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Methods for Differentiation
of Bone-Marrow-Derived Stem
Cells into Myocytes

Shinji Makino and Keiichi Fukuda

Abstract Although heart transplantation is the ultimate therapy for severe heart
failure, it is not widely used owing to the inadequate supply of donor hearts.
Therefore, cell-based therapies for the prevention or treatment of cardiac dysfunc-
tion have attracted significant interest. Since we first reported (in 1999) that bone
marrow (BM) mesenchymal stem cells (MSCs) could differentiate into cardiomyo-
cytes in vitro [1], research on regenerative medicine has advanced dramatically
{2, 3]. In addition to BM MSCs, embryonic stem cells, cardiac tissue stem cells,
adipose tissue stem cells, and induced pluripotent stem cells undergo myocardial
differentiation; additional cell types may also prove to have cardiac cell differen-
tiation abilities. An early-phase clinical trial involving the direct infusion of BM
mononuclear cells and peripheral blood mononuclear cells into coronary arteries
and the myocardium has been undertaken. However, there is a vast gap between
demonstrating that a cell type can differentiate into myocardium and translating
this result into clinical practice. The méjor challenges for the therapeutic use of
stem cells include the effective harvesting and in vitro expansion of cells to ensure
sufficient numbers and purity of the cells. This chapter focuses on methods for the
differentiation of BM-derived stem cells into myocytes.
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1 Bone-Marrow-Derived Stem Cells

Stem cells are clonogenic cells that are capable of both self-renewal and
differentiation into more spectalized progeny. Traditionally, stem cells have been
divided into two broad categories: adult stem cells and embryonic stem cells. Adult
stem cells are derived from postnatal somatic tissues and are considered to be
multipotent, meaning they can give rise to multiple differentiated cell types.
Embryonic stem cells, which are derived from the inner cell mass of blastocyst-
stage embryos, are pluripotent, meaning they can give rise to all the difterentiated
cell types of the postnatal organism. Differentiated somatic cell types can also be
reprogrammed into a pluripotent state similar to that of embryonic stem cells via
the forced expression of stem-cell-related genes, which represents the basis for a
recent report on induced pluripotent stem cells [4].

Approximately one decade ago, several studies challenged the long-held view that
adult stem cells give rise to only a restricted set of differentiated cell types. These
reports described “transdifferentiation” events, whereby adult stem cells differenti-
ated into unexpected cell types, and even across embryonic germ layer boundaries,
Cardiac difterentiation has been reported for a variety of expected and unexpected
stem cell types. These manifestations of transdifferentiation continue to be sources
of controversy.

The bone marrow (BM) is a very heterogeneous compartment that contains
multiple stem cell populations with putative cardiac potential, e.g., hematopoietic
stem cells (HSCs) [5], mesenchymal stem cells (MSCs) {1, 6-11], very small
embryonic-like stem cells [12], and multipotent adult progenitor cells (MAPCs)

[13]. In this chapter, we focus on these BM-derived progenitors, which have
attracted considerable attention.

1.1 Mesenchymal Stem Cells

Friedenstein et al. first reported the existence of MSCs in the BM in 1966, terming
them “bone formation progenitors™ [14]. Subsequently, MSCs were reported to
constitute 0.001-0.01% of the total nucleated cell population in the BM, which is
far lower than the content of HSCs in the BM [I5, 16]. BM-MSCs were initially
believed to be the stem cells that gave rise to osteoblasts, chondroblasts, adipocytes,
and connective tissues (17, 18]. Recent studies have demonstrated that BM-MSCs
can also differentiate into neurons [ 19}, skeletal muscle cells [20}, and cardiomyo-
cytes [1, 21, 22}, both in vitro and in vivo. BM-MSCs are found in the stromal cell
fraction, which can be easily separated from hematocytes in culture. These stem
cells were initially 1solated from the BM stromal cells on the basis of their charac-
teristic proliferative activities and multipotencies. Cell-surface markers that can be
used to isolate MSCs have yet to be determined. CD29, CD44, CD105, and Sca-|
{only in the mouse) are widely accepted cell-surface markers for MSCs, whereas
the value of other markers is debated among researchers. In 1999, we [I, 22]
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observed that the exposure of immortalized murine MSCs to 5-azacytidine
(5-AzaC), which demethylates methylcytosine and induces the transcription of
critical transcription factors by demethylating the CpG islands in the promoter
regions, resulted in the appearance of spontaneously beating foci. We have termed
these cell lines “CMG” (cardiomyogenic), as they are from adult BM stromal cells.
Through repeated limiting dilutions, we isolated hundreds of clones, and we identi-
fied several clones that could differentiate into cardiomyocytes that exhibited spon-
taneous beating. These experiments were repeatable and reproducible, although the
percentages of cardiomyocyte differentiation varied among these clones. Phase-
contrast photography revealed that the CMG cells had a fibroblast-like morphology
before 5-AzaC treatment (week 0), and this phenotype was retained through
repeated subcultures under nonstimulating conditions. After 5-AzaC treatment, the
morphology of the cells gradually changed. Approximately 30% of the CMG cells
increased gradually in size, attaining a ball-like appearance or lengthening in one
direction, and showed a sticklike morphology after 1 week. These cells connected
with adjoining cells after 2 weeks, and formed myotube-like structures at 3 weeks
(Fig. 1). The differentiated CMG myotubes retained the cardiomyocyte phenotype
and beat vigorously for at least 8 weeks after the final 5-AzaC treatment.

The cardiac phenotype of the treated cells was confirmed by a variety of tech-
niques, including reverse transcription PCR (for the markers of atrial natriuretic
peptide, myosin light chain 2a and myosin light chain 2v, GATA4, and Nkx2.5),
immunocytochemistry (for the markers of sarcomeric myosin heavy chain (MHC)
and a-actinin), and electron microscopy. An electrophysiology study was per-
formed on the differentiated CMG cells 2-5 weeks after 5-AzaC treatment. Two
types of morphologic action potentials were distinguishable: sinus-node-like poten-
tials (Fig. 2a); and ventricular-myocyte-like potentials (Fig. 2b). All the action
potentials recorded for the CMG cells until 3 weeks of 5-AzaC treatment were
sinus-node-like action potentials. Ventricular-myocyte-like action potentials were
recorded after 4 weeks, and the percentage of these action potentials gradually
increased thereafter.

This outcome was surprising because at the time BM cells were thought to form
only blood cell lineages or bone cells. This finding was followed up using a variety
of approaches, revealing the potential of BM cells to differentiate into a variety of
tissues, including cardiomyocytes. Although similar findings with 5-AzaC have
been reported by others [6], some investigators have suggested that this type of
cardiac induction requires “immortalized” MSCs [23]. Currently, less is known
about methods for the specific induction of differentiation than is known about
embryonic stem cells.

Shim et al. [7] isolated MSCs from the BM of human patients who were under-
going coronary artery bypass surgery, and treated the cells with insulin, dexametha-
sone, and ascorbic acid. The authors reported that the treated cells immunostained
positively for a-MHC, B-MHC, and GATA4, but not for skeletal muscle markers,
such as skeletal MHC and MyoD. However, the efficiency of cardiogenesis
achieved using this approach appeared to be poor. The resultant “cardiomyocyte-
like” cell cultures lacked appreciable spontaneous contractile activity, and only a
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Fig. 1 Phase-contrast micrographs of CMG cells before and after 5-azacytidine (5-AzaC) treatment
Top: CMG cells show fibroblast-like morphology before 5-AzaC treatment (week 0). Middle: CMG
cells | week after treatment. Some of the cells have increased in size, assuming a ball-like or sticklike
appearance. These cells began beating spontaneously thereafter. Borrom: CMG cells 2 weeks after
treatment with 5-AzaC. Ball-like or sticklike cells are connected to adjoining cells, and are beginning
to form myotube-like structures. Bars 100 um
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Fig. 2 Representative tracing of the action potential of CMG myotubes Action potential recordings
were obtained for the spontaneously beating cells on day 28 after 5-AzaC treatment using a conven-
tional microelectrode, These action potentials are categorized as a sinus-node-like action potential
(a) and a ventricular-cardiomyocyte-like action potential (b)

small subset of the cells exhibited a-actinin-positive cross-striations. More recently,
Shiota et al. have reported the cardiac induction of MSC-like progenitors derived
using a complex culturing protocol that involves the formation of spheres by
BM-derived adherent cells [24]. After treatment with 5-AzaC, the spheres showed
spontaneous beating activity, as well as immunoreactivity for cardiac markers,
including Nkx2.5 and myosin light chain 2v. The authors tested the capacity of
these preparations to mediate cardiac repair in a murine infarct model. They
reported functional improvements following the transplantation of green fluores-
cent protein (GFP)-tagged, sphere-derived cells, although the degree of remuscular-
ization was extremely low. The latter study is one of many preclinical studies that
assert beneficial effects for contractile function following the transplantation of
MSCs in models of cardiac injury. Some (6, 8, 11], but not all [25], of these studies
conclude that MSCs transdifferentiate into cardiomyocytes in vivo. In general,
reports favoring myocardial repopulation by MSCs have shown only rare clusters
of cells that lack the typical cardiomyocyte morphology but that immunostain posi-
tively for one or more cardiac markers.

In 2001, Beltrami et al. observed cardiomyocyte mitotic figures in human hearts
after myocardial infarction (MI) [26]. In 2009, Bergmann et al. reported that cardio-
myocytes undergo renewal, with a gradual decrease in annual turnover from 1% at 25
years of age to 0.45% at 75 years of age, according to carbon-14 measurements.
Fewer than 50% of cardiomyocytes are exchanged during a normal life span [27].
Their report, which sparked controversy regarding cardiomyocyte induction, investi-
gated the following possibilities: (1) whether the cells, which were thought to be
lerminaltly differentiated, had acquired the ability to proliferate; (2) whether immature
cardiomyocytes differentiated from stem cells into cardiomyocytes and then began to
proliferate; or (3) whether mature cardiomyocytes acquired the ability to proliferate
by fusing with cells that had retained the proliferative capabilities of stem cells.

1.2 Hematopoietic Stem Cells

Recent advances in fluorescently activated cell sorting (FACS) techniques have
€nabled the prospective isolation of HSCs on the basis of their cell-surface anti-
gen expression patterns and fluorescent dye efflux characteristics [28-30].
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The FACS-derived CD34" c-kit™ Sca-1* Lin™ uip side population (SP) cell fractions
contained the HSC population in mice; [30] c-kit is a stem cell factor receptor, Sca- |
is a stem cell antigen that is specifically expressed in various stem cells (only in the
mouse), and Lin is a mixture of antibodies against lineage markers for hematocytes
(in mouse, Gra-1, Mac-1, B220, CD3, and Ter! 19; in human, CD3, CD4, CDS,
CD19, CD33, and glycophylin A). In 2001, Orlic et al. reported cardiomyocyte dif-
ferentiation following the transplantation of c-kit* Lin~ BM cells into peri-infarct
tissue after MI {26]. They demonstrated directly that BM cells become cardiomyo-
cytes in vivo. However, c-kit” Lin™ BM cells are predominantly HSCs, and even if
BM cells differentiate into a variety of cells, including cardiomyocytes, controversy
persists regarding, for example, whether HSCs transdifferentiate or MSCs difterenti-
ate. Moreover, in 2002, fluorescent in situ hybridization analysis revealed the pres-
ence of numerous cardiomyocytes that seemed to be recipient-derived atter human
heart transplantation [31]. In contrast, in 2003, numerous BM-derived cardiomyo-
cytes were shown to be present in the recipient heart after BM transplantation [32].
In an experiment that gave very different results, Wagers et al. examined a variety of
organs after transplanting GFP-labeled single HSCs (c-kit*, Lin™, Sca-1*) into irradi-
ated mice, and they concluded that if HSC transdifferentiation does occur, it is
extremely rare, and that cardiomyocyte differentiation does not occur as a result of
MI or induced injury [33]. Goodell et al. transplanted highly enriched HSCs into
lethally irradiated mice, which were subsequently rendered ischemic by coronary
artery occlusion for 60 min, followed by reperfusion; they reported that the trans-
planted BM cells differentiated into cardiomyocytes in the peri-infarct region at a
prevalence of 0.02% (34]. In 2004, Balsam et al. investigated whether the c-kit*
HSCs in BM are capable of differentiating into cardiomyocytes {35}, by directly
injecting BM cells into myocardial tissue instead of transplanting BM cells after
irradiation as other groups had done. Importantly, they conducted their study to
exclude irradiation, given the possibility that invasive treatment, including irradia-
tion, contributes to a fusion phenomenon. They concluded that c-kit* HSCs do not
include cells that are capable of differentiating into cardiomyocytes. Murry et al.
investigated this differentiation ability in a similar manner, by directly infusing c-kit*
Lin~ HSCs into the heart [36] and, as expected, they found that the HSCs were
unable to differentiate into cardiomyocytes. In the same year, we examined the differ-
entiation capabilities of HSCs using a c-kit* Sca-1* CD34- Lin~ SP (CD34-KSL-SP)
of HSCs [37]. When we transplanted whole BM cell populations, which included
both HSCs and MSCs, from GFP-transgenic mice into lethally irradiated mice and
subsequently induced MI, we found very few GFP* (BM-derived) cardiomyocytes.
Interestingly, granulocyte colony stimulating factor (G-CSF) increased the number
of GFP* cardiomyocytes and nonmyocytes in the infarcted or border zone area. In
contrast, when we performed HSC transplantation followed by induction of M1 and
administration of G-CSF, cardiomyocytes were rarely found in the group that was
transplanted with HSCs alone, although fibroblast-like cells were observed, and
G-CSF increased their number. Moreover, we confirmed the predominance of MSC-
derived GFP* cardiomyocytes in the group that was transplanted with cardiomyo-
genic cells, i.e., purified MSCs. It should be emphasized that in this type of BM
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ransplantation experiment the dosage of radiation must be carefully determined, as
the sensitivity to radiation of MSCs is much higher than that of HSCs. We propose
that the differentiation by whole BM cells into organs (cells) other than hematopoi-
etic populations is attributable to MSCs rather than HSCs, and that MSCs are mobi-
lized from the BM into the bloodstream, in similarity to HSCs.

Nonetheless, the cardiac potential of HSCs remains controversial. The authors
of the original study by Orlic et al. recently revisited this issue, and they concluded
once again that in a mouse infarct model, the c-Kit* BM cells transdifferentiated
following transplantation and formed extensive replacement myocardium [38].

1.3 BM-Derived Endothelial Progenitor Cells

Endothelial progenitor cells (EPCs) should be viewed as both circulating and BM
stem cell types, since they are known to reside in both compartments. In 1997,
Asahara and colleagues described the phenotype of EPCs, which proliferate in
response (o tissue ischemia, home to areas of injury, and either incorporate within
or otherwise promote neovascularization [39, 40]. EPCs express the markers of
Flk-1, CD34, and CD133, and can differentiate into definitive endothelial cells [39,
41-43]. Initial interest in the application of EPCs to cardiac repair was naturally
focused on their angiogenic properties. The capacity of EPCs to transdifferentiate
into cardiomyocytes was first reported by Dimmeler and colleagues in 2003 [44].
In that study, CD34* human EPCs were obtained from peripheral blood mononu-
clear cells of healthy adults or from patients with coronary artery disease. After
coculture with neonatal rat cardiomyocytes, EPCs were reported to transdifferenti-
ate into cardiomyocytes on the basis of morphology, a-sarcomeric actinin immuno-
reactivity (as assessed by flow cytometry), and the expression of other cardiac
markers (as assessed by immunostaining or reverse transcription PCR with species-
specific probes). Furthermore, the EPCs showed calcium transients that synchro-
nized with adjacent rat cardiomyocytes, suggesting communication with the host
myocardium through gap junctions. Coculturing experiments with paraformalde-
hyde-fixed cardiomyocytes revealed that cell fusion was not required for EPCs to
acquire the cardiac phenotype [44—47]. However, the efficiency of cardiac induc-
tion by EPCs was very low; even after enhancement through inhibition of Notch
signaling, less than 1% of the EPCs expressed o.-sarcomeric actinin [47]. Asahara
and colleagues reported even lower rates of cardiac transdifferentiation in vitro fol-
lowing coculturing of EPCs with the rat heart-derived HOC?2 cell line [48]. The
latter authors also reported the in vivo cardiac differentiation of a related prepara-
tion of human circulating cells following transplantation into a rodent infarct
model. However, this conclusion is complicated by the definitive demonstration of
cell fusion between host myocytes and graft cells, using species-specific fluores-
cent in situ hybridization probes [49]. Moreover, Gruh et al. were unable to confirm
the in vitro cardiac differentiation of EPCs following coculturing with primary
myocytes [50]. These authors found no expression of human cardiac transcripts,
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and they concluded that the rare, ostensibly transdifferentiated EPCs observed by
FACS or epifluorescence microscopy were artifacts that resulted from overlying
cells and/or autofluorescence. Thus, although the cardiac potential of EPCs remains
a source of controversy, the report of Gruh et al. underscores the challenges inher-
ent to interpreting coculture experiments.

1.4 Very Small Embryonic-Like Stem Cells

In 2006, employing multiparameter sorting, Kucia and colleagues identified in
murine BM populations a homogenous population of rare (approximately 0.02% of
BM mononuclear cells) Sca-1* Lin~ CD45 cells that express SSEA-1, Oct-4,
Nanog, and Rex-1 [51]. These cells are very small and display several features that
are typical of primary embryonic stem cells. In vitro cultures of these cells are able
to differentiate into all three germ layer lineages, including cardiomyocytes. For
cardiac differentiation, GFP* Sca-1* Lin~ CD45™ or Sca-1* Lin~ CD45* cells together
with unpurified GFP- BM cells were plated in Dulbecco’s modified Eagle’s
medium that was supplemented with 10% fetal bovine serum, 10 ng/ml basic fibro-
blast growth factor, 10 ng/ml vascular endothelial growth factor, and 10 ng/ml

transforming growth factor B,. Growth factors were added every 24 h, and the
medium was replaced every 2-3 days.

Dawn et al. have reported that the transplantation of a relatively low number of
very small embryonic-like stem cells is sufficient to improve left ventricular func-
tion and to alleviate myocyte hypertrophy after MI [12]. In that report, 10,000 very

small embryonic-like stem cells in a 50-pl volume were injected intramyocardially
using a 30-gauge needle.

1.5 Multipotent Adult Progenitor Cells

In 2002, Jiang et al. reported on pluripotent BM-derived cells, which they referred to
as multipotent adult progenitor cells (MAPCs) [52]. When transplanted into blasto-
cysts, MAPCs had the potential to differentiate into the three germ layers both in vitro
and in vivo. These MAPCs were maintained using a low-density culture method,
making independent corroboration of the findings by other laboratories rather diffi-
cult. In 2006, Zeng et al. showed that MAPCs could be derived from both postnatal
and fetal swine BM. Swine MAPCs are negative for CD44, CD45, and major histo-
compatibility complex classes [ and II, express octamer-binding transcription factor
3a messenger RNA and protein at levels close to those seen in human embryonic stem
cells, and have telomerase activity, which prevents telomere shortening.
Transplantation of MAPCs (injected directly into heart at ten million cells per
location diluted in 400 pl of saline) at the time of coronary artery ligation resulted
in improved infarct zone contractile function and prevented peri-infarct border zone
bioenergetic deterioration [13]. The left ventricular chamber response to cell
transplantation resulted from the beneficial effects of sparing myocytes and
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increasing revascularization in both the infarct zone and the peri-infarct border

zone. A direct structural contribution of the engrafted cells to cardiomyocyte regen-
eration appears to be unlikely.

2 Other BM-Derived Cells and Cell Fusion

In 2005, Yoon et al. identified a subpopulation of human BM stem cells (hBMSCs)
that did not belong to the previously described class of BM-derived stem cells [33].
These cells were CD29 -, CD44-, CD73-, demonstrating minimal expression of CD90,
CD105, and CD117, and could differentiate into the three germ layers. Intramyocardial
transplantation of hBMSCs after MI resulted in robust engraftment of transplanted
cells, which exhibited smooth muscle cell identity and colocalization with markers of
cardiomyocytes and endothelial cells, which is consistent with the differentiation of
hBMSCs into multiple lineages in vivo. Coculturing of hBMSCs with cardiomyocytes
revealed that phenotypic changes in the hBMSCs result from both differentiation and
fusion. Other laboratories have identified additional multipotent, CD45", nonhe-
matopoietic BM-derived cells [40, 54, 55]. In some cases, it is likely that similar or
overlapping populations of primitive stem cells in the BM detected using various
experimental strategies have been assigned different names. The relationships among
the BM-derived stem celis reported from different laboratories need to be clarified.

In 2002, Terada et al. suggested that a cell fusion phenomenon had to be consid-
ered with regard to the plasticity of the BM cells reported thus far [56). Their cocul-
ture of adult animal BM cells with embryonic stem cells induced cell fusion
naturally in the presence of interleukin-3, and although the karyotype was tetraploid,
the cells acquired pluripotency and proliferative ability. More recently, the transplan-
tation of whole BM cells into lethally irradiated mice resulted in fused cardiomyo-
cytes but no transdifferentiation [57]. In addition, the same study aimed to identify
the cell lineages in whole BM populations that are responsible for cell fusion, by
transplanting CD45-Cre mouse BM into R26R mice. Fused cardiomyocytes were
observed in this experimental system, and BM-derived leukocyte lineage cells were
found to be responsible for the fusion. The lack of a clear definition for cell plasticity
has led to confusion, with several reports failing to demonstrate that a single cell can
indeed differentiate into multiple lineages at significant levels.

Studies using the Cre-lox recombination system revealed only rare MSC-derived
cardiomyocytes, nearly all of which resulted from cell fusion [58].

3 Specific Culture Method for Cardiac Differentiation
and Cell Fusion

Another obstacle to cell therapy is that specific culture methods for differentiating
BM cells are only available for some target cells. Specific differentiation is achiev-
able for osteoblasts, chondroblasts, and adipocytes. The use of 5-AzaC is effective
for cardiomyocyte differentiation but it is clinically toxic. For cardiomyocytes,
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no methods have been established that use physiologic growth factors, cytokines,
or nontoxic chemical compounds. Perhaps the most studied strategy to date with
adult stem cells 15 the etfect of 5-AzaC, a DNA demethylation reagent, on cardiac
protein expression in MSCs [ 1, 59]. Several studies have demonstrated an increase
in cardiac protein expression after treatment of MSCs with 5-AzaC [1].
Importantly, studies have consistently demonstrated improvement in cardiac func-
tion after the transplantation of 5-AzaC-treated MSCs, as compared with the
transplantation of control MSCs [59-61]. As we begin to define the pathways, we
can attempt to optimize further cardiac differentiation and functional effects [61].
For the turther development of this field, it is necessary to find the small molecule
and to elucidate the epigenetic status that can enhance cardiac differentiation from
these stem cells [62).

Recently, Ge et al. reported the cardiomyocyte differentiation of rat BM-MSCs
by treating the stem cells under conditions similar (o those seen during MI [63}.
The extract from the infarcted rat myocardium contained the same biochemical
factors that arise after MI. Ge et al. found that the extract of infarcted myocardium
could induce cardiomyocyte differentiation of BM-MSCs, as shown by the expres-
sion of cardiomyocyte-specific genes, including those for a-actin, connexin 43,
Nkx2.5, MEF2¢, GATA4, a-MHC, and troponin [. This approach could represent
an alternative means of inducing cardiomyogenic differentiation in that it does not
rely on gene demethylation or the use of viral vectors. The findings of that study
appear to support the use of autologous extracts for the induction of stem cell dif-
ferentiation and may have clinical implications for cardiac cell therapy.

Significant work has been performed to further understand the regulatory path-
ways involved in embryonic stem cell differentiation to cardiac myocytes [64-66].
These studies have suggested potential pathways that could be activated in adult
stem cells so as to induce them to take on a cardiac phenotype (64, 66, 67].

Another approach that is being developed to direct the cardiac differentiation of
adult stem cells 1s the delivery of chimeric proteins that encode cell-penetrating
peptides (CPPs) and cardiac-specific transcription factors {68, 69] CPPs cause non-
secreted proteins Lo be secreted and to be internalized by surrounding cells. Bian
et al. have demonstrated that the transplantation into the myocardium of cells that
are genetically enhanced to express a CPP-GFP protein results in GFP expression
in native cardiac myocytes [69]. To deliver functional transcription factors to the
myocardium, Bian et al. developed a CPP-GATA4 construct and transplanted
cardiac fibroblasts that were stably transfected with the CPP-GATA4 construct,
I month after MI in the Lewis rat. The infarct border zones of the animals that
received CPP-GATA4 demonstrated increased expression of cardiac myosin and
Bcl-2 {69]. The modulation of GATA4-responsive gene expression led to hypertro-
phy of the cardiac myocytes at the infarct border zone and a global improvement in
cardiac function [69]. These findings suggest that combining genetic enhancement
of stem cells to deliver CPP-transcription factor chimeric proteins together with
either stem cell homing agents or additional stem cells could lead to an increase in

cardiac protein expression in the stem cells, cardiac myocyte regeneration, and
further improvements in cardiac function.
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4 Cardiospheres and Cardiac Extracts for Cardiomyogenesis

In 2004, Messina et al. described a novel technique for isolating resident cardiac
progenitors from murine hearts, as well as subcultures of human atrial or ventricular
specimens [70]. Mild enzymatic digestion of the tissue specimens yielded small,
round, phase-bright cells that clustered together in suspension. These sphere-
generating cells were allowed to adhere to poly(L-lysine)-coated plates, and were
cultured in a medium that was supplemented with cytokines (epidermal growth fac-
tor, basic fibroblast growth factor, cardiotrophin-1, and thrombin). These
“cardiosphere”-derived cells were self-renewing, clonogenic, and expressed both
endothelial markers (KDR in human, flk-1 in mouse cells, and CD31) and stem cell
markers (CD34, c-Kit, and Sca-1). Murine cardiosphere-derived cells showed spon-
laneous contractile activity, whereas human cardiosphere cells did so only after 24 h
of coculturing with postnatal rat cardiomyocytes. The cardiosphere-derived cells
from both human and mouse demonstrated trilineage differentiation into cardiomyo-
cytes and endothelial and smooth muscle cells. However, quantitative data on the
frequencies of these events were not reported. Cardiosphere-derived cardiomyocytes
express cardiac markers, including cardiac troponin I, atrial natriuretic peptide, and
cardiac MHC. In vivo, cardiosphere-derived cells have been reported to regenerate
the infarcted mouse heart {70]. Subsequently, Smith et al. expanded on these find-
ings by isolating cardiosphere-forming cells from human biopsy specimens [71].
These human cardiospheres, which were successfully isolated from 69 of the 70
biopsies tested, consistently expressed c-Kit but not the multidrug resistance gene
MDRI, indicating that these cells were phenotypically distinct from the resident
cardiac progenitors previously identified in situ (c-Kit*, MDR1*) [31, 72]. Consistent
with the findings of Messina et al. {70] human cardiosphere-derived cells did not
spontaneously contract, whereas coculturing with neonatal rat cardiomyocytes
evoked calcium transients in synchrony with neighboring cardiomyocytes, action
potentials, and fast inward sodium currents. Smith et al. also injected lentivirally
transduced LacZ* human cardiosphere-derived cells into the border zones of
infarcted SCID beige mice [71]. Twenty days later, the cardiosphere-derived cells
were detected throughout the border regions of the mouse hearts, and occasional
donor cells were immunostained for a-sarcomeric actin and von Willebrand factor.
Echocardiography showed improvements in global left ventricular function, although
given the apparently limited cardiomyocyte repopulation by LacZ* cells, these func-
tional effects were attributed to a combination of regeneration and paracrine effects.
On the basis of these studies, explant-derived cardiospheres appear to have cardio-
myogenic potential and considerable promise for cardiac repair.

The ditferentiation of human adipose tissue stem cells to take on cardiomyocyte
properties occurs following transient exposure to a rat cardiomyocyte extract [73-75].
Adult cardiomyocytes retain the capacity to induce cardiomyogenic differentiation
of adult human MSCs. This approach could represent an alternative strategy to

induce cardiomyogenic differentiation that does not rely on gene demethylation or
the use of viral vectors.

T = ]
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5 Conclusions

Advances in stem cell and developmental biology have resulted in the identification
of numerous candidate stem cell types with putative cardiogenic potential. The
ideal cell type remains to be confirmed, despite all claims to the contrary. The car-
diogenic potentials of BM-derived and circulating stem cells appear limited,
whereas other candidates, including pluripotent stem cells, are clearly capable of
more efficient cardiogenesis. We are optimistic that research into cell-based cardiac
repair will eventually yield effective myogenic therapies, although success in this

area will require rigorous cardiac phenotyping, cell fate mapping, and preclinical
and clinical testing.
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