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The WHO Nomenclature Committee for Factors of
the HLA System met during the 15th International
Histocompatibility and Immunogenetics Workshop in
Buzios, Brazil in September 2008. This update is an
extract of the main report that documents the additions
and revisions to the nomenclature of human leukocyte
antigen (HLA) specificities following the principles
established in previous reports.
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Introduction of colon-delimited HLLA allele names

The convention of using a four-digit code to distinguish
HLA alleles that differ in the proteins they encode was
introduced in the 1987 Nomenclature Report.!? Since then
additional digits have been added, and currently an allele
name may be composed of four, six or eight digits
depending on its sequence.

The first two digits describe the allele family, which
often corresponds to the serological antigen carried by the
allotype. The third and fourth digits are assigned in
the order in which the sequences have been determined.
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Alleles whose numbers differ in the first four digits
must differ in one or more nucleotide substitutions
that change the amino-acid sequence of the encoded
protein. Alleles that differ only by synonymous nucleo-
tide substitutions within the coding sequence are distin-
guished by the use of the fifth and sixth digits. Alleles
that differ only by sequence polymorphisms in introns
or in the 5 and 3’ untranslated regions that flank the
exons and introns are distinguished by the use of the
seventh and eight digits.

In 2002 we faced the issue of the A4*02 and B*I5
allele families having more than 100 alleles.®> At that time
the decision taken was to name further alleles in these
families in the rollover allele families 4*92 and B*95,
respectively. For HLA-DPBI alleles, it was decided to
assign new alleles within the existing system; hence,
once DPBI*990! had been assigned the next allele
would be assigned DPBI*0102, followed by DPBI*0203,
DPBI*0302 etc.

When these conventions were adopted, it was anticipated
that the nomenclature system would accommodate all the
HLA alleles likely to be sequenced. Unfortunately this is
not the case, as the number of alleles for certain genes is
now fast approaching the maximum possible with the
current naming convention.

With the ever-increasing number of HLA alleles
described, it has been decided to introduce colons (:) into
the allele names to act as delimiters of the separate
fields. To facilitate the transition from the old to the
new nomenclature, a single leading zero must be added to
all fields containing the values 1-9, but beyond that no
leading zeros are allowed. This will help to lessen any
confusion in the conversion to the new style of nomen-
clature.



Hence:
A*01010101 becomes A*01:01:01:01
A*02010102L becomes A*02:01:01:02L
A*260101 becomes A*26:01:01
A*3301 becomes A*33:01
B*0808N becomes B*08:08N
DRBI*01010101 becomes DRBI*01:01:01:01

For allele families that have more than 100 alleles, such
as the A*02 and B*15 groups, it will be possible to encode
these in a single series. Thus, the 4*92 and B*95 alleles will
now be renamed into the 4*02 and B*I5 allele series. For
example:

A*9201 becomes A*02:101
A*9202 becomes A*02:102
A*9203 becomes A*02:103 etc
B*9501 becomes B*15:101
B*9502 becomes B*15:102
B*9503 becomes B*15:103 etc

The names 4*02:100 and B*15:100 will not be assigned.
In case of other allele families in which the number of
alleles reaches 100, these will be numbered sequentially; for
example, 4%*24:99 will be followed by 4*24.:100.

The DPBI allele names that have been previously
assigned names within the existing system will also be
renamed, for example:

DPBI*0102 becomes DPBI*100:01
DPBI*0203 becomes DPBI*101:01
DPRBI*0302 becomes DPBI*102:01
DPBI*0403 becomes DPBI*103:01
DPBI*0502 becomes DPBI1*104:01 etc

The ‘W’ will be removed from the HLA-C allele names,
but will be retained in the HLA-C antigen names, to
avoid confusion with the factors of the complement
system and epitopes on the HLA-C molecule, often termed
C1 and C2, that act as ligands for the killer-cell Ig-like
receptors.

Cw*0103 becomes C*01:03
Cw*020201 becomes C*02:02:01
Cw*07020101 becomes C*07:02:01:01 etc

The changes to the HLA Nomenclature will be officially
introduced in April 2010. A full list of old and new HLA
allele names will be made available through the IMGT/
HLA Database (www.ebi.ac.uk/imgt/hla) and the HLA
Nomenclature web site (hla.alleles.org).*

Reporting of ambiguous HLA allele typing

The level of resolution achieved by many of the HLA
typing technologies used today does not always allow
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for a single HLA allele to be unambiguously assigned.
Often it is only possible to resolve the presence of a number
of closely related alleles. This is referred to as an ambiguous
‘string’ of alleles. In addition, typing strategies are
frequently aimed at resolving alleles that encode differences
within the peptide-binding domains, but fail to exclude
those that differ elsewhere. For some purposes it is helpful
to provide codes that aid the reporting of certain
ambiguous allele ‘strings’. The decision was taken to
introduce codes to allow for the easy reporting of the
following:

(a) HLA alleles that encode for identical peptide-binding
domains: HLA alleles having nucleotide sequences that
encode the same protein sequence for the peptide-binding
domains (exons 2 and 3 for HLA class I and exon 2 only for
HLA class II alleles) will be designated by an upper case
‘P, which follows the allele designation of the lowest-
numbered allele in the group.

For example, the string of allele names below share the
same al and o2 domain protein sequence encoded by exons
2 and 3:

A*02:01:01:01/4*02:01:01:02L/A4*02:01:01:03/

A*02:01:02/A*02:01:03/A*02:01:04] A*02:01:05/

A*02:01:06]4%02:01:07]4*02:01:08/ A*02:01:09/

A*02:01:10/A*02:01:11/A*02:01:12{A4*02:01:13/

A*02:01:14/A*02:01:15/A%02:01:17/A*02:01:18/

A*02:01:19/A*02:01:21] 4*02:01:22]A*02:09/

A*02:66/A*02:75/A*02:89/ A*02:97/A*02:132]

A*02:134/A%02:140

This string can be reduced to 4*02:01P.

(b) HLA alleles that share identical nucleotide sequences
for the exons encoding the peptide-binding domains: HLA
alleles that have identical nucleotide sequences for the
exons encoding the peptide-binding domains (exons 2 and 3
for HLA class I and exon 2 only for HLA class II alleles)
will be designated by an upper case ‘G’, which follows the
allele designation of the lowest-numbered allele in the
group.

For example, the string of allele names below have
identical exon 2 and 3 nucleotide sequences:

A*02:01:01:01/{4*02:01:01:02L[A*02:01:01:03/

A*02:01:08/A*02:01:11/A*02:01:14/A*02:01:15/

A*02:01:21/ A*02:09] A*02:43N|A*02:66/

A*02:75]A*02:83N/A*02:89] A¥02:97/A*02:132{

A*02:134]A*02:140

This string can be reduced to 4*¥02:01:01G.

These reporting codes will be implemented in April 2010
and will be made available through the IMGT/HLA
Database (www.ebi.ac.uk/imgt/hla) and the HLA Nomen-
clature web site (hla.alleles.org).*

A full list of all currently assigned HLA alleles
and antigens, together with information on the changes
documented here, is published in the WHO Nomen-
clature Committee for Factors of the HLA System,
2010.!
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TAL1 plays pivotal roles in vascular and hematopoietic develop-
ments through the complex with LMO2 and GATA1. Hemangioblasts,
which have a differentiation potential for both endothelial and
hematopoietic lineages, arise in the primitive streak and migrate into
the yolk sac to form blood islands, where primitive hematopoiesis
occurs. ZFAT (a zinc-finger gene in autoimmune thyroid disease
susceptibility region / an immune-related transcriptional regulator
containing 18 C;Hy-type zinc-finger domains and one AT-hook) was
originally identified as an immune-related transcriptional regulator
containing 18 C;H-type zinc-finger domains and one AT-hook, and is
highly conserved among species. ZFAT is thought to be a critical tran-
scription factor involved in immune-regulation and apoptosis; how-
ever, developmental roles for ZFAT remain unknown. Here we show
that Zfat-deficient (Zfat ") mice are embryonic-lethal, with impaired
differentiation of hematopoietic progenitor cells in blood islands,
where ZFAT is exactly expressed. Expression levels of Tal1, Lmo2,
and Gata7 in Zfat’'~ yolk sacs are much reduced compared with
those of wild-type mice, and ChIP-PCR analysis revealed that ZFAT
binds promoter regions for these genes in vivo. Furthermore, pro-
found reduction in TAL1, LMO2, and GATA1 protein expressions
are observed in Zfat~'~ blood islands. Taken together, these
results suggest that ZFAT is indispensable for mouse embryonic
development and functions as a critical transcription factor for
primitive hematopoiesis through direct-regulation of Talt,
Lmo2, and Gata1. Elucidation of ZFAT functions in hematopoiesis
might lead to a better understanding of transcriptional networks in
differentiation and cellular programs of hematopoietic lineage and
provide useful information for applied medicine in stem cell therapy.

uring embryonic development, mesodermal progenitors give
rise to hemangioblasts, which have a differentiation-potential
for both endothelial and hematopoietic lineages (1-3). Heman-
gioblasts arise in the primitive streak and then migrate into the ex-
traembryonic yolk sac to form blood islands (4, 5). Blood islands are
foci of hemangioblasts, which form a luminal layer of endothelial
cells with a property of producing hematopoietic progenitor cells,
and are eventually assembled into a functional vascular network to
transfer nutrients from the yolk sac to the embryo proper (6, 7).
Recent studies have revealed that TAL1, a basic helix-loop-helix
transcription factor, is an essential transcription factor for differ-
entiation of hemangioblasts into hemogenic endothelium (1, 8-12).
TAL1 also plays pivotal roles in vascular and hematopoietic
developments through the complex with LMO2 and GATAI (9, 13—
17). LMO?2 functions as a bridging molecule between TAL1 and
GATAL1 in the DNA-binding complex (14). GATALI also functions
as a key molecule in the differentiation process of the erythroid
lineage (18, 19). However, the transcriptional regulations upstream
of these genes remain elusive.
The human ZFAT gene was originally identified as a suscepti-
bility gene for autoimmune thyroid diseases (20). The mouse Zfaz
gene encodes an immune-related transcriptional regulator con-

www.pnas.org/cgi/doi/10.1073/pnas. 1002494107

taining 18 C,H,-type zinc-finger domains and one AT-hook and is
highly conserved from fish to human (21). ZFAT is predominantly
expressed in placenta, thymus, spleen, and lymph nodes (20, 21).
ZFAT was a critical transcriptional regulator in immune-regula-
tion (21) and an antiapoptotic molecule in lymphoblastic leuke-
mia cell line (22). Recently, ZFAT was reported to be associated
with IFN-B responsiveness in multiple sclerosis (23). However,
developmental roles for ZFAT remain unknown.

In this study, we generated Zfat-deficient (Zfat™'~) mice and
found that Zfar-deficiency results in early embryonic lethality,
with the reduction in the number of blood islands and impaired
differentiation of hematopoietic progenitor cells in blood islands.
Furthermore, in vitro and in vivo molecular analyses revealed
that ZFAT directly regulates the transcription factors including
Tall, Lmo2, and Gatal in blood islands. Taken together, these
results suggested that ZFAT plays critical roles in the develop-
ment of hematopoietic system in blood islands.

Results

Zfat-Deficient Mice with Early Embryonic Lethality. To examine de-
velopmental roles for ZFAT, we targeted the Zfar allele for dis-
ruption by homologous recombination (Fig. 14). In construction
of the targeting vector, a 1.4-kb fragment of Zfat genomic DNA
including exon 8 was replaced with neomycin resistance (neo)
gene (Fig. 14). Targeted ES cell clones with homologous re-
combination and heterozygous (Zfar*/~) mice were confirmed
by Southern blot analysis (Fig. 1B, Left) and by PCR (Fig. 1B,
Right). Then, Zfat*~ mice with the genetic background of C57BL/6
were established and analyzed in this study. Zfar*'~ mice were
viable, fertile, and phenotypically indistinguishable from wild-
type (Zfat*'*) littermates. Obvious developmental abnormalities
in T or B cells from Zfar*'~ mice were not observed in the thymus
or spleen, where ZFAT is abundantly expressed (20, 21) (Fig. S1);
however, the possibilities of altered immune-responses in pe-
ripheral T and B cells of Zfat*/~ mice are not excluded and a full
understanding of the ZFAT function in the immune system awaits
future studies.
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Fig. 1. Zfat is indispensable for mouse embryonic development. (A) Tar-
geting disruption of the Zfat gene. WT, wild-type; HR, homologous
recombinant; B, Bglll site; closed box: E, exon; neo, neomycin resistance
cassette; D, DTA (diphtheria-toxin A fragment); shaded box: external probe.
(B) Southern blotting of Bglil-digested DNA using 3’ external probe (Left).
PCR-based genotyping of Zfat*'~ progeny (Right). (C) Genotyping statistics of
progeny from Zfat*~ mice. The number and ratio of embryos showing
normal development are shown. (D) Typical phenotype of Zfat”~ embryos at
E9.5. (E) ZFAT expression during early developmental stage. Thy, thymocyte;
Spl, splenocyte; ERK1, loading control.

Intercrosses between Zfat*'~ mice failed to produce Zfat™'~
mice, indicating that Zfat~'~ mice died either in utero or shortly
after birth. Developmental abnormalities in Zfat™'~ embryos did
occur by E8.5 (Fig. 1C) and no Zfat™”~ embryos showed the
embryonic turning at E9.5 (Fig. 1D), suggesting that embryonic
development in Zfat™'~ mice was severely impaired before the
stage of embryonic turning. ZFAT protein expression in embryos
with yolk sacs was observed from E6.5 and was gradually in-
creased to the expression level of thymocytes or splenocytes in
adult tissues, and was kept high at least by E9.5 (Fig. 1E). All
these results indicated that ZFAT is a critical molecule during
midgestation and its deficiency results in early embryonic le-
thality, demonstrating that ZFAT is essential for mouse embry-
onic development.

Impaired Differentiation of Hematopoietic Progenitor Cells in Blood
Islands of Zfat-Deficient Mice. Dysfunction of the vascular system is
a common cause of early embryonic lethality during midgestation
(24). Initial inspection using a microscope indicated that Zfat™/~
yolk sacs were bloodless at E9.5 (Fig. 24), whereas the vascular
system in Zfat*'~ yolk sacs seemed to be normally developed
(Fig. S2). Histological analyses of placentas revealed that the
spongiotrophoblast layer was not well developed in Zfat ™'~ pla-
centas at E8.0, the abnormality of which was consistently
detected in Zfat ™'~ placentas (Fig. 2B). The phenotype observed
in the spongiotrophoblast layer was utilizable as a marker for
Zfat™"~ yolk sacs. Histological analyses revealed that hemato-
poietic progenitor cells in Zfat*'* blood islands differentiated
into the more developed cells from E8.0 to E8.5, whereas those
in Zfat™~ blood islands were spindle-shaped at both E8.0 and

14200 | www.pnas.org/cgi/doi/10.1073/pnas.1002494107

A Zfat

Fig.2. Impaired differentiation of hematopoietic progenitor cells in Zfat™~
blood islands. (A) Embryos with yolk sacs from Zfat*™* or Zfat™'"~ mice at E9.5.
(Scale bars, 500 pm.) (B) H&E-stained sections of Zfat** and Zfat™~ placentas
at E8.0. Region surrounded by the dotted line represents spongiotropho-
blast layer. (Scale bars, 100 pm.) (C) H&E-stained sections of blood islands of
Zfat** and Zfat™~ yolk sacs at E8.0 (Upper) and E8.5 (Lower). Region sur-
rounded by the dotted line represents hematopoietic progenitor cells.
Arrows, endothelial cells; asterisks, visceral endodermal cells. (Scale bars,
50 pm.) (D) ZFAT protein expression in endothelial and hematopoietic pro-
genitor cells in Zfat** blood islands at E8.0. The region surrounded by the
dotted line represents hematopoietic progenitor cells. Arrows, endothelial
cells. (Scale bars, 10 pm.)

E8.5 (Fig. 2C), suggesting that differentiation of hematopoietic
progenitor cells in Zfat”~ blood islands was impaired.

Reduction in the Number of Blood Islands and Hematopoietic Progenitor
Cells in Zfat~'~ Yolk Sacs. To further characterize the abnormali-
ties in Zfat"‘ blood islands, the number of endothelial, hema-
topoietic progenitor, and visceral endodermal cells in blood
islands were examined at E8.0 based on the morphological as-
sessment described (25). The number of endothelial and visceral
endodermal cells between Zfat*’* and Zfatr™~ blood islands
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were not significantly different (P > 0.1) (Table 1). Of interest
was that the number of blood islands in Zfat™~ yolk sacs and
hematopoietic progenitor cells in Zfar”~ blood islands were
significantly decreased by 2.3-fold (*P = 0.014; Table 1) and
2.9-fold (**P = 0.004; Table 1), respectively, compared with
those of Zfat*'* mice. Furthermore, the ratios of hematopoietic
progenitor cells per endothelial cells in Zfat*'* and Zfatr™'~
blood islands were 1.43 and 0.71, respectively, with a statistically
significant difference (P = 0.0037). Taken together, these results
suggested that proper differentiation in the hematopoietic line-
age was impaired in Zfatr ™~ blood islands.

ZFAT Expression Does Not Affect Apoptosis or Proliferation in Yolk
Sac Blood Islands. In immunohistochemical analysis using anti-
ZFAT monoclonal antibody M16 (Fig. S3), ZFAT signals were
evidently detected in endothelial and hematopoietic progenitor
cells of Zfat*'* blood islands at E8.0, whereas ZFAT signals
were not observed in endothelial cells or hematopoietic pro-
genitor cells of Zfat™'~ blood islands (Fig. 2D), indicating that
ZFAT was exactly expressed in endothelial and hematopoietic
progenitor cells in blood islands at E8.0. Furthermore, signals of
K;-67 as a proliferation marker were evenly detected in endo-
thelial and hematopoietic progenitor cells in both Zfat™'* and
Zfat™~ blood islands at E8.0, and signals of activated caspase-3
as an apoptosis marker were rarely detected in Zfat*/* or Zfatr™'~
blood islands at E8.0 (Fig. S4). Taken together, these results
indicate that ZFAT expression in blood islands does not function
by inhibiting apoptosis or promoting progenitor cell prolifera-
tion, suggesting that ZFAT may instead be involved in promot-
ing hematopoietic progenitor differentiation.

ZFAT Regulates the Genes Involved in Hematopoietic Differentiation
in Blood Islands. To address a possibility whether ZFAT regulates
the genes essential for development of hematopoietic progenitor
cells in blood islands, we performed real-time quantitative RT-
PCR (qRT-PCR) assay for the hematopoiesis-related genes, in-
cluding Tall, Lmo2, Gatal, Gata2 (26) and Kit (1, 27), and Gapdh
as a control gene in yolk sacs at E7.5. Expression levels of Tall,
Lmo2, and Gatal in Zfat™~ yolk sacs were decreased by 50-, 20-,
and 200-fold, respectively, compared with those of Zfar*/* yolk
sacs (Fig. 34; *, P < 0.001), whereas the expressions of Gata2 and
Kit were not different between Zfat*/* and Zfar™'~ yolk sacs (Fig.
34; P > 0.05). Reduced expressions of Tall, Lmo2, and Gatal
were consistent with the histological features in blood islands in
Zfat™"~ mice (Fig. 2), suggesting that ZFAT is an essential reg-
ulator for the expression of the hematopoiesis-related genes, in-
cluding Tall, Lmo2, and Gatal in blood islands.

Direct-Regulation of Tal1, Lmo2, and Gata1 by ZFAT. We, next, de-
termined whether or not ZFAT directly regulates Tall, Lmo2,
and Gatal expressions. In luciferase reporter assay using 1-kb
probes for the promoter regions of Tall, Lmo2, and Gatal genes,
the luciferase activities by ZFAT fused with a transcriptional
activator-domain (AD-ZFAT) were increased by 2.6-, 5.7-, and

2.8-fold, compared with those by a transcriptional activator-
domain construct (AD), respectively (Fig. 3B, P < 0.05). ZFAT
binding regions were further narrowed down with 200-bp probes
from the 1-kb probes showing the activities. The luciferase ac-
tivities for the 200-bp probes for Tall, Lmo2, and Gatal were
increased to 5.5-fold (Tall-3), 4.3-fold (Lmo2-3), and 3.7-fold
(Gatal-5), respectively (Fig. 3B; **, P < 0.01).

To address the bindings of ZFAT with these DNA sequences
in vivo, ChIP-PCR assays on yolk sacs at E7.5 and on adult
kidney as a control tissue, where ZFAT is rarely expressed (21),
using anti-ZFAT M16 antibody (Fig. S3) and control IgG, were
done for the 200-bp regions with the highest luciferase activity
(Tall-3, Lmo2-3, and Gatal-5) and the promoter region of
Kifap3 as a hematopoiesis-unrelated control gene. Differences of
ChIP DNA concentrations were semiquantified by 35- and 42-
cycle end-point PCR products. Promoter regions for Tall, Lmo2,
and Gatal in the M16-ChIP DNA from E7.5 yolk sacs were
enriched and compared with those of control IgG-ChIP DNA,
whereas M16-ChIP DNA for Tall, Lmo2, and Gatal in kidney as
a control tissue were not enriched (Fig. 3C); taken together,
these data are suggestive of the specificity of anti-ZFAT M16
antibody and the bindings of ZFAT with these promoter regions.
Furthermore, quantification by real-time qPCR assay for ChIP
DNA showed that total amount of promoter regions for Tall,
Lmo2, and Gatal in the M16-ChIP DNA were 126.4 units, 88.5
units, and 13.2 units, respectively (Fig. 3D, P < 0.05), whereas
M16-ChIP DNA on the promoter regions for Cd41, RunxI, and
Flk-1—the expressions of which are reported to be regulated by
a TAL1-LMO2-GATALI transcriptional complex (4, 5, 14, 28—
32)—were not enriched in the end-point PCR or ChIP-gPCR
assays (Fig. S5), suggesting that ZFAT specifically binds to the
promoter regions for Tall, Lmo2, and Gatal in yolk sacs at E7.5.

The ZFAT binding regions detected in the Tall, Lmo2, and
Gatal genes are mapped in the genome, showing that ZFAT
binds to the distinct regions from the known regulatory regions
including the —187 element in 7all (33), the proximal promoter
and the —75 enhancer element in Lmo2 (34, 35), and the
CACCC motif in Gatal (36, 37) (Fig. 3E).

Reduction in Protein Expressions of TAL1, LMO2, and GATA1 and
TAL1-Downstream Genes in Zfat~'~ Blood Islands. Immunohisto-
chemical analysis on Zfat*'* and Zfat™'~ blood islands at E8.0
was performed to confirm the expression levels of TAL1, LMO2,
and GATAL. The signals for TAL1, LMO2, and GATA1 were
observed in Zfat*’* blood islands, especially in hematopoietic
progenitor cells, whereas all these expressions were much reduced
in Zfat™~ blood islands (Fig. 4), suggesting that ZFAT is in-
dispensable for the proper expressions of TAL1, LMO2, and
GATAL in hematopoietic progenitor cells in blood islands at E8.0.

Real-time qRT-PCR assay at E7.5 showed that expression
levels of Cd41, Runxl, and Flk-1 in Zfat™~ yolk sacs were de-
creased by 50-, 6.6-, and 4-fold, respectively, compared with
Zfat*'* yolk sacs (Fig. 34; *, P < 0.001), although these genes
were not directly regulated by ZFAT (Fig. S5). Protein expres-

Table 1. Reduction in the number of blood islands and hematopoietic progenitor cells in Zfat-deficient yolk sac at E8.0
Mean + SD
t test

WT-1 WT-2 WT-3 KO-1 KO-2 KO-3 WT KO (P value)
Number of slides analyzed 21 19 13 16 14 12
Number of blood islands 44 42 32 25 14 13 39+6 17+6 0.014*
Number of endothelial cells 328 433 350 383 206 183 370+55 257 +109 0.19
Number of hematopoietic progenitor cells 439 632 526 232 148 173 532+96 184+43  0.004™
Number of visceral endodermal cells 376 414 395 412 205 207 395+19 275+ 118 0.16

*P <0.05; **P < 0.01.
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