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Figure 5. Mutant SOD1 Proteins Affect ADP
but Not Ca®* Accumulation into Mitochon-
dria

(A) ADP or Ca®* accumulation into isolated mito-
chondria was measured using a filter trap assay
with radio-labeled “*CaCi, or [PHJADP. Mitochon-
dria were isolated from fresh spinal cords and
livers of nontransgenic rats.

B) ADP and (C) Ca®* accumulation were
measured before and after the addition of 3 uM
(50 pg/mi) hSOD1*, hSOD1%%%, or hSOD1%%5R
purified proteins. Student’s t test was used and
p < 0.001 (marked by three asterisks) and
p < 0.01 (marked by two asterisks) were consid-
ered statistically significant. Values represent the
means + SEM of three independent experiments.
(D) Purified hSOD1*!, hSOD1%%4, or hSOD 1857
were incubated with liver or spinal cord mitochon-
drial fractions purified from a nontransgenic rat for
20 min at 37°C. The samples were then washed
three times and the mitochondrial pellet was sub-
jected to immunoblot using an SOD1 antibody.
(E) Purified hSOD1*, hSOD1%%%4, or hSOD19%5R
was incubated for 20 min at 37°C with spinal
cord mitochondria purified from nontransgenic
rats. The samples were then washed three times
and the mitochondrial pellet was subjected to
immunoprecipitation using DSE2 (3H1) antibody, a
monocional antibody only recognizing misfolded
SOD1. The immunoprecipitates were immuno-
blotted using an SOD1 antibody.
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[369 + 32 days]). A similar reduction in
age of onset and life span was also
observed for SOD1%37F/VDAC1~/~ mice
(Figure 4S), demonstrating that reduction

IP: DSE2 Ab

in VDAC1 activity does affect SOD1
mutant-dependent pathogenesis,
primarily by accelerating an early step in
disease onset or spread.

DISCUSSION

Bound Unbound

We have demonstrated here in floated
spinal cord mitochondria from mutant

wt GO3A G85R

wt

progression to an early disease point (Figure 6B) were acceler-
ated by 41 and 45 days, respectively, in SOD1%33/VDACT*~
mice (183 £ 22 and 230 + 28 days) compared with their
SOD1%%™® Jittermates (224 = 19 and 275 = 25 days). Moreover,
age at which end stage disease was reached was also reduced
by an average of 59 days (Figure 6C; SOD1%¥7?/VDAC1*~ mice
[310 + 42 days] compared with their SOD1%%"" jittermates

G83A G85R

SOD1 expressing animals that both mis-
folded dismutase active or inactive
SOD1 mutants bind directly and selec-
tively to the cytoplasmically exposed
face of VDAC1. Both dismutase active
and dismutase inactive, but not wild-
type, SOD1 binding to VDAC1 reduces channel conductance,
as demonstrated for K* and ClI™ ions by electrophysiological
recording and for ADP by inhibition of normal ADP accumulation
into mitochondria. Channel conductance was not affected in
liver mitochondria (where misfolded SOD1 does not accumu-
iate). Mutant association and conductance inhibition is repli-
cated in spinal cord mitochondria purified from mutant
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A Figure 6. Reduction of VDAC1 Levels Accel-
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expressing animals beginning presymptomatically and
increasing in severity during disease progression contempora-
neous with increased accumulation of misfolded mutant SOD1.
The clear implication from this is that only the misfolded portion
of SOD1 is able to affect the channel, thereby partially blocking
metabolite flux across the outer mitochondrial membrane.
Reduced conductance by VDACT will decrease ATP synthesis,
increase the ADP/ATP ratio in the cytosol and reduce membrane
potential (as outlined in Figure 7). Chronic mitochondrial
dysfunction can in tumn drive generation of damaging reactive
oxygen species that could drive further SOD1 misfolding through
chemical damage to it, as has been previously documented
selectively in spinal cords from mutant SOD1 animals (Liu
et al., 2004; Vande Velde et al., 2008). Thus, our evidence
demonstrates that reduced VDAC1 conductance, and corre-
spondingly reduced respiration rate (Lemasters and Hoimuha-
medov, 2006), are direct components of intraceliular damage
from mutant SOD1.
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following aberrant cosecretion with

chromogranin (Urushitani et al.,, 2006),

endoplasmic reticulum stress from
inhibition of the ERAD pathway by mutant SOD1 binding to
the integral membrane protein derlin (Nishitoch et al., 2008),
and excessive production by microglia of extracellular super-
oxide following mutant SOD1 binding to the small G protein
Rac1 and its subsequent stimulation of NAPDH oxidase (Har-
raz et al, 2008). Moreover, it was recently proposed that
misfoided SOD1 damage to mitochondria can induce morpho-
logical changes and cytochrome c release in the presence of
Bcl-2 (Pedrini et al., 2010). To those hypotheses, we propose
that the partial blockage of the VDAC1 channel by direct asso-
ciation with misfolded SOD1 would make motor neurons more
vulnerable to any of these additional stresses derived either
from mutant SOD1 acting within motor neurons, astrocytes,
microglia, and possibly additional neighboring nonneuronal
celis. Indeed, in the presence of reduced VDAC1 conductance
such pathways must play roles in pathogenesis, as we have
shown that mutant SOD1-mediated disease still ensues in
VDAC1 nuii mice.
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Figure 7. Effects of Misfolded SOD1
Binding to VDAC1

Model showing the effects of misfolded SOD1
binding to VDAC1. Misfolded SOD1 is proposed
to inhibit VDAC1 conductance and suppress
both uptake and release of mitochondrial metabo-
iites.

This reduction in metabolites flux would resuit in
reduced energy production and oxidative stress

M&“m S s leading to mitochondrial dysfunction.
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- . \\ 0 / association of misfolded mutant SOD1
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N produc " | dysfunction //// mitochondria from spinal cord, but not
s ~ e liver or brain. Although both tissues accu-
e e mulate high levels of mutant SOD1 (Liu

Surprisingly, in the absence of VDAC1, we have found a 60%
residual ADP conductance which seems most likely to be
contributed by compensatory VDACs or VDAC-like activity(ies).
Although no other VDAC isoform is known to be overexpressed
in VDAC1 null mice, VDAC2 has been shown to exist in two forms
that differ in conductance and selectivity (Xu et al., 1999). It is
plausible that in the absence of VDAC1, VDAC2 exists predom-
inantly in a high conductance state, as a compensatory mecha-
nism. This mechanism should now be tested by purifying VDAC2
from VDAC1 knockout mouse, and testing its channel properties
in lipid bilayers.

The compromise in mutant SOD1-mediated VDAC1 conduc-
tance that we have found offers a mechanistic explanation for
alteration in mitochondriai electron transfer chain complexes
and the capacity to consume oxygen and synthesize ATP previ-
ously reported in one mutant SOD1 expressing mouse line (Jung
et al., 2002; Kirkinezos et al., 2005; Mattiazzi et al., 2002). The
recent report that association of hSOD1%%% and hSOD1%%R
with motor neuron mitochondria reduces capacity of the electron
transfer chain to limit Ca®*-induced Wm depolarization (Nguyen
et al., 2009) is also fully compatible with altered adenine nucleo-
tide transport across the outer mitochondrial membrane as the
initiating deficit. So too is the report of reduced ability of mito-
chondria from SOD1%%* and SOD 1% mice to survive repetitive
Ca?* addition (Damiano et al., 2006).

VDAC1 has been proposed to be the mediator for ROS release
from the intermitochondrial spaces to the cytosol (Han et al.,
2003; Madesh and Hajnoczky, 2001). Moreover, hexokinase
(known to interact with VDAC1) has been shown in cell culture

et al., 2004; Vande Velde et al., 2008),

prior findings show that misfolded mutant

SOD1 is bound to the cytoplasmic face of
spinal cord mitochondria, while apparently imported into the
intermembrane space of mitochondria from cortex of the same
animals and not associated with liver mitochondria at all (Vande
Velde et al., 2008). Another factor likely underlying the differ-
ences in mutant SOD1 association with mitochondria, and there-
fore potentially factors underlying selective vulnerability, is that
mitochondria from different tissues (and which retain different
functional properties) have different protein compositions (Balley
et al., 2007; Mootha et al., 2003), including hexokinase levels.
This is accompanied by intrinsic differences in O, production,
lipid peroxidation, DNA oxidation and Ca®" accumulation
capacity {Sullivan et al., 2004).

Our finding that VDAC1 is one of the targets for misfolded
SOD1 within the nervous system raises substantial implications
for the mechanism underlying premature degeneration and
death of motor neurons. A variety of apoptotic stimuli are known
to trigger cell death by modulation of VDAC1 (Abu-Hamad et al.,
2008; Shoshan-Barmatz et al., 2006; Tsujimoto and Shimizu,
2002; Yagoda et al., 2007; Zaid et al., 2005; Zamzami and
Kroemer, 2003; Zheng et al, 2004), implicating VDAC1 as
a component of the apoptotic machinery. Although VDAC1
proteins have been reported to be dispensable for Ca®* and
oxidative stress-induced permeability transition pore (PTP)
opening (Baines et ai., 2007), siRNA-mediated reduction in
VDAC1 has supported VDAC1 as an indispensable protein for
endostatin-, cisplatin-, and selenite-induced oxidative stress
induced PTP opening and apoptosis (Tajeddine et ai., 2008;
Tomaselio et al.,, 2009; Yuan et al., 2008). Moreover, VDAC1
was recently shown to be involved in staurosporine- and
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ceramide-induced cell death downstream of BAD and BCL-X;
(Roy et al., 2009) and curcumin induced apoptosis by cooperat-
ing with Bax in the release of AIF from mitochondria (Scharstuhl
et al., 2008). Since VDACH is one of several targets for a choles-
terol-like small molecule (TRO19622) that can protect motor
neurons from SOD1 mutant-mediated death in culture and
modestly delay disease onset in SOD1 mutant mice (Bordet
et al., 2007), it now seems likely that its efficacy may be through
direct effect on VDACH.

Finally, it is well established that although motor neurons are
the final targets in ALS, mutant damage within astrocytes and
microglia contributes to driving rapid disease progression (Beers
et al., 2006; Boillée et al., 2006a, 2006b; Clement et al., 2003;
Yamanaka et al., 2008a, 2008b). In this context, we show here
that little accumulation of misfolded SOD1 is found by disease
onset, but it is preferentially within motor neurons. However,
during disease progression a dramatic increase of misfolded
SOD1 is observed accumulated in other cells as well and prob-
ably extracellularly. Interestingly, mitochondrial dysfunction(s)
within mutant astrocytes has been reported to cause acute
motor neuron death in astrocyte-motor neuron cocultures (Cas-
sina et al., 2008) and astrocytes expressing mutant SOD1 have
been reported to induce mitochondrial dysfunction within motor
neurons (Bilsiand et al., 2008). Coupling these findings with the
appearance of aberrant mitochondria within motor neurons in
multiple animal models of SOD1 mutant mediated ALS (Bendotti
et al., 2001; Jaarsma et al., 2001; Kong and Xu, 1998; Wong
et al., 1895) and the association of mutant SOD1 with mitochon-
dria within affected tissues, we propose that misfolded SOD1
association directly with VDAC1 represents a primary event of
damage within motor neurons.

EXPERIMENTAL PROCEDURES

Transgenic Rats and Mice

Transgenic rats expressing hSOD1*! (Chan et al., 1998), hSOD1%%** (Howland
et al., 2002), and hRSOD1"*%" (Nagai et al., 2001) were as originally described.
All animal procedures were consistent with the requirements of the Animal
Care and Use Committee of the University of California.

Mice heterozygous for the mutant human SOD1%"® transgene
(LoxSOD1%%™) (Boiliée et al., 2006b) were crossed with mice heterozygous
for a VDAC1 gene disruption (Weeber et ai., 2002). Mice were genotyped by
PCR for the presence of the mutant SOD1 transgene (Wiillamson and Cleve-
land, 1999) and using a four-primer muitiplex PCR for the presence of
VDAC1 (Weeber et al., 2002), as previously described.

For survival experiments, SOD1%*7® VDACT*~ mice were always
compared with their contemporaneously produced SOD1%%7F, VDACT**
littermates. Time of disease onset was retrospectively determined as the
time when mice reached peak body weight, early disease was defined at the
time when denervation-induced muscle atrophy had produced a 10% loss
of maximal weight, and end-stage was determined by paralysis so severe
that the animal could not right itseif within 20 s when placed on its side, an
endpoint frequently used for SOD1 mutant mice and one that was consistent
with the requirements of the Animal Care and Use Committee of the University
of California.

Subceiiular Fractionation

Mitochondria were purified as previously described (Vande Velde et al., 2008).
Tissues were homogenized on ice in 5 volumes of ice-cold homogenization
buffer (HB) composed of 210 mM mannitol, 70 mM sucrose, 1 mM EDTA-(Tris)
and 10 mM Tris-HC! (pH 7.2). Homogenates were centrifuged at 1,000 x g for
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10 min. Supernatants were recovered, and pellets were washed with ¥z voiume
HB and centrifuged at 1,000 x g. Supernatants were pooled and centrifuged
at 12,000 x g for 15 min to yield a crude mitochondrial pellet. The supernatant
was used to make cytosolic fractions by further centrifugation at 100,000 x g
for 1 hr. The mitochondria were gentiy resuspended in HB and then adjusted
to 1.204 g/mi Optiprep (iodixanoi) and loaded on the bottom of a polycarbonate
tube. Mitochondria were overlaid with an equal volume of 1.175 g/mi and
1.079 g/mi Optiprep and centrifuged at 50,000 x g for 4 hr (SW-55; Beckman).
Mitochondria were collected at the 1.079/1.175 g/ml interface and washed
once to remove the Optiprep. Optiprep stock solution was diluted in 250 mM
sucrose, 120 mM Tris-HCl (pH 7.4), 6 mM EDTA pius protease inhibitors.

For activity assays, spinal cords were homogenized in 5 volumes of ice-coid
homogenization buffer (HB) on ice. Homogenates were centrifuged at
1,000 x g for 5 min. Supernatants were recoversd and centrifuged again at
1,000 x g for 5 min. Supernatants were centrifuged at 12,000 x g for 10 min
to yield crude mitochondrial pellets. These mitochondria were gently resus-
pended in HB and then adjusted to 12% Optiprep (iodixanol) and centrifuged
at 17,000 x g for 10 min (SW-55; Beckman). The majority of the myelin (at the
top of the sample) was removed and the mitochondria were washed once with
HB (without EDTA) to remove the Optiprep.

Liver was homogenized in 5 volumes of ice-cold homogenization buffer (HB)
on ice. Homogenates were centrifuged at 1,000 x g for 5 min. Supernatants
were recovered, and centrifuged again at 1,000 x g for 5 min. Supernatant
was centrifuged at 12,000 x g for 10 min to yield a crude mitochondrial pellet.
These mitochondria were resuspended in HB (without EDTA) and centrifuged
again at 12,000 x g for 10 min. The pellet was resuspended in a small volume
of HB without EDTA.

VDAC Channel Recording and Analysis
Reconstitution of VDAC into a planar lipid bilayer (PLB), single channel current
recording, and data analysis were carried out as previously described (Gincel
et al., 2001). Briefly, PLB were prepared from soybean asolectin dissolved in
n-decane (50 mg/mi). Only PLB with a resistance greater than 100 GQ, were
used. Purified protein (about 1 ng) was added to the cis chamber. After one
or a few channeis were inserted into the PLB, the excess protein was removed
by perfusion of the cis chamber with 20 volumes of a solution to prevent further
incorporation. Currents were recorded under voitage-clamp using a Bilayer
Clamp BC-525B ampiifier (Wamner Instrument Corp.). The currents were
measured with respect to the trans side of the membrane (ground). The
currents were low-pass, filtered at 1 kHz and digitized online using a Digidata
1200 interface board and pCLAMP 6 software (Axon Instruments, Inc.). Sigma
Plot 6.0 scientific software (Jandel Scientific) was used for curve fitting. All
experiments were performed at room temperature.

Please see Supplemental Information for the following experimental proce-
dures: Protein Purification, iImmunoprecipitation, DSE2 antibodies, Immunos-
taining, Ca>* and ADP Accumulation by Mitochondria, and Immunoblotting.

SUPPLEMENTAL INFORMATION

Supplementai Information includes four figures and Supplemental Experi-
mental Procedures and can be found with this article online at doi:10.1016/j.
neuron.2010.07.018.
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Mutations of optineurin in amyotrophic lateral

sclerosis

Hirofumi Maruyamal Hiroyuki MorinoI Hidefumi Ito?+, Yuishin lzumi®,
, Hiroyuki Nodera®, Hidenori Suzuki®,

Yoshimi Kinoshita®, Masaki Kamada'

Hidemasa Kato*, Yasuhito Watanabe?®,
Osamu Komure?, Shinya Matsuura®,

Keitaro Kobatake Nobutoshr Morlmoto'o, Koji Abe'’, Naoki Suzukl” Masashi Aoki'', Akihiro Kawata'’,

Takeshi Hirai'*
Koichi Haglwara

Takeo Kato'”, Kazumasa Ogasawara'*,
, Ryuiji Kaji* & Hideshi Kawakami'

Amyotrophic lateral sclerosis (ALS) has its onset in middle age and
is a progressive disorder characterized by degeneration of motor
neurons of the primary motor cortex, brainstem and spinal cord'.
Most cases of ALS are sporadic, but about 10% are familial. Genes
known to cause classic familial ALS (FALS) are superoxide dismu-
tase 1 (SODI1)?, ANG encoding angiogenin®, TARDP encoding
transactive response (TAR) DNA-binding protein TDP-43 (ref.
4) and fused in sarcoma/translated in liposarcoma (FUS, also
known as TLS)™". However, these genetic defects occur in only
about 20-30% of cases of FALS, and most genes causing FALS
are unknown. Here we show that there are mutations in the gene
encoding optineurin (OPTN), earlier reported to be a causative gene
of primary open-angle glaucoma (POAG)’, in patients with ALS. We
found three types of mutation of OPTN: a homozygous deletion of
exon 5, a homozygous Q398X nonsense mutation and a heterozyg-
ous E478G missense mutation within its ubiquitin-binding domain.
Analysis of cell transfection showed that the nonsense and missense
mutations of OPTN abolished the inhibition of activation of nuclear
factor kappa B (NF-kB), and the E478G mutation revealed a cyto-
plasmic distribution different from that of the wild type or a POAG
mutation. A case with the E478G mutation showed OPTN-immu-
noreactive cytoplasmic inclusions. Furthermore, TDP-43- or SOD1-
positive inclusions of sporadic and SODI cases of ALS were also
noticeably immunolabelled by anti-OPTN antibodies. Our findings
strongly suggest that OPTN is involved in the pathogenesis of ALS.
They also indicate that NF-kB inhibitors could be used to treat ALS
and that transgenic mice bearing various mutations of OPTN will be
relevant in developing new drugs for this disorder.

We analysed six Japanese individuals from consanguineous mar-
riages who had ALS; two of them were siblings, the others were from
independent families. We used homozygosity mapping, which has
been shown to identify a locus of a disease-causing gene from as few
as three individuals®. We performed a genome-wide scan of single
nucleotide polymorphisms (SNPs) by using the GeneChip Human
Mapping 500K Array Set (Affymetrix), and selected for the run of
homozygous SNPs (RHSs) more than 3 centimorgans in length.
Under this condition, the RHSs are able to retrieve more than 98%

Asao Hirano'®

, Toru Takumi®, Hirofumi Kusaka?,

of the entire length of the autozygous segments created as a result
of a first-cousin or second-cousin marriage (Supplementary
Information)®. We extracted RHSs of six individuals (Supplementary
Fig. 1a). A region (hgl8: 12,644,480~15,110,539) in chromosome 10,
which was an overlap among four subjects, was chosen as the primary
candidate region (Supplementary Fig. 1b). Assuming that subjects ii,
iii, v and vi had the same disease gene, the chance that the overlap
had the disease gene was Piyiisvev = 0.935 (Supplementary
Information). We listed up to 17 candidate genes in the region and
sequenced their exons (Supplementary Fig. 1¢). We detected a deletion
of exon 5 in the OPTN (also known as FIP-2 (ref. 9)) gene in two
siblings (Fig. la, family 1, subjects 1 and 2). PCR with a forward primer
of exon 4 and a reverse primer of intron 5 revealed a 2.5-kilobase (kb)
band in the control, V-3 and [V-1, and a 0.7-kb band in IV-1, subject 1
and subject 2 (Fig. 1b). Direct sequence analysis of the short band
showed the joining of the 5" part of AluJb in intron 4 and the 3’ part
of AluSx in intron 5 with 12-base-pair (bp) microhomology (Fig. 1¢).
Thus, the deletion resulted from Alu-mediated recombination. We
also found a homozygous nonsense ¢.1502C>T mutation (Q398X,
exon 12) in the gene in one individual with ALS (Fig. 1d, e, family 2
subject 3). For the other three subjects, we found neither mutations nor
copy number changes in the OPTN gene, although we did not com-
pletely exclude the possibility of mutations in introns or intergenic
regions in the gene. We extended our analysis of OPTN to ten addi-
tional individuals from consanguineous marriages who had ALS, 76
individuals with familial ALS and 597 individuals with sporadic ALS
(SALS). We found the Q398X mutation in a sporadic individual (sub-
ject 4, family 3; Fig. 1d). Subjects 3 and 4, who were not related accord-
ing to their family history, shared their haplotype for a 0.9-megabase
(Mb) region (hgi8: chrl0: 12,973,261-13,879,735) containing the
OPTN gene (Supplementary Table 1). We investigated a total of 170
copies of chromosome 10 from 85 Japanese subjects genotyped for the
HapMap3 project, and found that the incidental length of haplotype
sharing around OPTN gene was at most 320 kb. Given that a haplotype
sharing of 0.9 Mb rarely occurs by chance, the mutation is likely to have
been derived from a single ancestor (Supplementary Fig. 1d). Subjects
1 and 2 shared their homozygous haplotype for an 8.3-Mb region
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Figure 1| Exon 5 deletion, no and mutations of the OPTN

gene. a, Family 1. The filled circle or square indicate the affected individuals;
the arrows indicate the probands. b, Agarose gel clectrophoretogram.
Subject 1 (V-1) and subject 2 (V-2) showed lack of exon 5 PCR product and
shortened product of exon 4 to intron 5. ¢, Chromatogram with OPTN
deletion of exon 5 and schematic structure of deleted gene. d, Families 2 and

(hg!8: chrl0:6,815,934—14,842,351), which contained the OPTN gene
and was different from that in subjects 3 and 4 (Supplementary Table
1).

In the screening of ALS families, we identified a heterozygous
missense mutation (ct743A>G, E478G, exonl4, Fig. lg) of OPTN
in four individuals with ALS in two families with ALS. Subjects 5 and
6 were sisters, and the pedigree suggests that the mutation had an
autosomal dominant trait with incomplete penetrance (Fig. 1f,
family 4). Subjects 7 and 8 (family 5) were brothers. Although these
families are not related according to their family history, subjects 5-8
shared their haplotype for 2.3Mb (hgl8: chr10: 11,460,985~
13,703,017, Supplementary Table 3), again suggesting that the muta-
tion was derived from a single ancestor. Indeed, the Q398X nonsense
and E478G missense mutations were not observed in 781 healthy
Japanese volunteers as well as in over 6,800 (including 1,728
Japanese) individuals in the glaucoma studies, where the entire cod-
ing region of the gene was investigated (Supplementary Table 2).
Collectively, the mutation was absent over a total of 5,000 Japanese
chromosomes. The deletion mutation was also absent in 200
Japanese, and not reported in the over 6,800 glaucoma individuals.
The co-segregation of three different mutations of OPTN with the
ALS phenotype strongly suggests that some mutations of OPTN
cause ALS.

The eight individuals with mutations of OPTN showed onset from
30 to 60 years of age. Most of them showed a relatively slow progres-
sion and long duration before respiratory failure, although the clin-
ical phenotypes were not homogeneous (see Supplementary
Information).

2
Nature nature08971.3d 9/4/10 14:25:59

CAGGAGTTCA j:34

Aludb

e Q398X
Subject 3 {IV-1}

Parent (lli-1)

Sibling (IV-2)

A GAA  CTT G/TAA GAA  CTT CAA GAA
L ax E L Q E

g E478G

Subject 5 (Il-2) Subject € (1I-3) Normal

i - Al

I / i /\/\;’y\i |

| : VWY
GCT GpJa AGA  GOTHAJA AGA GCT GAA AGA
A EG R A E/G R A E R

3. Dots indicate heterozygous carriers. e, Chromatograms from index
subjects with OPTN mutation of ¢.1502 C>>T. Homozygous mutation is in
red, and the mutation is indicated by using the single-letter amino-acid code.
f, Family 4. *DNA sample could not be obtained. Numerals show the age at
death. g, Chromatograms from index subjects with the OPTN mutation of
¢.1743A>G. The heterozygous mutation is marked by the square.

The Q398X mutation causes a premature stop during translation,
truncating the 577 amino-acid OPTN protein to one of 397 amino
acids inlength. This truncation results in a deletion of the coiled coil 2
domain', which is necessary for binding to ubiquitin’', huntingtin'’,
myosin VI" and the ubiquitinated receptor-interacting protein'*. In
the gene with the deletion of exon 5, if there was a transcript, the
transcript splicing from exon 4 to exon 6 would cause a frame shift
and make a stop codon (TGA in the ninth to eleventh codons in exon
6), which would be expected to translate a peptide 58 amino acids in
length. The missense mutation (E478G) was located between coiled
coil 2 domain and the leucine zipper domain. This glutamic acid is
highly conserved among OPTN proteins of a wide range of species
(Supplementary Fig. 2a), and 15 situated within the DFxxER motif, an
ubiquitin-binding domain shared among OPTN, NF-xB essential
molecule (NEMO), and A20 binding and inhibitor of NF-kB pro-
teins (ABIN) (Supplementary Fig. 2b). The mutations in the DFxxER
motif in ABIN reduce the binding to ubiquitin, which render them
unable to inhibit NF-kB activation''. We investigated the ability of
various mutations of OPTN to inhibit NF-kB-mediated transcrip-
tional activation by performing a luciferase assay using NSC-34 cells
{a mouse neuroblastoma and spinal-cord hybrid cell line) transfected
with wild-type or mutant OPTN. E50K OPTN, which causes POAG’,
downregulated the NF-xB activity, as did the wild type. On the other
hand, both Q398X and E478G had no ability to inhibit NF-«B activ-
ity (Tukey-Kramer, P< 0.05). These tendencies were retained after
stimulation with tumour-necrosis factor (TNF)-a (Fig. 2A). We also
examined the subcellular localization of overexpressed Flag-tagged
wild-type OPTN (wild type) and its mutants in cells (Fig. 2B).
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Figure 2 | Influence of OPTN mutations. A, Luciferase assay to assess the
ability of various OPTNs to inhibit activation of NF-kB. The wild type and
ESOK have a similar NF-kB activation-inhibiting effect, whereas mock,
Q398X and E478G types lack this effect. Error bars, standard deviations of
triplicate assays. B, Localization of OPTN. Flag is the white signals in a—cand
red signals in g—i. GM130 is the white signals in d—fand green signals in g—i.
The wild type shows many fluorescent granules co-localized with the Golgi
apparatus. E478G OPTN shows a reduced number of granules, and rarely co-
localized with the Golgi apparatus. ES0K OPTN granules have become large
and co-localized with the Golgi apparatus. Scale bar, 10 pm.

Immunofluorescence staining was performed with their antibodies
against Flag and the Golgi matrix marker GM130. Confocal images
showed close apposition of granular signals of wild-type OPTN or
ESOK with GM130 (see g and i in Fig. 2B)"*'*. ESOK often shapes large
granular structures near the Golgi apparatus. E478G rarely showed
granular signals (see b in Fig. 2B); however, when closely observed,
some of the signals were still closely localized to GM130 (see h in
Fig. 2B). Western blotting using a lysate of transformed lymphoblasts
showed that the 74-kDa band, corresponding to OPTN, was absent in
subjects 3 and 4, but was present in the non-diseased mother and
brother of subject 3 (Supplementary Fig. 3a). Quantitative PCR with
reverse transcription revealed that the products were diminished to
58.0% in the heterozygote (I11-2) and to 13.8% in the homozygote
(subject 4) compared with the control levels (Supplementary Fig. 3b).
In addition, cycloheximide recovered the decrease in the OPTN mcs-
senger RNA (mRNA) with the mutation (Supplementary Fig. 3¢).
Thus mRNA with this mutation, which bears a premature termina-
tion, might be degraded through nonsense-mediated mRNA decay in
lymphoblasts.

The spinal cord from subject 5 with the E478G mutation revealed
loss of myelin from the corticospinal tract and of the anterior horn
cells (AHCs, Fig. 3a and Supplementary Fig. 4a, b). OPTN immuno-
histochemistry demonstrated increased staining intensity of the
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Figure 3 | Identification of OPTN in distinctive intracytoplasmic inclusions
of subjects with ALS. a—e, Neuropathology of the lumbar spinal cord from
subject 5. Kliiver-Barrera (a) show loss of myelin from the corticospinal tract
(arrow) and loss of motor neurons from the anterior horn (arrowhead). The
cytoplasm of the remaining motor neurons contains an amorphous
eosinophilic region (b, arrow). H&E, haematoxylin and eosin. The same
neuron was re-stained with the anti-OPTN antibody (¢, arrow). The
cosinophilic retention occasionally appears to form a hyaline inclusion

(d, arrow), which is intenscly immunolabelled with the anti-OPTN antibody
(e, arrow). f=k, Round hyaline inclusions of subjects with SALS (f, i) are
immunolabelled with anti-OPTN-C and anti-OPTN-I antibodies (g and

j, respectively). The sections were re-stained with anti-ubiquitin (Ub)
antibodies (h, k). i—0, Skein-like inclusions of patients with SALS are reactive
with the anti-OPTN-I and anti-OPTN-C antibodies (I, n). Re-staining of

I with the anti-ubiquitin antibody (m) and n with anti-TDP-43 antibody
(0). p—r, Lewy-body-like hyaline inclusion of a patient with FALS, stained
with haematoxylin and eosin (p), anti-OPTN-C antibody (q) and SOD1
antibody (r). Scale bars, 200 jum (a), 20 um (b—p).

cytoplasm of the remaining AHCs and the neurites in the anterior
horn (Supplementary Fig. 4c¢). Higher magnification of the motor
neurons revealed intracytoplasmic eosinophilic inclusions (Fig. 3b,
d). Intriguingly, these inclusions were distinctly immunopositive for
OPTN (Fig. 3¢, e). On the other hand, the cytoplasm of AHCs from
control individuals was faintly labelled with anti-OPTN antibodies
(Supplementary Fig. 5a, ¢}, similar to the spinal-cord AHCs of mice
(Supplementary Fig. 6b) and in contrast to the highly labelled sensory
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neurons in the dorsal root ganglia of mice (Supplementary Fig. 6d).
In patients with sporadic ALS, the staining intensity for OPTN
apparently increased not only in the cytoplasm of the remaining
AHCs but also in their neurites (Supplementary Fig. 5b, d). In addi-
tion, distinctive intracytoplasmic inclusions were also noticeably
OPTN immunolabelled in cases of sporadic and familial ALS; eosi-
nophilic round hyaline inclusions from patients with SALS were
immunopositive for OPTN (Fig. 3f, g, i, j). Re-staining of the same
sections for ubiquitin, a known constituent of many neurodegen-
erative inclusions, revealed that these inclusions were also positive
and faithfully matched the distribution of OPTN immunoreactivity
(Fig. 3h, k). The anti-OPTN antibodies also stained skein-like
inclusions (Fig. 3, n), which were again mirrored with the anti-
ubiquitin antibodies (Fig. 3m) and with the anti-TDP-43 antibod-
les (Fig. 30). The distinct OPTN immunoreactivity of ubigquitin-
and TDP-43-positive intracytoplasmic inclusions was confirmed
on serial sections from patients with SALS (Supplementary Fig.
7). Moreover, SODI-immunopositive Lewy-body-like hyaline
inclusions from cases with SODI FALS were also immuneopaositive
for OPTN (Fig. 3p-r). We found that OPTN antibody labelled both
SODI1- and TDP-43-positive inclusions. As the staining of SODI
and TDP-43 is generally mutually exclusive, OPTN staining
appears to be a more general marker for inclusions in various types
ot ALS; therefore, the OPTN molecule might also be involved in a
broader pathogenesis of ALS.

The mutations of the OPTN gene cause both recessive and dom-
inant traits, and the mechanism causing the disease may be different
between the two traits. The Q398X nonsense mutation and probably
the exon 5 deletion mutation cause a decrease in OPTN expression
resuiting from nonsense-mediated mRNA decay of the transcript
carrying the nonsense OPTN mutations. Therefore, the mutated
OPTN protein by itself is unlikely to distarb cell function or to be
included in the inclusion body in the motor neuron cells. The mech-
anism of recessive mutations causing ALS is expected to be simply
loss of function, and the heterozygote for the Q398X mutation does
not develop the ALS phenotype. On the other hand, the E478G mis-
sense mutation increased the immunoreactivity for OPTN in the cell
body and the neurites. The increased amount and different distri-
bution of the mutated protein would disturb neuronal functions, and
may accelerate the inclusion body formation as well as the increase
and the difterent distribution of OPTN immunoreactivity in spora-
dic ALS. Thus the heterozygote for the E478G mutation will develop
the disease.

The different impact on NF-kB signalling and the different intra-
cellular localization of ALS- and POAG-linked mutated protein may
explain the phenotypic divergence between the two diseases. Subject
3 with homozygotic Q398X also showed POAG, whereas subject 4
with the same mutation, and subjects 1 and 2 with the exon 5 dele-
tion, did not show it. The prevalence of POAG in the population
older than 40 years is 3.9% in Japan'”.Considering this information,
the ALS and glaucoma in subject 3 may accidentally coexist.

OPTN competes with NF-xB essential molecule for binding to the
ubiquitinated receptor-interacting protein and negatively regulates
TNF-a-induced activation of NF-kB", which mediates an upregula-
tion of OPTN, creating a negative feedback loop'®. ALS-related
OPTN mutations lacked the inhibitery effect towards NEMO, and
thus exaggerated NF-xB activation. In sporadic ALS, a previous
report shawed that NF-kB, which is classified as a ‘cell death inhib-
itor’, is upregulated in motor neurons'®. The upregulated NF-kB may
induce the overexpression of OPTN, and may also cause neuronal cell
death®”. Thus NF-kB is a major candidate target for treating this
disease. Additionally OPTN plays an important role in the mainten-
ance of the Golgi complex, in membrane trafficking, in exocytosis,
through its interaction with myosin VI and Rab$ (ref. 13), and in
post-Golgi trafficking to lysosomes dependent on the Rab8/QPTN/
het complex® (Supplementary Fig. 8). Interestingly, FUS/TLS has
been reported to interact with myosin V1% as well as with myosin
4
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V®. Impairment of intraceltular trafficking of the complex including
OPTN and/or FUS/TLS may cause inclusions in this neurodegenera-
tive disorder.

METHODS SUMMARY

Genotyping and extraction of candidate regions. The genotype of the
GeneChip Human Mapping 500K Array Set (Affymetrix) was performed by
ARQS Applied Biotechnology. Computer analyses of the SNPs were performed
by a homozygoesity mapping algorithm accommodated to the whole-genome
SNP scan data (Supplementary Information). To investigate the existence ol a
large insertion or deletion in this region, we analysed the copy number using
Affymetrix Genotyping Cousole version 4.0 for the Affymetrix Mapping 500K
data.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature,
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METHODS

Ethical considerations. The study was approved by the institutional review
boards of the participating institutions. All examinations were performed after
having obtained informed consent from all subjects or their families.

Subjects. Neurologists performed the clinical diagnosis. The mean age at onset
of subjects with ALS was 59.9 years (range 10-85 years, including 14 cases con-
firmed by autapsy). The possibility of mutation of SODI1 was excluded.
Screening for the mutation of OPTN. A list of PCR primer pairs used (o amplify
individual OPTN in the regulatory regions (~ 1,000 bases upstream from tran-
scription start sites), non-coding exons, coding exons and the surrounding
sequences (50-100 bases) of the exons or intron 4 and 5 is provided in
Supplementary Table 4. Deletion of Exon 5 was checked by using exon 4 forward
and intron 5 reverse primer pairs. Direct sequence of the joining part was pel';
formed by using intron 4-2 forward primer or intron 5-6 reverse primer.
Screening for the ¢.1502C>T mutation was performed by analysing restric-
tion-fragment length polymorphisin or direct sequencing on 781 healthy control
subjects (mean age 62.3 years; range 30-100 years). Exon 12 was amplified and
then restricted with Msel, and thereafier the products were electrophoresed in
2% agarose gel. The wild type was digested into 204-, 106-, 14- and 12-bp
fragiments, and the mutant type (204bp) into 169 + 35-bp fragments. The
¢.1743A>G mutation was determined by direct sequencing. In the Atfymetrix
Mapping 500K, there were L1 SNPs in the OPTN gene. However, there are no
SNP markers between exon 2 and exon 12 of OPTN, and additional quantitative
PCR amalysis of all exons of the OPTN gene was performed.

Luciferase assay. We investigated the activity of NF-kB by using the luciferase
assay. Four types of complementary DNA (cDNA) from OPTN were inserted
into separate pDNR (Clontech). These were wild (IMAGE clone 3831267),
Q398X (recessive), E478¢ (dominant) and ESOK (which causes glaucoma) types.
PDNR vector was used as mock. NSC-34 cells were co-transfected with NF-xB
reporter ((Igk); conaluc plasmid) (a gift from S. Yamaoka) and pDNR-OPTN by
using Lipofectamine 2000 (Invitrogen). Luciferase activity was measured 3h
after either PBS or TNF-3 (10ngml™, R&D) stimulation by using a Dual-
Luciferase Reporter Assay System (Promega). Consistent results were obtained
by conducting three independent experiments.

Localization of OPTN. We investigated the localization of OPTN by using a
3% Flag tag. This was inserted into pcDNA3 (Invitrogen), and three types of
OPTN ¢DNA (wild, E478G, ES0K) were inserted after the 3X Flag tag. These
plasmids were used to transfect NSC-34 cells with the aid of Lipofectamine 2000
(Invitrogen). GM130 (BD Transduction Laboratories) was used as a marker of
the Golgi apparatus.

Immunofluorescence microscopy. Cells were grown on glass-bottomed glass
dishes (Matsunami) coated with poly-L-lysine and laminin (Sigma Aldrich} and
transfected by Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
protocol; 24—48 h after transfection, the cells were fixed, blocked with normal
serum and incubated with primary antibody at 4 “C overnight. Confocal images
were acquired with an Olympus FV300 by usinga X 100 oil immersion lens with
a sequential-acquisition setting at a resolution of 512 pixels X 512 pixels with
threefold magnification. Each cellular picture was generated by combining mul-
tiple optical images (1015 slices, z-spacing of 0.2 um) spanning 2-3 um along,
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the z-axis. Subcellular localization of Flag-tagged optineurin was verified by at
least three independent experiments. More than 100 cells were photographed for
cach optineurin construct. The following antibodies were used: mouse mono-
clonal anti-GM 130 (BD Transduction Laboratories, 1:1,000) and affinity-puri-
fied rabbit polyclonal anti-Flay (Sigma, 1:1,000).

Western blotting. We investigated the expression of OPTN by western blotting.
Celllysates were prepared from Epstein-Barr-virus inunortalized B tymphocytes
trom subject 3, her brother and mother, and subject 4 by using standard proto-
cols. Polyclonal antibodies recognizing the carboxy (C)-terminal part of OPTN
(Cayman Chemical) and anti-rabbit IgG-HRP antibody (R&D Systems) were
used. For the internal control, we used glyceraldehyde-3-phosphate dehydro-
genase polyclonal antibody (IMGENEX).

Quantitative PCR with reverse transcription. Quantitative PCR with reverse
transcription was performed by using THUNDERBIRD SYBR gPCR Mix
(TOYOBO) and ABI 7900HT Fast Real Time PCR system (Applied
Biosystems). Epstein-Barr-virus immortalized B lymphocytes were treated with
cycloheximide (Sigma, 100 ug ml™ ") for 2 h before RNA extraction.
Immunohistochemistry of mouse nerveus tissue. Several antibodies were
tested for their use in detecting mouse OPTN in ussue sections (data not shown).
Amang them, rabbit polyclonal antibodies raised against various peptiees of
human/mouse QOPTN origin gave consistent and reasunable results. One such
antibody was OPTN-C raised against the C-terminal part of OPTN, which is
identical  between human and mouse (amino acids 575-391; Cayman
Chemical). Innmunohistochemistry was performed on adult DBA/2 mause.
Mice weye transcardially fixed with 4% paraformaldehyde in PBS, post-fixed in
the same fixative overnight, and then dehydrated in 30% sucrose in PBS over-
night. Frozen sections were obtained by using a cryostal and mounted onto
3-triethoxysilylpropylamine (TESPA)-coated glass slides. After air-drying, the
slides were washed in PBS and blocked for 2h at room temperature in 5%
BSA/0.3% Triton X-100 containing PBS. The sections were then incubated over-
night at 4 °C with primary antibodies against OPTN diluted in 1% BSA/1%
normal goat serum/0.3% Triton X-100/PBS. Alter several washes in PRS,
Alexa-594-conjugated secondary antibody (Tnvitrogen) in PBS was applied.
Pictures were taken with a camera attached to a fluorescence microscope
(BIOREVQ BZ-9000; Keyence).

Histochemistry. Post-mortem material from one of the OPTN mutant cases
(subject 5) was available. Sections (6 pm) of formaliv-fixed, paraffin-embedded
spinal cord were examined with Klitver-Barrera and haematoxylin and eosin
staining. Some sections stained with haematoxylin and eosin were photo-
graphed, decolourized and immunostained with OPTN-C {mouse monoclonal,
1:50,000) or OPTN-1 (rabbit polvclonal, Cayman Chemical, 1:400). In addition,
lumbar spinal cord tissue was obtained from clinically and neuropathologically
proven cases of SALS (seven cases) and familial ALS with the A4V SODT muta-
tion (FALS, three cases). Six age-matched normal individuals served as controls.
After confirmation of complete removal of the OPTN antibody, we immunos-
tained the same sections with the anti-ubiquitin antibodies (mouse monoclanal,
Santa Cruz Biotechnology, 1:400: rabbit polyclonal, Sigma, 1:600). anti-TDP-43
antibodies {mouse monoctonal, Abnova, 1:1,000; rabbit polyclonal, Proteintech
Group, 1:4,000) or anti-SOD1 antibodies (mouse monoclonal, Lab Vision
Corporation, 1:50; rabbit polyclonal, Stressgen Biotechnologies, 1:2,000).
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Amyotrophic lateral sclerosis is a progressive and fatal
disease caused by selective death of motor neurons,
and a number of these patients carry mutations in the
superoxide dismutase 1 (SOD1) gene involved in ameli-
orating oxidative stress. Recent studies indicate that
oxidative stress and disruption of mitochondrial homeo-
stasis is a common mechanism for motor neuron
degeneration in amyotrophic lateral sclerosis and the
loss of midbrain dopamine neurons in Parkinson’s dis-
ease. Therefore, the present study investigated the
presence and alterations of familial Parkinson’s dis-
ease-related proteins, PINK1 and DJ-1, in spinal motor
neurons of G93ASOD1 transgenic mouse model of
amyotrophic lateral sclerosis. Following onset of dis-
ease, PINK1 and DJ-1 protein expression increased in
the spinal motor neurons. The activated form of p53
also increased and translocated to the nuclei of spinal
motor neurons, followed by increased expression of
p53-activated gene 608 (PAG608). This is the first
report demonstrating that increased expression of
PAGB08 correlates with activation of phosphorylated
p53 in spinal motor neurons of an amyotrophic lateral
sclerosis model. These results provide further evidence
of the profound correlations between spinal motor neu-
rons of amyotrophic lateral sclerosis and parkinsonism-
related proteins. © 2010 Wiley-Liss, Inc.

Key words: amyotrophic lateral sclerosis; Parkinson’s
disease; PINK1; DJ-1; PAG608

Amvyowrophic lateral sclerosis (ALS), a progressive
and fatal disease caused by the selective death of motor
neurons, is due to a genetically inherited form of the
disease known as familial ALS (FALS) I approximately
5-10% of ALS patients. Previous reports have shown
that approximately 20% of FALS patients carry mutations
m the superoxide dismutase 1 (SOID1) gene (Aokt et al.,
1993; Rosen et al,, 1993). Transgenic mice expressing
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mutant forms of the SODI! gene have demonstrated
how mutatons in the SOD1 gene cause motor neuron
death. The process is considered to be a toxic gain-of-
function, rather than loss of normal SODI1 function
(Bowling et al,, 1995). Although the primary pathoge-
netic mechanisms remain poorly understood, the appear-
ance of vacuoles due to degenerated mitochondria, as
well as selective loss of spinal motor neurons, is a hall-
mark of mutant SOD1 mansgenic (Tg) mice (Wong
et ab, 1995; Bendott et al., 2001; Sasaki et al., 2009).
Moreover, our previous studies showed oxidative dam-
age to cytosolic protein (Abe et al, 1993) and mito-
chondrial DNA in spinal motor neurons of ALS model
mice at ecarly disease stages (Warita et al, 2001;
Murakami et al., 2007). Therefore, mitochondrial oxida-
nve stress has been suggested as an ALS pathogenic
mechanism,

In contrast, Parkinson’s disease (PID) is an age-
related, neurodegeneranive disease. Although the causes
for sporadic cases remain unknown, mitochondrial or
oxidative toxins, such as 1-methyl- 4- phenylpyridinium,
6-hydroxydopamine (6-OHDA), and rotenone repro-
duce disease features in animal and cell culture models
(Bove et al.,, 2005). Increased oxidative stress has been
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