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Positive and Negative Regulation of
Integrin Function

YosHIAKI TOMIYAMA, MASAMICHI SHIRAGA, AND
HiroxkAazU KASHIWAGI

Summary. Platelet integrin ou;Bs, a prototypic non-Idomain integrin, plays an essen-
lial role in platelet aggregation. The structure and function of oyB; is dramatically
changed during platelet plug formation and pathological thrombus formation. The
function of this integrin is regulated by the balance of actions of positive and negative
regulatory factors. Several novel regulators have emerged from recent studies. As a
positive regulator, the P2Y), playsa critical role in thrombus stability; and continuous
interaction between ADP and P2Y,, is essential for sustained o35 activation. Sema-
phorin 3A and SHPS-1 have been identified as negative regulators. These molecules
are secreted from or expressed on endothelial cells and inhibit the function of platelets
as well as oPs. Investigation on these positive and negative regulatory factors should
provide a new insight into the treatment of pathological thrombosis.

Key words. Inside-out signaling - Outside-in signaling - P2Y,, - Semaphorin 3A -
SHPS-1

Introduction

Platelets play a crucial role not only in hemostatic plug formation but also in a patho-
logical thrombus formation, particularly in atherosclerotic arteries subjected to high
shear stress [1, 2]. Moreover, recent studies have revealed that the platelet is a major
player in the initiation of vascular remodeling as well as atherosclerotic lesion forma-
tion [3, 4]. As an initial step in thrombogenesis, platelets adhere to altered vascular
surfaces or exposed subendothelial matrices and then become activated and aggregate
with each other. As summarized in Fig. 1, it has been well documented that these
processes are primarily mediated by platelet surface glycoproteins: GPIb-IX-V, integ-
rin o,pB, (also known as GPla-IIa), GPVI, and integrin oy,P; (GPIIb-IIIa) [5, 6].
Integrins comprise a family of heterodimeric adhesion receptors that mediate cel-
lular attachment to the extracellular matrix and cell cohesion [7-9]. Platelets express
at least five integrins on their surface: o,3,(GPIa-Ila); osB,(GPIc-11a); oeB, (GPIc -11a);
ouB5(GPIIb-111a); o, f;. Platelet integrin ouy,P; is a prototypic non-I domain integrin
and plays an essential role in platelet aggregation as a physiological receptor for
fibrinogen and von Willebrand factor. The importance of this integrin has been well
documented by the clinical features of a congenital bleeding disorder, Glanzmann
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F1G. 1. Mechanisms of platelet plug formation and pathological thrombus formation. These
processes depend primarily on platelet adhesive interactions with both platelet surface glyco-
proteins including integrins and extracellular matrix proteins. Platelet adhesion (or tethering)
is mainly mediated by glycoprotein (GP)Ib-IX and von Willebrand factor (VWF) especially
under high shear rates; and platelet aggregation is mediated by oy;,3; and VWF and fibrinogen.
Platelet activation and released factors such as adenosine diphosphate (ADP) play a critical role
in thrombus stability. TXA,, thromboxane A,

thrombasthenia (GT) [10, 11]. The crystal structure of oyy,[3; revealed that the ligand-
binding head is formed by a seven-bladed B-propeller domain from oy, and a B I-
domain from P [12, 13]. Despite the presence of integrin oyy,f3; and its ligands, single
platelets circulate freely within the vascular tree that is lined by an intact monolayer
of endothelial cells. Thus, the function of integrin oy, is regulated by the balance of
actions of positive and negative regulatory factors. During thrombogenesis, the affin-
ity of aypPs for macromolecular ligands is dynamically changed [8, 9]. In resting
platelets, oyyB; is in a low-affinity state and does not bind soluble macromolecular
ligands. However, after exposure to subendothelial matrix and several mediators such
as adenosine 5'-diphosphate (ADP), thromboxane A,, and thrombin, platelets become
activated, and activation signals (inside-out signaling) that induce a high-affinity state
of aypPs for soluble ligands (ouf; activation) are generated. After ligand binding to
ouPs, postligand-binding signals (outside-in signaling) that induce tyrosine phos-
phorylation and cytoskeletal reorganization are further generated, leading to full
expression of oy,P; function. Molecular characterization of GT due to a dysfunctional
ouPs (referred as variant GT) provides strong evidence that the cytoplasmic domain
of B is involved in inside-out signaling [14, 15]. Indeed, specific binding of the cyto-
skeletal protein talin to integrin B subunit cytoplasmic tails leads to oupf; activation
as a final common step in integrin activation [16]. Major advances have been made
regarding the structural basis of a5 activation, resulting in the proposal of the
“switchblade” model [17]. However, much remains to be elucidated about factors (or
molecules) surrounding platelets that positively or negatively regulate oty function.
In this review, we focus on recently identified factors and/or mechanisms that regulate
oyPs function.
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Positive Regulators for o35 Function

In vivo fluorescence microscopy reveals that a few platelets are tethered to the intact
vascular wall even under physiological conditions [18]. However, ~100% of these
platelets were displaced from the vascular wall without firm arrest. Thus, a threshold
for further platelet activation and the initiation of thrombus formation seems to exist,
and oypP; function should be dynamically controlled by the balance of positive and
negative regulators. A number of factors have been identified as a positive regulator
for ou;,P; function (Table 1). These factors contribute to stabilize the platelet thrombus
as well as initiate thrombus formation. ADP, collagen, and thrombin are classic, well-
known factors that initiate thrombus formation by inducing o35 activation. In con-
trast, serotonin acts as a potentiator, rather than an initiator, for oy,B; activation.
Recently, several factors that contribute to stabilize platelet thrombus have been iden-
tified: CD40L and o35, Eph kinases and ephrins, Gas6 and its receptors, and ADP
and P2Y,, receptor (for review see ref. 19). CD40L, a member of the tumor necrosis
factor (TNF) family, is expressed on the platelet surface after platelet activation, and
a soluble form of CD40L (sCD40L) is generated by the activation as well. Although
CD40 is known to be a receptor for CD40L, the effect of CD40L (and sCD40L) on
platelets is mediated by ouP; but not by CD40. The interaction of CD40L and o35
contributes to thrombus stability, probably via augmentation of oupPs-mediated
outside-in signaling [20, 21]. Eph kinases and ephrins also augment ouPs outside-in
signaling [22, 23]. Platelets express the Eph receptor kinase (EphA4 and EphB1) and
the Eph kinase ligand, ephrinB1; and blockade of the Eph/Ephrin interactions causes
platelet disaggregation induced by low concentrations of ADP and decreased platelet
thrombus volume on a collagen-coated surface at high shear rates. Gas6 is a secreted
protein localized in o-granules; and its receptors Axl, Sky, and Mer are also expressed

TaBLE 1. Regulators for oyp; function

Positive regulators
ADP
Collagen
Thrombin
.Epinephrine
PAF
Serotonin
CD40L
Eph kinases/ephrins
Gas6
Leptin

Negative regulators
Prostacyclin
Nitric oxide
CD39 (NTPDasel)
PECAM-1
Semaphorin 3A
SHPS-1 (SIRPal)
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on platelets. It has been demonstrated that secreted Gas6 binds to its receptors, leading
to the promotion and stabilization of platelet plug formation via o, outside-in
signaling [24]. Thus, these newly identified factors may play a role in the stability of
platelet aggregation in vivo. However, recent studies have revealed that the interaction
between ADP and its receptor P2Y,, play a critical role in the stability of platelet
thrombus.

Role of the Interaction Between ADP and P2Y, in the
Maintenance of oy,f3; Activation

ADP is stored within platelet dense granules and actively secreted upon platelet activa-
tion; approximately 2.5umol ADP exists in 10" platelets [25]. Platelets have at least
two major G protein-coupled ADP receptors: P2Y, is a Go-coupled receptor responsi-
ble for mediating platelet shape change and reversible platelet aggregation through
intracellular calcium mobilization, whereas P2Y,, is a G;-coupled receptor responsible
for mediating the inhibition of adenylyl cyclase and sustained platelet aggregation
[26]. P2Y,, consists of 342 amino acid residues with seven transmembrane domains.
The importance of P2Y,, is well documented by the clinical feature of congenital
bleeding disorder due to P2Y,, deficiency [27-29]. We have identified a Japanese
patient with P2Y,, deficiency, OSP-1, caused by a point mutation in the translation
initiation codon (ATG to AGG) [30]. P2Y,-mediated signaling evoked by endogenous
ADP plays a major role in platelet aggregation induced by low concentrations of col-
lagen, U46619, and PAR1 TRAP in vitro. We and others have demonstrated impaired
thrombus stability under flow conditions [29, 30]. Employing whole blood obtained
from OSP-1, real-time analysis of thrombogenesis on a type I collagen-coated surface
under a high shear rate (2000s™") revealed that P2Y,, deficiency led to loosely packed
thrombus and impaired thrombus growth with enhancing adhesion to collagen. The
increase in platelet adhesion to collagen was probably due to the impaired platelet
consumption by the growing thrombi. Moreover, our real-time observation indicated
that the loosely packed aggregates were unable to resist against high shear stress, and
most of the aggregates at the apex of the thrombi came off the thrombi [30]. In a
mesenteric artery injury model P2Y,,-knockout mice also demonstrated the instabil-
ity of thrombus formation [31]. Thus, the ADP-P2Y, interaction plays a major role in
the stability of thrombus.

We assessed the oyPs activation on OPS-1 platelets in vitro by the binding of
ligand-mimetic monoclonal antibody, PAC-1. Interestingly, ouPs activation is mark-
edly impaired by stimulation with PAR1-TRAP, PAR4-TRAP, or U46619 in the absence
of P2Y,, [30]. On the other hand, PAR1-TRAP and U46619 are able to induce transient
aggregation of OSP-1 platelets, indicating that oypf3; could be transiently activated
with these agonists. Based on these findings, we assume that oy3; activation may be
too short and unstable to be detected by the PAC1 binding assay on OSP-1 platelets
and that released ADP and P2Y,,-mediated signaling may play a critical role in the
maintenance of oup; activation. Employing modified ligand-binding assays, we have
analyzed the mechanism of sustained oy,P; activation induced by thrombin. After
completion of oy, activation and induction of a-granule secretion, a P2Y,, antago-
nist (AR-C69931MX) was added to the activated platelets [32]. Under these conditions,
the stimulated platelets showed long-lasting o5 activation. However, the addition
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of 1uM AR-C69931MX at any time tested after thrombin stimulation disrupted the
sustained o435 activation without inhibiting CD62P expression (Fig. 2). Neither
yohimbine (an adrenergic receptor antagonist), MIC-9042 (a 5-HT, receptor antago-
nist), nor SQ-29548 (a thromboxane A, receptor antagonist) inhibited sustained oy,
activation. Dilution of platelet concentrations from 50 000 platelets/p to 500 platelets/
ul also abolished sustained oy;,; activation, and disruption of oyyB; activation by the
dilution was abrogated by the addition of small amounts of “exogenous” ADP. Thus,
the continuous interaction between secreted ADP with P2Y,, is necessary for sus-
tained oy,P; activation induced by thrombin; and substantial amounts of ADP (=
substantial platelets) are needed to maintain oy, [; activation. The critical role of the
interaction between ADP and P2Y,, is also evident in the sustained oy;3; activation
induced by U46619 (TXA, analogue) [32]. Even in the absence of P2Y,, platelets can
transiently aggregate with each other. However, platelets lacking G, and G,; are com-
pletely unresponsive to thrombin, and the activation of G-mediated signaling alone
is not sufficient to induce platelet aggregation [33]. Thus, it is likely that once oyyB; is
activated by G, and/or G,;-mediated signaling the ADP-P2Y,, may prevent the shift
from the activated ouf; to the resting oy, (Fig. 2).

Recent in vivo observations demonstrated that during platelet thrombus formation
circulating platelets were tethered to the luminal surface of growing thrombi by
VWF-GPIb interaction. However, more than 95% of tethered platelets were subse-
quently translocated and/or detached [18]. Activated oy,3; on the detached platelets
should become inactivated because the released ADP is immediately diluted by the

Granule Secretion
PE-CD62p , |
(P-selectin)

Sl ———-—
Thrombin P2Y,,
0.2U/ml w.antagonist
FITC-PACH FITC-PAC1
oypB5 activation
Thrombin Released ADP

Dense Granule

—— ——
Resting Activated Resting
04583 B3 5 B3

F1G. 2. Critical role of ADP-P2Y), interaction in the maintenance of oy;,3; activation. Blockade
of ADP-P2Y, interaction at any time after thrombin stimulation disrupts o, activation. Once
0ynP; is activated by Gq- and/or Gy;-mediated signaling, the ADP-P2Y,, may prevent the shift
from activated oy;,3; to resting oup,fs. FITC-PACI, fluorescein isothiocyanate-conjugated PACI1
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blood flow. At the luminal surface, activated oz, [3; on the tethered platelets would be
maintained only when the platelets are continuously exposed to ADP released from
adjacent activated platelets. At the inside of growing thrombi, it appears that platelets
are constantly exposed to such high concentrations of released ADP that oy;,3; can be
maintained in its high-affinity state in concert with the effects of thrombin and TXA,.
It is possible that ADP concentrations surrounding platelets may largely influence
whether platelets participate in thrombus formation. Thus, P2Y,, may serve as a
sensor for thrombogenic status surrounding individual platelets, and the interaction
between ADP and P2Y), likely determines thrombus size.

Negative Regulators for oy,[3; Function

Prostacyclin and nitric oxide produced by endothelial cells are well-known negative
regulators for the platelet function [34]. In addition to these molecules several nega-
tive regulators have been emerged in recent studies (Table 1). We have identified that
semaphorin 3A and SHPS-1 act as negative regulators for o;,[3; function [35, 36].

Semaphorin 3A as a Negative Regulator for Platelet Function

The semaphorin family comprises soluble and membrane-bound proteins that are
defined by the presence of a conserved 500-amino-acid semaphorin domain at their
amino termini. Class 3 semaphorins are secreted disulfide-bound homodimeric mol-
ecules; and Sema3A, a prototypic class 3 semaphorin, causes growth cone collapse
and provides chemorepulsive guidance for migrating axons. Cell surface receptor for
Sema3A consists of a complex of two distinct transmembrane receptors, neuropilin-1
and plexin A (A1-A3). It has been demonstrated that Sema3A is produced by endo-
thelial cells and inhibits integrin function on endothelial cells in an autocrine manner
[37]. Employing two distinct Sema3A chimera proteins, we have demonstrated that
Sema3A has extensive inhibitory effects on platelet function [35]. Sema3A inhibited
agonist-induced oy,P; activation dose-dependently. Moreover, Sema3A inhibited
granular secretion as well as platelet spreading on immobilized fibrinogen. However,
Sema3A did not show any effects on the levels of cAMP or cGMP or thrombin-induced
increase in intracellular Ca®* concentrations. It is likely that Sema3A inhibits cytoskel-
etal reorganization in activated platelets as Sema3A inhibits platelet spreading and
granule secretion.

Indeed, Sema3A inhibited agonist-induced elevation of filamentous actin (F-actin)
contents and Racl activation. Racl activation is necessary for platelet actin assembly
and lamellipodia formation after agonist stimulation. Therefore, marked impairment
of Racl activation is likely to account for the Sema3A-induced impairment of actin
rearrangement and spreading in platelets. There were two major downstream effectors
of Racl identified: PAK and WAVEs [Wiskott-Aldrich syndrome protein (WASP)
family verprolin-homologous proteins]. Several PAK substrates or binding partners
have been implicated in the effects of PAK, including filamin, LIM kinase, myosin, and
paxillin. Among them, LIM kinase phosphorylates and inactivates cofilin, a protein
that promotes severing and depolymerization of F actin. Consistent with the inhi'bl-
tion of Racl activation, Sema3A inhibited phosphorylation of cofilin in both resting
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FiG.3. Inhibitory mechanisms of platelet function by Sema 3A. Sema 3A inhibits platelet spread-
ing and granular secretion as well as oy, activation. The inhibitory effects are mediated in
part by the inhibition of agonist-induced Racl activation and phosphorylation of cofilin. This
inhibition leads to the inhibition of F-actin elevation and cytoskeleton rearrangement

and activated platelets, suggesting that Sema3A increases severing and depolymeriza-
tion of F-actin by keeping cofilin in the activated state (Fig. 3). In addition to Racl
inactivation, our recent data showed that Sema3A inhibited the PI3 kinase pathway,

including Rap1B, which may account for the inhibition of o5 activation (unpub-
lished data).

SHPS-1 as a Negative Regulator for Platelet Function

SHPS-1 (Src homology 2 domain-containing protein tyrosine phosphatase substrate-
1), also known as signal regulatory protein a1 (SIRP 1), is a membrane glycoprotein
with three extracellular immunoglobulin (Ig)-like domains, a single transmembrane
domain, and an intracellular domain containing two immunoreceptor tyrosine-based
inhibitory motifs (ITIM) and expressed on endothelial cells and leukocytes. CD47
(integrin-associated protein, or IAP) is a ubiquitously expressed 50-kDa membrane
glycoprotein with an extracellular Ig domain, five membrane-spanning domains, and
a short cytoplasmic tail. CD47 physically associates with oypBs, 0,85 and o,B,; and
modulates a variety of cell functions [38]. Two ligands are known to bind to CD47:
thrombospondin-1 (TSP-1) and SHPS-1. The TSP-1-CD47 interaction has been
believed to augment integrin-mediated platelet function. On the other hand, SHPS-
1-Ig, a fusion protein consisting of the extracellular domain of SHPS-1 and human Ig
Fc domain, impaired secondary platelet aggregation induced by a low concentration
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of ADP (2.5uM). Moreover, SHPS-1-Ig markedly impaired c;,3;-mediated platelet
spreading onto immobilized fibrinogen. The inhibition of platelet spreading is CD47-
specific because it was not observed in CD47-deficient (CD477") murine platelets. Of
particular interest is that SHPS-1 inhibits ouyBs-mediated platelet spreading without
disturbing Syk and FAK tyrosine phosphorylation. SHPS-1 did inhibit tyrosin phos-
phorylation of a-actinin, a downstream effector of FAK. Thus, SHPS-1 negatively
regulates platelet function through CD47, especially o, 3;-mediated outside-in signal-
ing, by interfering with the downstream pathway of FAK.

Conclusion

Thrombogenesis is a complex process regulated by the balance of positive and nega-
tive regulatory proteins (or molecules). Further investigations of these regulatory
molecules would provide a new insight into the more effective prevention of patho-
logical thrombosis.
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