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- Naito AT, Okada S, Minamino T, Iwanaga
K, Liu ML, Sumida T, Nomura S, Sahara N,
Mizoroki T, Takashima A, Akazawa H, Nagai
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Excessive cardiac insulin signaling

exacerbates systolic dysfunction induced
by pressure overload in rodents

Ippei Shimizu,' Tohru Minamino,'2 Haruhiro Toko,' Sho Okada,' Hiroyuki Ikeda,' Noritaka Yasuda,'
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Although many animal studies indicate insulin has cardioprotective effects, clinical studies suggest a link
between insulin resistance (hyperinsulinemia) and heart failure (HF). Here we have demonstrated that exces-
sive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Chronic
pressure overload induced hepatic insulin resistance and plasma insulin level elevation. In contrast, cardiac
insulin signaling was upregulated by chronic pressure overload because of mechanical stretch-induced activa-
tion of cardiomyocyte insulin receptors and upregulation of insulin receptor and Irs1 expression. Chronic pres-
sure overload increased the mismatch between cardiomyocyte size and vascularity, thereby inducing myocardial
hypoxia and cardiomyocyte death. Inhibition of hyperinsulinemia substantially improved pressure overload-
induced cardiac dysfunction, improving myocardial hypoxia and decreasing cardiomyocyte death. Likewise, the
cardiomyocyte-specific reduction of insulin receptor expression prevented cardiac ischemia and hypertrophy
and attenuated systolic dysfunction due to pressure overload. Conversely, treatment of type 1 diabetic mice with
insulin improved hyperglycemia during pressure overload, but increased myocardial ischemia and cardiomyo-
cyte death, thereby inducing HF. Promoting angiogenesis restored the cardiac dysfunction induced by insulin
treatment. We therefore suggest that the use of insulin to control hyperglycemia could be harmful in the setting

of pressure overload and that modulation of insulin signaling is crucial for the treatment of HF.

Introduction

Cardiac hypertrophy is defined as an increment of ventricular mass
resulting from increased cardiomyocyte size and is the adaptive
response of the heart to an increased hemodynamic load due to
either physiological factors such as exercise or pathological states
such as hypertension and valvular diseases (1). Exercise-induced
cardiac hypertrophy does not progress to heart failure (HF) (2, 3)
and therefore is thought to be “physiological hypertrophy.” On the
other hand, pressure overload initially induces “adaptive hypertro-
phy,” but causes “maladaptive (pathological) hypertrophy” in the
chronic phase that results in HF (1).

Several signaling pathways have been implicated in the develop-
ment of physiological or pathological cardiac hypertrophy. The
insulin/PI3K/Akt axis plays a crucial role in the development of
physiological hypertrophy as well as in normal cardiac growth,
whereas activation of G-protein-coupled receptors in collabora-
tion with PKC and calcineurin/nuclear factor of activated T cells
(NFAT) pathways is involved in the development of pathological
hypertrophy (4). Although homozygous cardiomyocyte-specific
insulin receptor knockout (CIRKO) mice have smaller hearts than
WT controls (S), both WT and CIRKO mice have shown a compa-
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rable increase of cardiac mass in response to pathological hyper-
trophic stimuli such as pressure overload (6). Overexpression of
constitutively active p110a, a catalytic component of PI3K, in the
heart has led to enhanced cardiac growth with preserved systolic
function (7). Conversely, myocardial expression of dominant-nega-
tive p110a has inhibited the physiological hypertrophic response
during postnatal growth and following exercise in mice, whereas
the response to pressure overload has not been altered (8). Like-
wise, homozygous Akt1-deficient mice have shown defective exer-
cise-induced cardiac hypertrophy (9), further supporting a crucial
role of the insulin/PI3K/Akt pathway in physiological hypertrophy
and growth of the heart.

Besides their role in physiological hypertrophy and normal car-
diac growth, insulin signals may induce pathological hypertro-
phic responses. It has been shown that chronic hyperinsulinemia
stimulates angiotensin II signaling that is involved in pathological
hypertrophy (10). Mild to moderate activation of Akt was shown to
induce cardiac hypertrophy with preservation of function (11, 12),
whereas high levels of activated Akt expression in the heart led to
pathological hypertrophy (13). Short-term Akt activation induced
physiological cardiac hypertrophy, but constitutive activation of
this pathway led to cardiac dysfunction (14). In this state, coordi-
nated tissue growth and angiogenesis in the heart were disrupted,
leading to myocardial hypoxia (14). Likewise, it has been demon-
strated that chronic pressure overload increases the mismatch
between cardiomyocyte size and vascularity and therefore induces
Volume 120
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Upregulation of cardiac insulin signals by pressure overload. (A) Mice were subjected to TAC or sham operation (sham), and heart samples
were obtained 2 weeks later. Mice were starved for 6 hours, and insulin or PBS was injected before sacrifice. plrs1 and pAkt levels in the heart
were examined by Western blot analysis. The graphs indicate relative expression levels of plrs1 and pAkt. n = 3. TAC2w, 2 weeks after TAC.
(B) Mice were subjected to TAC or sham operation and were sacrificed 2 weeks later. Components of the insulin signaling pathway in the heart
were examined by Western blot analysis. The graphs indicate relative expression levels of these signaling molecules. n = 3. Data are shown as

mean + SEM. *P < 0.05; **P < 0.01.

myocardial hypoxia and cardiomyocyte death, leading to cardiac
dysfunction (15). Moreover, intensive glycemic control of diabetic
patients by insulin treatment has been reported to increase car-
diovascular events (16). In the present study, we examined the role
of insulin signaling in the development of cardiac dysfunction
induced by pressure overload.

Results

Cardiac insulin signaling is activated by pressure overload. To investigate
the role of the insulin signal pathway in failing hearts, we created
severe transverse aortic constriction (TAC) in mice at 11 weeks of
age. In this model, cardiac hypertrophy gradually progressed and
reached a peak on day 7 after TAC (Supplemental Figure 1; sup-
plemental material available online with this article; doi:10.1172/
JCI40096DS1). Systolic function was preserved until day 7 but was
significantly decreased on day 14 along with left ventricular dilata-
tion (Supplemental Figure 1). Seven and fourteen days after TAC, we
treated the mice with insulin (11U/kg) before sacrifice and examined
the downstream signaling pathway of the insulin receptor (Insr)
in the heart. Insulin-induced phosphorylation of insulin receptor
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substrate-1 (pIrs1) and Akt (pAkt) was markedly upregulated in the
hearts of the TAC group compared with the sham-operated group
(Figure 1A and Supplemental Figure 2A). We also found that the
insulin signal pathway was constitutively activated in the TAC hearts
under fasting conditions (Figure 1B and Supplemental Figure 2B).
Expression of Insr and Irs1 protein as well as pIrs1 and pAkt protein
was significantly increased in the TAC heart. These results suggest
that chronic pressure overload upregulates cardiac insulin signal-
ing. Enhanced insulin signaling was also observed in the hearts of
spontaneously hypertensive rats (Supplemental Figure 3A).
Reduction of plasma insulin ameliorates systolic dysfunction induced by
pressure overload. To determine whether upregulation of cardiac
insulin signals has a pathological role in HF, we treated the mice
with streptozotocin (STZ) (50 mg/kg i.p. for 5 days) at 4 weeks
before TAC. Injection of STZ markedly decreased plasma insulin
to below detectable levels, while the plasma glucose level gradu-
ally increased (Supplemental Figure 4). Pressure overload led to
prominent cardiac hypertrophy along with upregulation of car-
diac insulin signaling (Figure 1B and Figure 2, A and B). Systolic
function was impaired and the left ventricular systolic dimension
Number § 1507
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(LVDs) was increased at 14 days after TAC (Figure 2, A and B).
These alterations were significantly ameliorated in the mice treated
with STZ (Figure 1B and Figure 2, A and B). Similar results were
obtained at 6 weeks after TAC (Supplemental Figure 2C). We next
examined the effect of insulin on cardiac function in this setting.
STZ-treated mice were subjected to daily injection of insulin (0.1
IU/g/d from 9 weeks to 13 weeks of age) and to TAC at 11 weeks
of age. Insulin treatment significantly improved hyperglycemia
(Supplemental Figure 4). However, this treatment significantly
enhanced cardiac hypertrophy and decreased systolic function
along with left ventricular dilatation (Figure 2, A and B), indicat-
ing that insulin signaling influenced the development of systolic
dysfunction due to pressure overload.

Reduction of plasma insulin inbibits cardiac hypoxia during pressure over-
load. We have recently demonstrated that cardiac angiogenesis is
critically involved in the adaptive mechanism of cardiac hypertro-
phy and that an increased mismatch between cardiomyocyte size
and vascularity is a crucial determinant of the transition from car-
diac hypertrophy to HF (15). Consistent with our previous results,
chronic pressure overload increased the cross-sectional area (CSA)
of cardiomyocytes and decreased the relative vascularity (num-
ber of vessels/number of cardiomyocytes/CSA) (Figure 3, A-C),
which in turn led to exacerbation of myocardial hypoxia (Figure
3D) and cardiomyocyte death (Figure 3E). In contrast, the increase
of CSA after TAC was significantly attenuated by STZ treatment
and the relative vascular density was markedly increased (Figure
3, A-C). Consequently, depletion of plasma insulin prevented
cardiac hypoxia and cardiomyocyte death during chronic pres-

1508 The Journal of Clinical Investigation

heep://www.jci.org

sure overload (Figure 3, D and E). Conversely, insulin treatment
of STZ-treated mice increased CSA and decreased relative vascular
density, thereby exacerbating cardiac hypoxia and cardiomyocyte
death (Figure 3, A-E). Additional treatment with the proangio-
genic factor cartilage oligomeric matrix protein-angiopoietin-1
(COMP-Angl) (17) increased relative vascular density and thereby
improved cardiac hypoxia and systolic dysfunction (Supplemen-
tal Figure §, A-C). We also found that a decrease of relative vas-
cular density was associated with cardiac dysfunction, along with
upregulartion of insulin signaling in spontaneously hypertensive
rats (Supplemental Figure 3, A-G), suggesting that cardiac insulin
signaling plays a pathological role in HF by increasing a mismatch
between cardiomyocyte size and vascularity.

Cardiomyocyte-specific reduction of Insr expression attenuates systolic
dysfunction due to pressure overload. To further investigate the role of
cardiac insulin signaling, we generated CIRKO mice by using the
Cre-loxP system. We prepared transgenic mice in which a transgene
encoding Cre recombinase was driven by the cardiomyocyre-spe-
cific a-myosin heavy chain (MHC) promoter (18). We then crossed
these MHC-Cre mice with mice bearing floxed Insr alleles (19) and
produced TAC in the resulting mice. Since homozygous CIRKO
(Insrfe=flexCre*) mice have been shown to develop systolic dysfunc-
tion in response to pressure overload (6), we utilized heterozygous
CIRKO (Insr*/*Cre*) mice with reduced cardiac expression of Insr
(Figure 4A). These mice had a normal heart size and normal systolic
function under physiological conditions (Figure 4, B and C). How-
ever, cardiac insulin signaling was markedly atcenuated in the TAC
heart of CIRKO mice (Figure 4B), and therefore chronic pressure
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overload caused less severe hypertrophy than in WT mice (Figure 4,
C and D). Both systolic dysfunction and left ventricular dilatation
were significantly inhibited in CIRKO mice compared with their
littermate controls (Figure 4D and Supplemental Figure 6). His-
tological examination showed that the increase of CSA after TAC
was significantly attenuated and relative vascular density was mark-
edly increased in CIRKO mice (Figure 5, A-C). In consequence, the
number of dead cardiomyocytes was significantly smaller in CIRKO
mice than in their liccermate controls (Figure 5D).

To investigate the role of Akt in HF induced by pressure over-
load, we utilized heterozygous AktI-deficient (Akt1*/-) mice. Two
weeks after TAC operation, both systolic dysfunction and left
ventricular dilatation were significantly inhibited in AktI*/~ mice
compared with their littermate controls (Figure 6A). Histological
examination showed that the increase of CSA after TAC was sig-
nificantly attenuated and relative vascular density was markedly
increased in Akt1*/~ mice (Figure 6, B and C), which was associated
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Figure 3

* Reduction of plasma insulin inhibits cardiac hypox-
ia due to pressure overload. (A) Animals were
prepared as described for Figure 2A. Immunohisto-
chemistry using antibodies against platelet and
endothelial cell adhesion molecule (dark brown)
and dystrophin (light brown) was performed at
2 weeks after operation. Scale bars: 20 um. (B and
C) CSA of cardiomyocytes (B) and relative vas-
cular density (C) were estimated as described in
Methods. n = 4-5. (D) Cardiac ischemia (brown) in
mice prepared as described for Figure 2A was esti-
mated with a Hypoxyprobe-1. Scale bars: 1 mm.
(E) Number of TUNEL-positive cells per 1 x 104
cardiomyocytes. n = 4-6. Data are shown as
mean + SEM. *P < 0.05; **P < 0.01.
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with decreased activation of Akt (Figure 6D). These data suggest
that sustained activation of Akt could cause cardiac dysfunction
under chronic pressure overload.

Mechanism of enhanced cardiac insulin signaling due to pressure overload.
To investigate the additional mechanisms by which chronic pres-
sure overload enhances insulin signaling in the heart, we examined
plrs1 levels immediately after TAC. Western blot analysis revealed
that pressure overload markedly increased the plrs1 level from as
early as 1 minute after the operation (Figure 7A). Such activation
was significantly attenuated in both heterozygous and homozygous
CIRKO mice (Figure 7A and Supplemental Figure 7), suggesting
that mechanical stress may also upregulate the insulin signaling
pathway via direct activation of Insr independent of its ligand. To
furcher investigate the influence of mechanical stress on insulin
signaling, we stretched cultured cardiomyocytes by 20% and exam-
ined the changes in the plIrs1 level. Consistent with our hypothesis,
stretching of cardiomyocytes led to marked activation of insulin sig-
1509
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Cardiomyocyte-specific reduction of Insr expression attenuates systolic dysfunction due to pressure overload. (A) Western blot analysis of Insr
expression in the hearts of CIRKO mice (Insrex+Cre*) and their littermate controls (control). Graphs indicate relative expression levels of Insr.
n = 3. (B) CIRKO mice (/nsro¥+Cre+) or littermate controls were subjected to TAC or sham operation, and components of the insulin signaling
pathway in the heart were examined by Western blot analysis at 2 weeks after operation. Graphs indicate relative expression levels of these
signaling molecules. n = 3. (C) The heart weight/body weight ratio of animals prepared as described in A was measured at 2 weeks after opera-
tion. n =7-9. (D) Cardiac hypertrophy and systolic function of animals prepared as described in A were assessed by echocardiography at 1 week
(IVST) or 2 weeks (FS and LVDs) after operation. Photographs show representative results of echocardiography (M-mode). n = 8-13. Data are

shown as mean + SEM. *P < 0.05; **P < 0.01.

naling (Figure 7B). This activation was abolished by knockdown of
Insr expression (Figure 7C), whereas knockdown of Igf1 or the Igf1
receptor showed a marginal effect (Supplemental Figure 8). These
results suggest that mechanical stress mainly enhances insulin sig-
naling through Insr and thatIgf1 and the Igf1 receptor contribute
to stretch-induced activation of this signaling to a lesser extent. This
is similar to the known direct activation of the angiotensin IT type [
receptor by mechanical stress, which contributes to pathological
hypertrophy (20); however, the precise mechanism of how mechani-
cal stress activates insulin signaling needs further investigation.
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There is accumulating evidence that suggests a potential relation-
ship between insulin resistance and cardiac hypertrophy (21, 22).
Therefore we examined plasma glucose and insulin levels in mice
subjected to chronic pressure overload. Both glucose and insulin
levels were significantly higher in the TAC group than in the sham-
operated group (Figure 7D). More importantly, the homeostasis
model assessment-insulin resistance (HOMA-IR) index was mark-
edly elevated in the TAC group (Figure 7D). Furthermore, insulin-
induced phosphorylation of Akt was impaired in the liver of the
TAC group compared with the sham-operated group (Figure 7E).
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Figure 5

Cardiomyocyte-specific reduction of Insr expression
attenuates cardiac hypoxia due to pressure overload.
(A) CIRKO mice (Insrfox+Cre+) or littermate controls
were subjected to TAC or sham operation. Immuno-
histochemistry using antibodies against platelet and
endothelial cell adhesion molecules (dark brown) and
dystrophin (light brown) was performed at 2 weeks
after operation. Scale bars: 20 um. (B and C) CSA of
cardiomyocytes (B) and relative vascular density (C)
were estimated as described in Methods. n = 4-5. (D)
Number of TUNEL-positive cells per 1 x 10* cardio-
myocytes. n = 4-5. Data are shown as mean + SEM.
*P < 0.05; **P < 0.01.
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These results suggest that chronic pressure overload induces hepat-
ic insulin resistance, thereby inducing hyperinsulinemia, whereas
there is no cardiac insulin resistance due to direct activation of Insr
as well as to upregulation of Insrand Irs1.

Discussion

A number of clinical studies have strongly indicated the link
between insulin resistance and nonischemic HF (23-26). Approxi-
mately two-thirds of patients with essential hypertension have
abnormal glucose metabolism (27), and there is a positive relation-
ship between cardiac hypertrophy and the plasma insulin concen-
tration (28), suggesting that elevation of insulin contributes to
myocardial growth in the presence of chronic pressure overload.
Consistent with these reports, we found that chronic pressure
overload induced hepatic insulin resistance and increased the
plasma insulin level. Myocardial stretch activated Inst,and chronic
pressure overload not only increased the activity of insulin signal-
ing (pIrs1 and pAkt levels), but also upregulated the expression of
Insr and Irs1 protein. This in turn facilitated activation of cardiac
insulin signals by hyperinsulinemia. Such activation enhanced
the mismatch between vascularity and cardiomyocyte size and
increased cardiomyocyte death. This increase was associated with
systolic dysfunction and may be one of the causes of HF induced
by chronic pressure overload. However, we have not excluded
other mechanisms by which excessive insulin signals promote car-
diac dysfunction during pressure overload. For example, cardiac
hypoxia may affect metabolism and contraction of myocytes with
their viability being unchanged. Indeed, we only showed evidence
for tissue hypoxia in the TAC heart by using pimonidazole, which
may not be sufficient. We have not demonstrated that inhibition
of cardiomyocyte death attenuates systolic dysfunction of the TAC
heart. Accordingly, we cannot definitively conclude that hypoxia-
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induced cardiomyocyte death was essential for the development of
HF. It has been reported that endothelial cells in the heart release
a variety of factors, such as neuregulin and nitric oxide, that regu-
late survival and function of cardiomyocytes and that endothelial-
myocardial interaction plays a crucial role in maintaining systolic
function (29). Thus, it is also possible that a decrease of relative
vascular density in the TAC heart impairs such paracrine mecha-
nisms, leading to systolic dysfunction.

Our results were similar to those of the study with conditional
Akt transgenic animals (14). In this model, Akt signaling could be
switched on or off in the heart. These mice developed physiological
hypertrophy following short-term induction, but exhibited patho-
logical hypertrophy with longer periods of Akt activation due to an
imbalance between cardiac growth and angiogenesis. Interestingly,
cardiac dysfunction was further impaired when Akt was switched off
after prolonged activation. These results suggest that Akt signaling
itselfis beneficial for maintenance of systolic function in this model;
however, excessive cardiac growth with insufficient angiogenesis
causes pathological hypertrophy. Thus, although insulin/Akt sig-
naling has been implicated in the development of physiological
hypertrophy, constitutive activation of these signals can induce HF
when coordinated tissue growth and angiogenesis are disrupted.

Alterations of myocardial substrate metabolism have been impli-
cated in the pathogenesis of contractile dysfunction and HF (21,
30). Studies on animal models of HF have demonstrated that, dur-
ing transition from cardiac hypertrophy to ventricular dysfunc-
tion, expression of genes encoding for mitochondrial fatty acid
(FA) B-oxidation enzymes shows a coordinated decrease, resulting
in a shift of myocardial metabolism that recapitulates the fetal
heart gene program, with glucose instead of FA becoming the pri-
mary energy substrate (31, 32). Clinical studies have revealed that
patients with nonischemic cardiomyopathy exhibit alterations of
1511

NumberS5  May2010

18



