GPI-AP-deficient T cells in patients with bone marrow failure
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Figure 3 Phenotypic patterns of GPI-AP™ T cells in different patient groups. The percentages of four different T-cell subsets defined by the
expression of CD45RA, CCR7 and CD62L in CD4* and CD8" GPI-AP~ T cells are shown. (A) Alemtuzumab-treated patients (n = 3); (B) bone mar-
row failure patients showing GPI-AP™ cells in all lineages of blood cells (n = 12); (C) PNH-T* patients (n = 9). CM, central memory cells; EM,
effector memory cells; TEM, terminal effector memory cells; PNH, paroxysmal nocturnal hemoglobinuria; GPI-AP, glycosylphosphatidylinositol-

anchored protein.

cells in 12.8% of patients with various type of BMF.
Although the percentage of GPI-AP™ T cells in these
patients was very low, such an increase in GPI-AP™
T cells was undetectable in 57 healthy individuals and
they persisted more than 2 months. The presence of
GPI-AP™ T cells was originally interpreted to indicate
the ability of PIGA mutant HSC in the BMF patients
to differentiate into multi-lineage blood cells (18-21).
However, the GPI-AP™ cells were undetectable in any
other lineages of cells other than T cells in PNH-T*
patients whose clinical features were similar to those of
other BMF patients with GPI-AP~ myeloid cells. The
presence of such PNH-T* patients within the popula-
tion of patients with immune-mediated BMF cannot be
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explained by the escape of GPI-AP™ cells from T-cell
attack against T-cell precursors, because T-cell precur-
sors are not the specific target of the immune attack in
patients with BMF.

The presence of PNH-T* patients can be explained by
several mechanisms. One possibility is that the
CD487CD59™ T cells are remnants of GPI-AP™ cells that
used to be present in other lineages of cells. A previous
study showed GPI-AP™ T cells to persist in patients who
underwent remission of PNH probably due to their
longevity (33). The patients with long-standing disease
like patients 3, 10, and 12 may have possessed small pop-
ulations of GPI-AP™ cells in the myeloid cells after
the disease onset and lost all but the T cells with time.
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Figure 4 The effects of HVEM and TGF-$ on the proliferation of GPI-AP* and GPI-AP~ T cells induced by anti-CD3 and anti-CD28 mAb stimula-
tion. PB CD3"* T cells from three bone marrow failure patients were cultured in the presence of anti-CD3 and anti-CD28 mAbs for 10 d with or
without HVEM and TGF-f. (A) CD160 expression by GPI-AP* T cells induced by anti-CD3 and anti-CD28 mAb stimulation compared with GPI-AP~
T cells. The numbers show the percentage of CD160* cells. T-cell proliferation in the presence of different concentrations of HVEM (B) or TGF-g
(C) was assessed using the carboxyfluorescein diacetate succinimidyl diester assay. The figures show representative results from one patient.
The numbers denote the percentage of cells which underwent cell division. PB, peripheral blood; HVEM, herpesvirus entry mediator; GPI-AP, gly-
cosylphosphatidylinositol-anchored protein.

However, this mechanism cannot account for PNH-T " T cells. The treatment of patients with lymphoid malig-

patients in which the disease persisted for <1 yr. nancies or allogeneic stem cell transplant recipients with
Another possibility is that mechanisms other than anti-CD52 mAb allows proliferation of GPI-AP™ T cells
immune-mediated attack against HSCs confer prolifera- that existed in the patients or BM donors before treat-

tive advantage to GPI-AP™ T-cell precursors or memory ment (34, 35). Indeed, donor-derived CD48 CD59~
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T cells were detectable in all three stem cell transplant
recipients who received a conditioning regimen contain-
ing alemtuzumab in the present study. Previous studies
showed auto-Abs specific to DRS-1 and moesin are fre-
quently detected in PNH™ patients (36, 37). It is thus
possible that GPI-AP™ T cells may be induced to prolif-
erate by some auto-Abs specific to GPI-APs on T cells in
PNH-T" patients. However, GPI-AP™ T cells in ale-
mtuzumab-treated patients showed a distinct phenotype
pattern characterized by the expression of CD45RA,
CCR7, and CD62L from that detectable in PNH-T™
patients. There was no apparent T lymphocytopenia in
PNH-T™ patients which should occur in patients pos-
sessing auto-Abs specific to T cell antigens. It is therefore
unlikely that CD487CD59™ T cells were induced to pro-
liferate by auto-Abs specific to GPI-APs.

The most likely explanation for the presence of
PNH-T" patients is that humoral factors negatively
regulating the proliferation of both HSCs and T-cell
precursors via their interaction with GPI-APs are
involved in the development of BMF in PNH-T*
patients. Cytokine-mediated selection of PI/GA mutant
HSCs has been proposed as a mechanism for preferen-
tial proliferation of GPI-AP™ cells (38), but no evidence
supporting this mechanism has been shown. The present
study demonstrated that GPI-AP™ T cells show a
decreased sensitivity to HVEM that transmit inhibitory
signals through a GPI-AP receptor CDI160 (27), as well
as to TGF-8, a well-known inhibitor of haematopoiesis
(39). Recent studies have demonstrated the presence of
GPI-AP-type co-receptors for TGF-§ (40). Although
the T cells used in the current study were not T-cell
precursors, memory T cells in the PB T cells may
behave like HSCs in terms of their dormancy and acti-
vation in response to appropriate stimulation. HSCs
may be rendered to express some GPI-APs capable of
transmitting inhibitory signals upon activation as mem-
ory T cells express CD160 and as a result, both HSCs
and T-cell precursors or memory T cells may become
invulnerable to some inhibitory cytokines, such as
TGF-j, because of the lack of GPI-AP type-receptors.
Further analyses of T cells may therefore be useful for
identifying GPI-AP type TGF-f receptors which permit
the preferential proliferation of HSCs with PIGA muta-
tion in patients with BMF,
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