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The 43-kDa TAR DNA-binding protein (TDP-43) is known to
be a major component of the ubiquitinated inclusions charac-
teristic of amyotrophic lateral sclerosis and frontotemporal
lobar degeneration with ubiquitin-positive inclusions. Al-
though TDP-43 is a nuclear protein, it disappears from the
nucleus of affected neurons and glial cells, implicating TDP-43
loss of function in the pathogenesis of neurodegeneration. Here
we show that the knockdown of TDP-43 in differentiated
Neuro-2a cells inhibited neurite outgrowth and induced cell
death. In knockdown cells, the Rho family members RhoA,
Racl, and Cdc42 GTPases were inactivated, and membrane
localization of these molecules was reduced. In addition,
TDP-43 depletion significantly suppressed protein geranylgera-
nylation, a key regulating factor of Rho family activity and intra-
cellular localization. In contrast, overexpression of TDP-43
mitigated the cellular damage caused by pharmacological inhi-
bition of geranylgeranylation. Furthermore administration of
geranylgeranyl pyrophosphate partially restored cell viability
and neurite outgrowth in TDP-43 knockdown cells. In sum-
mary, our data suggest that TDP-43 plays a key role in the main-
tenance of neuronal cell morphology and survival possibly
through protein geranylgeranylation of Rho family GTPases.

The 43-kDa TAR DNA-binding protein (TDP-43)* has
recently been identified as a major component of the ubiquiti-
nated inclusions characteristic of amyotrophic lateral sclerosis
(ALS) and frontotemporal lobar degeneration with ubiquitin-
positive inclusions (1, 2). Subsequently several point mutations
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located in the glycine-rich domain of TDP-43 have been iden-
tified as the disease-causing mutations of familial and sporadic
ALS (3-7). TDP-43 has been shown to be a fundamental
component of ubiquitin-positive neuronal cytoplasmic and
intranuclear inclusions as well as that of neuronal dystrophic
neurites in the affected neurons or glial cells in these neurode-
generative diseases. TDP-43 is known to regulate gene tran-
scription, exon splicing, and exon inclusion through interac-
tions with RNA, heterogeneous nuclear ribonucleoproteins,
and nuclear bodies (8 —12). Recently it has been reported that
TDP-43 stabilizes human low molecular weight neurofilament
mRNA through direct interaction with the 3’-untranslated
region (13) and that it regulates retinoblastoma protein phos-
phorylation through the repression of cyclin-dependent kinase
6 expression (14). However, the physiological function of
TDP-43 in the central nervous system has not been fully eluci-
dated, and it remains unclear how this protein is implicated in
the pathogenesis of neurodegeneration.

The Rho family of GTPases are members of the Ras super-
family and are known for regulating actin cytoskeletal dynamics
(15-18). RhoA, Racl, and Cdc42, the most studied proteins of
this family, also modulate functions such as cell movement,
motility, transcription, cell growth, and cell survival (18). In
neurons, RhoA, Racl, and Cdc42 have been shown to regulate
neurite outgrowth (19-21).

Although TDP-43 is localized in the nucleus of unaffected
neurons, nuclear staining of this protein is significantly reduced
in neurons bearing ubiquitin inclusions (1, 2, 22), suggesting
that loss of TDP-43 function may play a role in neurodegenera-
tion. In this study, we used small interfering RNA (siRNA) to
investigate the effect of TDP-43 loss of function on cell death
and neurite outgrowth and elucidated a novel relation between
TDP-43 and the activities of RhoA, Racl, and Cdc42.

EXPERIMENTAL PROCEDURES

SiRNA Oligonucleotides and Construction of Expression
Vectors—The oligonucleotide siRNA duplex was synthesized
by Takara Bio (Shiga, Japan). The siRNA sequences were as
follows: scrambled (control) siRNA-setl, 5'-GAAUCAGAUG-
CACAUGAGUTT-3'; -set2, 5'-ACGGCCUAAUCUAACAG-
ACTT-3'; TDP-43 siRNA-setl, 5'-GAACGAUGAACCCAU-
UGAATT-3'; -set2, 5'-CCAAUGCUGAACCUAAGCATT-3'".
Unless otherwise mentioned, set 1 siRNA was used for TDP-43
knockdown throughout the experiments.
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The pEGFP-Racl construct was produced as described else-
where (23, 24). Mouse TDP-43 (GenBank™ ™ accession number
NM_145556) cDNA was amplified by PCR from mouse brain
cDNA using the following primers: 5'-GTGCTTCCTCCTTG-
TGCTTC-3" and 5-CCACACTGAACAAACCAATCTG-3".
The PCR product was cloned into the pCR-BluntII-TOPO vec-
tor (Invitrogen), and the entire coding region of mouse TDP-43
was inserted in-frame into either the Kpnl and Xbal sites of the
pcDNA3.1/V5His vector (Invitrogen) or the Kpnl and BamHI
sites of the pDsRed-Monomer-Hyg-N1 vector (Clontech). An
siRNA-resistant form of the TDP-43 gene was generated by
changing the targeted sequence of the siRNA to 5'-GAATGA-
CGAGCCAATTGAA-3" (mutated nucleotides are underlined)
using the KOD-Plus-Mutagenesis kit (Toyobo, Osaka, Japan).

Cell Culture and Transfection—Neuro-2a cells (American
Type Culture Collection, Manassas, VA), a line derived from
mouse neuroblastoma, were maintained as described previ-
ously (25). The transfection of siRNA into Neuro-2a cells was
performed using Lipofectamine RNAIMAX (Invitrogen)
according to the manufacturer’s instructions. For the transfec-
tion of the intended plasmid and siRNA, cells were co-trans-
fected using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. To differentiate the Neuro-2a
cells, the medium was changed to Dulbecco’s modified Eagle’s
medium containing 2% fetal calf serum and 20 uM retinoic acid,
and cells were cultured for 24 h. For the interventional studies,
the cells were incubated for 24 h with differentiation medium
containing Clostridium difficile toxin B (Sigma-Aldrich) or for
12 h with medium containing GGTI-298 (Calbiochem). Gera-
nylgeranyl pyrophosphate (GGPP) (Sigma-Aldrich) was added
to the differentiation medium at the indicated concentration
24 h after siRNA transfection, and cells were incubated for an
additional 24 h.

Quantitative Assessment of Neurite Outgrowth—Neuro-2a
cells cultured in 6-well dishes were photographed using an
Olympus IX71 inverted phase-contrast microscope (Olympus,
Tokyo, Japan). The length of the longest neurite was measured
with Image Gauge version 4.22 software (Fujifilm, Tokyo,
Japan). Averages of the lengths of over 100 transfected cells
were analyzed. To confirm the efficacy of siRNA transfection,
BLOCK-iT™ Alexa Fluor® Red Fluorescent Control (Invitro-
gen) was co-transfected with TDP-43 siRNA or control RNA.
The efficacy of plasmid transfection was ensured using DsRed
(Clontech). To assess neurite outgrowth in TDP-43 knockdown
cells, we performed a time course analysis starting at 24 h after
the siRNA transfection when the differentiation medium was
changed.

Cell Viability and Apoptosis Analysis—The 3-(4,5-dimethyl-
thiazol-2-yl)-5-(3-caboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS)-based cell proliferation assay was
carried out on the differentiated Neuro-2a cells 48 h post-
transfection using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega, Madison, WI) according to the
manufacturer’s instructions. Absorbance at 490 nm was meas-
ured in a multiple plate reader (PowerscanHT, Dainippon
Pharmaceutical). The assays were carried out in 6 wells for each
condition. To assess cell apoptosis, differentiated Neuro-2a
cells were stained with Alexa Fluor 488-conjugated Annexin V
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and with propidium iodide (PI) using the Vybrant Apoptosis
Assay kit (Invitrogen) according to the manufacturer’s instruc-
tions. TUNEL assays were performed using the APO-
DIRECT™ kit (BD Biosciences). The extent of staining in
10,000 cells was monitored by FACSCalibur™ and CellQuest
version 3.1.3 acquisition and analysis software (BD Biosciences)
immediately after the staining.

Caspase-3/7 Assay—Neuro-2a cells were grown on black
96-well plates. The caspase-3/7 activity of differentiated
Neuro-2a cells was analyzed using the Apo-ONE homogene-
ous caspase-3/7 assay (Promega) after 48 h of transfection or
intended treatment according to the manufacturer’s instruc-
tions. Fluorescence (485/528 nm) was measured in the mul-
tiple plate reader, and the assay was carried out in 6 wells for
each condition.

Quantitative Real Time PCR—mRNA levels were deter-
mined by real time PCR as described before (26). Briefly total
RNA from Neuro-2a cells was reverse transcribed into first
strand cDNA, real time PCR was performed, and the product
was detected by the iCycler system (Bio-Rad). For an internal
standard control, the expression level of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was simultaneously
quantified. The following primers were used: 5'-CCGCAT-
GTCAGCCAAATACAAG-3"and 5'-ACCAGAATTGGCT-
CCAACAACAG-3' for TDP-43 and 5'-TGTGTCCGTCGT-
GGATCTGA-3" and 5'-TTGCTGTTGAAGTCGCAG-
GAG-3' for GAPDH.

Western Blot Analysis—Western blot analyses were per-
formed as described before (27). Briefly Neuro-2a cells were
lysed in Cellytic lysis buffer (Sigma-Aldrich) containing a pro-
tease inhibitor mixture (Roche Applied Science) 48 h after
transfection. For subcellular fractionation, we used the Proteo-
Extact Subcellular Proteome Extraction kit (Calbiochem)
according to the manufacturer’s instructions. Cell lysates were
separated by SDS-PAGE (5-20% gradient gel) and analyzed by
Western blotting with ECL Plus detection reagents (GE Health-
care). Primary antibodies used were as follows: anti-TDP-43
rabbit polyclonal antibody (1:1000; ProteinTech, Chicago, IL),
anti-Racl mouse monoclonal antibody (1:1000; Millipore,
Temecula, CA), anti-RhoA mouse monoclonal antibody
(1:1000; Cytoskeleton, Denver, CO), anti-Cdc42 rabbit poly-
clonal antibody (1:1000; Santa Cruz Biotechnology, Santa Cruz,
CA), anti-phospho-myosin phosphatase targeting subunit 1
(Thr-853) rabbit polyclonal antibody (1:500; Millipore), anti-
myosin phosphatase targeting subunit 1 rabbit polyclonal anti-
body (1:1000; Santa Cruz Biotechnology), anti-H-Ras rabbit
polyclonal antibody (1:1000; Santa Cruz Biotechnology), anti-
Rab5 rabbit polyclonal antibody (1:1000; Santa Cruz Biotech-
nology), anti-GAPDH mouse monoclonal antibody (1:1000; BD
Pharmingen) as a cytosol marker, anti-integrin 81 rabbit poly-
clonal antibody (1:1000; Santa Cruz Biotechnology) as a mem-
brane marker, anti-green fluorescent protein mouse mono-
clonal antibody (1:2000; Millipore), anti-Rho GDP dissociation
inhibitor rabbit polyclonal antibody (1:1000; Millipore), anti-
geranylgeranyltransferase-18  mouse polyclonal antibody
(1:1000; Abnova, Taipei, Taiwan), and anti-geranylgeranyl
pyrophosphate synthase rabbit polyclonal antibody (1:1000;
Abgent, San Diego, CA).
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Rho Family GTPase Activation Analysis—To measure RhoA
and Racl/Cdc42 GTPase activities, we used the Rho binding
domain (RBD) of the Rho effector protein with Rhotekin and
Cdc42/Rac interactive binding (CRIB) region of the Cdc42/Rac
effector protein with p21 activated kinase 1 (PAK), respectively.
Pulldown assays were performed in the presence of glutathione
S-transferase-tagged Rhotekin-KBD and PAK-CRIB protein-
agarose beads (Cytoskeleton) according to the manufacturer’s
instructions.

Fluorescent Images of Neuro-2a Cells—Neuro-2a cells, which
were transfected with EGFP-Racl, DsRed-TDP-43, and siRNA
(TDP-43 siRNA or control RNA), were fixed by 4% paratorm-
aldehyde with 0.1% Triton X-100 for extraction of cytosol com-
ponents. After washing, samples were mounted with
VECTASHIELD mounting medium (Vector Laboratories, Inc.,
Burlingame, CA) and then photographed with a Zeiss Axio
Imager M1 (Carl Zeiss AG).

Assay of Protein Geranylgeranylation—Neuro-2a cells were
transfected with siRNA on 10-cm? dishes. Twenty-four hours
after the transfection, 20 pum lovastatin (Sigma) was added to
the culture medium. Twenty-four hours after the addition of
lovastatin, the cells were labeled by adding fresh culture
medium containing 6.25 uCi/ml ['*C]mevalonolactone
(50-62 mCi/mmol) (GE Healthcare) and 20 um lovastatin.
Nineteen hours after labeling, the cells were harvested, and
Racl was immunoprecipitated by incubating with 4 mg of anti-
RhoA mouse monoclonal antibody (Santa Cruz Biotechnology)
or anti-Racl mouse monoclonal antibody (Millipore) for 24 h
followed by adding 20 ul of protein G-Sepharose (GE Health-
care). Immunoprecipitated proteins were separated by electro-
phoresis on a polyacrylamide-SDS gel. The '*C-labeled gels
were fixed and soaked in Amplify Fluorographic Reagent (GE
Healthcare) for 30 min. The gels were dried, and labeled pro-
teins were visualized on a Typhoon 9410 Workstation (GE
Healthcare) after exposure to a Storage Phosphor Screen (GE
Healthcare) for 72 h. We validated this experiment using 20 um
GGTI-298.

Statistical Analysis—Statistical differences (not including
neurite length data) were analyzed by analysis of variance and
Bonferroni post hoc analyses for three or more group compar-
isons and the unpaired Student’s ¢ test for two-group compar-
isons. Neurite length differences were analyzed using the
Mann-Whitney U test (SPSS version 15.0, SPSS Inc., Chicago,
IL). Two-tailed p < 0.05 was regarded as statistically significant.

RESULTS

TDP-43 Depletion Induces Cell Death and Inhibits Neurite
Outgrowth—To analyze the effect of TDP-43 depletion, two
sets of siRNA oligonucleotides were transfected into Neuro-2a
cells. The efficiency of TDP-43 siRNA transfection was con-
firmed by Western blotting and quantitative real time RT-PCR
(Fig. 1, A and B). To assess cell viability, we carried out an
MTS-based cell proliferation assay in differentiated Neuro-2a
cells after 48 h of siRNA transfection. The viability of knock-
down cells was significantly decreased by both sets of siRNA
compared with each control (Fig. 1C). To exclude the possibil-
ity of an off-target effect, a plasmid carrying an siRNA-resistant
form of TDP-43 was co-transfected together with set 1 siRNA.
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FIGURE 1. Effects of endogenous TDP-43 depletion on cell viability.
A, anti-TDP-43 Western blot of Neuro-2a cells transfected with siRNAs. B, the
mRNA expression levels of TDP-43 measured by real time RT-PCR. Data are
shown as the ratio of the mRNA level of TDP-43 to that of GAPDH. C, the
viability of Neuro-2a cells quantified by the MTS-based cell proliferation
assays. TDP-43 depletion significantly reduced cell viability. D, a rescue exper-
iment using the MTS assay. Mock plasmid and an siRNA-resistant form of
TDP-43 (Mut-TDP-43) were co-transfected into Neuro-2a cells together with
TDP-43 siRNA or control RNA. Mut-TDP-43 prevented the reduction of cell
viability. E, Western blot of the cells transfected with mock plasmid or Mut-
TDP-43. Error bars indicate S.D. N.S., not significant.

As a result, the siRNA-resistant form of TDP-43 prevented the
reduction of cell viability (Fig. 1D). The apoptotic process was
quantified with Annexin V/PI staining and TUNEL labeling.
The knockdown of TDP-43 significantly increased the number
of PI-positive cells (Fig. 24). However, the number of cells pos-
itive for Annexin V or TUNEL was not altered (Fig. 2, B and C).
In the caspase-3/7 assay, there was no significant difference
between knockdown and control cells (Fig. 2D). To clarify the
effects of TDP-43 depletion on cellular morphology, we per-
formed a time course experiment measuring the average length
of neurites. Neurites of control cells extended over the course of
48 h, but neurite outgrowth was significantly inhibited in TDP-
43-depleted cells (Fig. 2E).
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FIGURE 2. Apoptosis analyses and quantitative assessment of neurite outgrowth in TDP-43-depleted
Neuro-2a cells. A, B, and C, the number of the cells positive for PI, Annexin V, and TUNEL staining. We

counted 10,000 cells using flow cytometry. Knockdown of TDP-43 significan

cells stained with Pl but not that with stained with Annexin V or TUNEL. D, caspase-3/7 activity of Neuro-2a
cells transfected with TDP-43 siRNA or control RNA. E, time course analysis of neurite outgrowth in

Neuro-2a cells transfected with TDP-43 siRNA or control RNA. Averages of th

over 100 transfected cells were analyzed 24 h after the transfection of siRNA. Neurites of control cells
extended over the course of 48 h, butin TDP-43-depleted cells, neurite outgrowth was inhibited. Error bars
indicate S.D. (A-D) or S.E. (E). F, phase-contrast images of Neuro-2a cells 48 h after the transfection of

control RNA or TDP-43 siRNA. Scale bar, 10 um. N.S., not significant.

Knockdown of TDP-43 Reduces Rho Family GTPase Activity—
To elucidate the pathophysiology of neuronal cell death and the
morphological alteration caused by TDP-43 depletion, we
focused on the Rho family GTPases, which are potent regula-
tors of neurite outgrowth and cell survival. First RhoA, Racl,
and Cdc42 GTPase activities were investigated by pulldown
assays. In TDP-43-depleted cells, the activities of RhoA, Racl,
and Cdc42 GTPase were all decreased compared with the con-
trols (Fig. 3, A and B). Inactivation of RhoA GTPase was also

22062 JOURNAL OF BIOLOGICAL CHEMISTRY

(Fig. 3, Cand D).

Small G proteins, including Rho
and Ras family members, must be
able to localize at the cell membrane
to exert their biological functions
(29). We thus investigated the intra-
cellular distribution of Rho family
proteins to elucidate the mecha-
nism by which TDP-43 regulates
their GTPase activity. Western blots
showed that the amounts of RhoA,
Racl, and Cdc42, but not H-Ras or
Rab5, in the membrane fractions
were decreased in the TDP-43
knockdown cells (Fig. 44). The sub-
cellular fraction of Rho GDP disso-
ciation inhibitor, another regulator
of Rho activity, was not altered
by TDP-43 knockdown (Fig. 4A).
The siRNA-resistant form of
TDP-43 rescued the reduction in
the amount of membrane-bound
Rho family GTPases (Fig. 4B). The
fluorescent images also demon-
strated that membrane-localized
Racl was significantly reduced in
TDP-43 knockdown cells in com-
parison with control cells (Fig. 5).

TDP-43 Regulates Rho GTPase
Activity via Protein Geranylgeranyla-
tion—For membrane localization to
occur, members of the Rho family of
GTPases have to be catalyzed by
transferring GGPP to the C-termi-
nal motif (geranylgeranylation),
whereas Ras family members, such
as H-Ras, require farnesyl pyrophosphate. We thus tested two
agents that modulate geranylgeranylation of Rho family mol-
ecules. GGTI-298, a specific inhibitor of geranylgeranyla-
tion, has been shown to increase neural cell death through
the inactivation of Rho family GTPases (30, 31). In differen-
tiated Neuro-2a cells, GGTI-298 inhibited neurite out-
growth and reduced cell viability in a dose-dependent man-
ner without any evidence of caspase-3/7 activation (Fig. 6,
A-C). GGTI-298 also decreased the amount of membrane-
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FIGURE 3. Activities of Rho family GTPases in TDP-43-depleted Neuro-2a
cells. A, pulldown assays of RhoA, Rac1, and Cdc42 and Western blot using
anti-phospho-myosin phosphatase targeting subunit 1 (p-MYPT1) in
Neuro-2a cells transfected with TDP-43 siRNA or control RNA. TDP-43 knock-
down significantly reduced Rho family GTPase activity. B, densitometric
quantitations of three independent experiments. C, the viabilities of
Neuro-2a cells incubated with the indicated concentrations of C. difficile toxin
B. D, quantitation of neurite outgrowth in Neuro-2a cells incubated with 100
ng/ml toxin B compared with control. Error bars indicate S.D. (B and C) or
S.E. (D).

bound Rho GTPases (Fig. 6D). In contrast, GGPP, the final
substrate of geranylgeranylation, prevented the reduction in
the amounts of membrane-bound RhoA, Racl, and Cdc42
caused by TDP-43 knockdown (Fig. 6E). In addition, GGPP
restored viability and neurite outgrowth in TDP-43-depleted
cells (Fig. 6, F and G). These findings indicate that impaired
geranylgeranylation appears to be the molecular basis of
TDP-43 depletion-induced cellular damage. We next exam-
ined whether TDP-43 regulates geranylgeranylation of Rho
GTPases. Fig. 7, A—C, shows that TDP-43 increased the
amount of membrane-bound Rho GTPases, augmented neu-
rite outgrowth, and increased cell viability in GGTI-298-
treated cells.

Taken together, these observations suggest that TDP-43
regulates the activities of Rho family members through pro-
tein geranylgeranylation. We thus investigated the effect of
TDP-43 depletion on protein geranylgeranylation using
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FIGURE 4. Intracellular distribution of Rho family GTPases in TDP-43
knockdown Neuro-2a cells. A, Western blots of subcellular fractions
(cytosol, membrane, and nucleus) of Neuro-2a cells transfected with TDP-43
siRNA or control RNA. The amount of Rho family members in the membrane
fraction was significantly reduced in TDP-43 knockdown cells. This effect,
however, was not observed with H-Ras or Rab5. Moreover the subcellular
fraction of Rho GDP dissociation inhibitor (RhoGDI) was not altered by TDP-43
depletion. GAPDH and integrin 31 were used as a cytosol and membrane
marker, respectively. Cyto, cytosol fraction; Mem, membrane fraction; Nuc,
nuclear fraction. B, the effect of the siRNA-resistant form of TDP-43 (Mut-TDP-
43) on the intracellular distribution of Rho family GTPases. Mut-TDP-43 pre-
vented the reduction of membrane-bound Rho family members.

Racl

TDP-43

Control RNA

TDP-43 siRNA

FIGURE 5. Fluorescent images of Neuro-2a cells. Neuro-2a cells co-trans-
fected with EGFP-Rac1, DsRed-TDP-43, and siRNA (TDP-43 siRNA or control
RNA) were fixed by 4% paraformaldehyde with 0.1% Triton X-100. Mem-
brane-localized Rac1 was significantly reduced in the TDP-43 depleted cells
(arrowhead) compared with the cells that escaped knockdown of TDP-43
(arrow) and with the control RNA-transfected cells. Scale bar, 10 um.

['*C]mevalonic acid (MVA). Incorporation of ['*CIMVA
into RhoA or Racl was significantly decreased in the TDP-
43-depleted Neuro-2a cells (Fig. 8, A and B), suggesting that
the knockdown of TDP-43 inhibits geranylgeranylation of
Rho family members. GGTI-298 reduced incorporation of
["*CIMVA into Racl, further confirming this conclusion
(Fig. 8C).

Protein geranylgeranylation of the Rho family is regulated by
specific enzymes: geranylgeranyltransferase-I3 and gera-
nylgeranyl pyrophosphate synthase-1, which is responsible for
synthesis of GGPP. We therefore investigated the expression
levels of these enzymes. However, the knockdown of TDP-43
did not alter the protein expression level of geranylgeranyl-
transferase-IB or geranylgeranyl pyrophosphate synthase-1
(data not shown).
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FIGURE 6. The effect of modulation of geranylgeranylation on cell via-
bility. A, the viability of Neuro-2a cells incubated with the indicated con-
centrations of GGTI-298 (GGTI). B, averages of neurite length in Neuro-2a
cells incubated with 20 um GGTI-298 compared with control. C, caspase-
3/7 activity in Neuro-2a cells treated with GGTI-298. D, Western blot of the
membrane fraction from Neuro-2a cells incubated with 20 um GGTI-298
compared with control. E, Western blot of the membrane fraction from
Neuro-2a cells incubated with 20 um GGPP in the presence of TDP-43
siRNA. F, measurement of neurite length of Neuro-2a cells incubated with
20 um GGPP. The cells were transfected with TDP-43 siRNA or control RNA.

22064 JOURNAL OF BIOLOGICAL CHEMISTRY

A Mem B
— . p=0.02
GGTl + + S [
TDP-43 + § 15 -
5
P
\ SRe -
TDP-43 e &
mm «— endgenous _8
yue | 4 TDP-43 ‘T 5 1
]
2
Rho 0
&2
0 ’
Rac \& «QQ
Cdc42 GGTI 10uM
Integrin -
C ‘e p=0.03
: |
16
14
1.2
wn 1
— os
=
04
0.2
(4]
F o Fd Y
O s O p (&) p
< ,\QQ \&/\QQ @/\QQ
GGTI - 10 20 (uM)

FIGURE 7. Effect of TDP-43 in Neuro-2a cells on GGTI-298-induced cellular
phenotype. A, Western blot of the membrane (Mem) fraction of 10 um GGTI-
298 (GGTI)-treated Neuro-2a cells transfected with TDP-43 or mock vector.
B, neurite length of GGTI-298-treated Neuro-2a cells transfected with DsRed-
TDP-43 or mock vector. C, the viability of Neuro-2a cells incubated with the
indicated concentrations of GGTI-298. Error bars indicate S.E. (B) or S.D. (C).

DISCUSSION

TDP-43 as a Regulator of Rho Family GTPases—In the pres-
ent study, we demonstrated that knockdown of TDP-43 inhib-
its neurite outgrowth and induces cell death in differentiated
Neuro-2a cells, suggesting that loss of TDP-43 function plays a
causative role in neurodegeneration. To elucidate the molecu-
lar mechanisms by which TDP-43 depletion causes neuronal
cell damage, we examined the relationship between TDP-43
and Rho family GTPases. Neuronal morphology is determined
in large part through the regulation of the cytoskeleton. One of
the key regulators of the actin cytoskeleton is the Rho family of
GTPases: RhoA, Racl, and Cdc42 (15-17). Although each Rho

G, the viability of Neuro-2a cells incubated with the indicated concentra-
tions of GGPP. Error bars indicate S.D. (A and C) or S.E. (B and F). N.S., not
significant.
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