTDP-17)

AD is the most common neurodegenerative disease representing dementia. It
is characterized by intracellular neurofibrillary tangles (NFTs) and extracellular
amyloid plaques. NFTs are composed of aggregates of the hyperphoéphorylated tau

protein encoded by MAPT. The amyloid plaques are composed of amyloid § peptide

(AP) that originates from enzymatic cleavage of the amyloid precursor protein (4PP)
by B-secretase followed by y-secretase (LaFerla et al., 2007). The y-secretase is an
enzyme complex composed of presenilin-1 (PS/) or presenilin-2 (PS2), as well as
nicastrin, anterior pharynx defective (APH-1), and presenilin enhancer 2 (PEN-2)
(Takasugi et al., 2003). Autosomal dominant forms of AD constitutes ~5% of AD and
are caused by mutations in APP, PS1, or PS2 (Bertram and Tanzi, 2008).

Although the pathomechanisms underlying sporadic AD remain mostly
unknown, PS2 exon 5 is exclusively skipped in brains of sporadic AD, which is
mediated by overexpression of a splicing frans-factor, HMGA 1a (Sato et al., 1999;
Manabe et al., 2003). As hypoxia induces the overexpression of HMGA 1a, the
upregulation of HMGA 1a in sporadic AD may or may not represent an agonal state of
AD, in which respiratory insufficiency possibly associated with pneumonia frequently

becomes the cause of death.
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Mutations in MAPT are not observed in AD, but are present in FTDP-17.
MAPT exon 10 is alternatively spliced in normal brain. N279K, K280del, and L284L
mutations on exon 10 provoke aberrant splicing of exon 10 by disrupting or
enhancing exonic splicing cis-elements, and cause FTDP-17 (D'Souza et al., 1999)

(Fig. 7). The splicing trans-factors for these cis-elements are also identified (Jiang et

al., 2004; Kondo et al., 2004).

5.3 Facioscapulohumeral muscular dystrophy (FSHD)

FSHD is the third most common hereditary muscular dystrophy after
Duchenne muscular dystrophy and myotonic dystrophy. As its name represents, the
disease predominantly affects the face, the scapulae, and the proximal arm muscles. In

FSHD, the number of a 3.3-kb repeat in the subtelomeric region of 4q (4q35),
designated D4Z4, are abnormally reduced (Wijmenga et al., 1992). Loss of D424
causes upregulation of FRG! located upstream of D4Z4 (Gabellini et al., 2002).
FRG] is a splicing trans-factor, and its overexpression causes aberrant splicing of
TNNT3 encoding the troponin T type 3 of fast skeletal muscle and MTMRI encoding
the myotubularin-related protein 1 (Gabellini et al., 2006). The reported splicing
aberrations in FSHD, however, have not been confirmed by us (unpublished data) or

by the other groups (personal communications).

5.4 Fragile X-associated tremor/ataxia syndrome (FXTAS)

Fragile X mental retardation syndrome is caused by abnormal expansion of a
CGG repeat in the 5° untranslated region of FMRI, which culminates in
hypermethylation of FMR! and silences its expression (Kremer et al., 1991). On the

other hand, moderate expansion of the CGG repeat in FMRI causes FXTAS, which is
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characterized by intention tremor, parkinsonism, cognitive decline, and neuropathy
(Hagerman and Hagerman, 2004). In FXTAS, CGG-binding proteins including
hnRNP A2 and muscleblind are excessively bound to the expanded CGG repeats of
FMR1 and are depleted from the cellular pool (Iwahashi et al., 2006), which results in

the loss their functions in other regulatory processes (Jacquemont et al., 2007).

5.5 Prader-Willi syndrome (PWS)

PWS is an autosomal dominant disorder characterized by obesity, muscular
hypotonia and weakness, mental retardation, short stature, hypogonadotropic
hypogonadism, and small distal extremities. The proximal long arm of chromosome
15 (15q11-q13) is normally imprinted in order to achieve parent-specific monoallelic
gene expressions. Some genes in this region are expressed only from the maternal
allele, and some others are only from the paternal allele. Lack of a functional paternal
copy of 15q11-13 causes PWS, whereas lack of a functional maternal copy of UBE34
in the same region results in Angelman syndrome (Horsthemke and Wagstaff, 2008).
PWS is caused by a deletion of the paternal 15q11-q13 or by maternal uniparental
disomy 15.

A snoRNA HBII-52 is located in the defective region of PWS. HBII-52 binds
to an ESS in exon Vb of HTR2C encoding the serotonin receptor 2C, and its
disruption in PWS causes aberrant splicing of HTR2C and potentially accounts for

dysfunctional serotonergic system in PWS (Kishore and Stamm, 2006).

5.6 Rett syndrome

Rett syndrome is a neurodevelopmental disorder in females, which is

characterized by loss of speech, stereotypical movements of hands, microcephaly,
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seizures, and mental retardation. Rett syndrome is caused by a mutation in MECP2
encoding the metyl-CpG-binding protein 2 (Amir et al., 1999). MeCP2 binds to a
splicing trans-factor YB-1 and the abnormal regulation of YB-1 causes aberrant

splicing of its target genes (Young et al., 2005).

5.7 Spinocerebellar ataxia type 8 (SCAS)

SCABS is caused by an abnormal expansion of CTA/CTG repeats in the
protein-noncoding 4ATXN8OS, which represents the ATXNS opposite strand (Tkeda et
al., 2008). Expanded CUG repeats on the ATXN8OS transcript potentially bind to and
sequestrate CUG-binding proteins, as we observe in myotonic dystrophy (Mutsuddi
and Rebay, 2005). In addition, 47XN8 on the opposite strand of AT. XNSOS encodes
the Kelch-like 1, and the expanded CAG repeats on ATXNS give rise to a
polyglutamine tract that forms a cytotoxic aggregate in neuronal cells (Moseley et al.,
2006). Furthermore, expression of ATXNSOS is colocalized with that of 4TXN8 (Chen
et al., 2008). ATXNSOS thus potentially serves as an antisense RNA for ATXNS, and
the abnormal CTA/CTG expansion in ATXN8OS may dysregulate the expression of

ATXNS (Fig. 8).

5.8 Paraneoplastic neurological disorders (PND)

In PND, tumors outside of the nervous system excrete humoral factors such as
hormones and cytokines, or provoke an immune response against specific molecules
expressed in tumors, and cause a wide range of neurological symptoms. In
paraneoplastic opsoclonus myoclonus ataxia (POMA), autoantibodies are raised
against the Nova family of neuron-specific splicing trans-factor (Jensen et al., 2000,

Ule et al., 2003; Ule et al., 2006; Licatalosi et al., 2008). In paraneoplastic
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encephalomyelitis and sensory neuropathy (PEN/SN or Hu syndrome), autoantibodies
recognize the Hu family of RNA-binding protein (Szabo et al., 1991), a human
homolog of the Drosophila splicing trans-factor Elav (Koushika et al., 2000; Soller
and White, 2003). In both disorders, autoantibodies downregulate the splicing trans-

factors and cause aberrant splicing in neuronal cells.
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Legends for Figures

Fig. 1. Representative splicing cis-elements and trans-factors. Tissue-specific and
developmental stage-specific expressions of splicing frans-factors including SR
proteins and hnRNP A1 enable precise regulations of alternative splicing. ISE and ISS

have similar activities as ESE and ESS, but are omitted from the figure.

Fig. 2. Ul snRNA recognizes three nucleotides at the 3’ end of an exon and six

nucleotides at the 5° end of an intron

Fig. 3. Human consensus BPS. (A) Pictogram and (B) WebLogo presentations of BPS.
Position 0 represents the branch point. (C) Representative sequences and positions of

splicing cis-elements.

Fig. 4. CHRNAI carries a 75-nt exon P3A. Its inclusion generates a non-functional
alpha subunit of the acetylcholine receptor. hnRNP H and PTB silence recognition of
exon P3A and induce its skipping. The IVS3-8G>A mutation identified in a patient
with congenital myasthenic syndrome weakens the binding of hnRNP H and causes
inclusion of exon P3A. Tannic acid facilitates the expression of PTB and partially

ameliorates aberrant splicing due to IVS3-8G>A.

Fig. 5. NASRE. Wild-type CHRNE generates the normally spliced transcript (a) and
the exon 6-skipped transcript (b), because exon 6 carries weak splicing signals. The
exon-skipped transcript carries a premature termination codon (PTC) and is degraded

by NMD. A 7-nt deletion (arrowhead) in exon 7 generates a PTC in the normally
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spliced transcript (¢) and is degraded by NMD. The deletion resumes the open reading

frame from the exon 6-skipped transcript, and the trahscript escapes NMD (d).

Fig. 6. In DM 1, expanded CUG repeats in the 3° UTR of DMPK sequestrate
muscleblind and upregulates CUG-binding protein. Dysregulation of these splicing
trans-factors cause aberrant splicing of their inherent target genes. Four representative

target genes are indicated.

Fig. 7. Mutations on MAPT exon 10 cause excessive skipping (N279K and L284L) or

inclusion (K280del) of exon 10.

Fig. 8. Expanded CTG on ATXNS8OS exerts three toxic effects on the bidirectional

transcripts.
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Footnote for NMD in Section 4.2

Nonsense-mediated mRNA decay (NMD). NMD is a quality-assurance mechanism
that degrades mRNAs harboring a premature termination codon (PTC) (Chang et al.,
2007). Proteins translated from mRNAs harboring PTCs potentially have dominant-
negative or deleterious activities. In pre-mRNA splicing, an exon-junction complex
(EJC) is deposited 20-24 nucleotides upstream of each exon-exon junction.
Ribosomes remove EJCs, but, in the presence of a PTC, EJCs stay on the transcript

and trigger the NMD pathway in the cytoplasm.
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Figure 2
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