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Characterization of mouse lysophosphatidic acid
acyltransferase 3: an enzyme with dual functions in

the testis™

Koichi Yuki, Hideo Shindou,? Daisuke Hishikawa, and Takao Shimizu

Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo,

Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract Glycerophospholipids are structural and func-
tional components of cellular membranes as well as precur-
sors of various lipid mediators. Using acyl-CoAs as donors,
glycerophospholipids are formed by the de novo pathway
(Kennedy pathway) and modified in the remodeling path-
way (Lands’ cycle). Various acyltransferases, including two
lysophosphatidic acid acyltransferases (LPAATS), have been
discovered from a 1-acylglycerol-3-phosphate O-acyltransferase
(AGPAT) family. Proteins of this family contain putative acyl-
transferase motifs, but their biochemical properties and
physiological roles are not completely understood. Here, we
demonstrated that mouse LPAATS3, previously known as
mouse AGPAT3, possesses strong LPAAT activity and modest
lysophosphatidylinositol acyltransferase activity with a clear
preference for arachidonoyl-CoA as a donor. This enzyme is
highly expressed in the testis, where CDP-diacylglycerol
synthase 1 preferring 1-stearoyl-2-arachidonoyl-phosphatidic
acid as a substrate is also highly expressed. Since 1stearoyl-2-
arachidonoyl species are the main components of phosphati-
dylinositol, mouse LPAAT3 may function in both the de novo
and remodeling pathways and contribute to effective bio-
genesis of l-stearoyl-2-arachidonoyl-phosphatidylinositol in
the testis. Additionally, the expression of this enzyme in the tes-
tis increases significantly in an age-dependent manner, and
B-estradiol may be an important regulator of this enzyme’s
inductionif Our findings identify this acyltransferase as an
alternative important enzyme to produce phosphatidylinositol
in the testis.—Yuki, K., H. Shindou, D. Hishikawa, and T.
Shimizu. Characterization of mouse lysophosphatidic acid
acyltransferase 3: an e e with dual functions in the testis.
J- Lipid Res. 2009. 50: 860-869.
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Tissues maintain distinct content and composition of
various glycerophospholipids, such as phosphatidic acid
(PA), phosphatidylcholine, phosphatidylethanolamine,
phosphatidylglycerol, phosphatidylinositol (PI), phospha-
tidylserine, and cardiolipin (1-4). They are formed by two
pathways using acyl-CoAs as donors. One is the de novo
pathway (Kennedy pathway) in which glycerophospholipids
are formed from glycerol 3-phosphate (5). The other is the
remodeling pathway (Lands’ cycle), where the concerted ac-
tivation of phospholipase Ass and lysophospholipid acyl-
transferases (LPLATS) occurs (6-10). These pathways are
the basis of membrane asymmetry and diversity. In general,
saturated and monounsaturated fatty acids are esterified at
the sn-1 position, whereas polyunsaturated fatty acids are at
the sn-2 position. The combinations of fatty acids at the sn-1
and sn-2 positions vary among different classes of phospho-
lipids. In the rat liver and brain, for example, PA possesses a
low arachidonic acid content (11-13), whereas arachidonic
acid is a major component of PI (4, 13, 14).

Extensive studies of acyltransferases have been conducted
over the last decade, mostly using homology searches (6, 7,
15-35). Several acyltransferase families have been proposed,
including the l-acylglycerol-3-phosphate O-acyltransferase
(AGPAT) family. At least seven AGPAT family members
have been identified in mouse (21, 36, 37), and each of
them contains a highly conserved putative catalytic motif
(NHX,D) and putative substrate binding motif (EGTR)
(38-40) (Fig. 1A). Some of the AGPAT family members

Abbreviations:  AGPAT, l-acylglycerol-3-phosphate O-acyltransferase;
CDP-diacylglycerol, cytidine diphosphodiacylglycerol; CHO, Chinese
hamster ovary; DDBJ, DNA Data Bank of Japan; ER, endoplasmic reticu-
lum; LPAAT, lysophosphatidic acid acyltransferase; LPIAT, lysophosphati-
dylinositol acyltransferase; LPLAT, lysophospholipid acyltransferases;
NCBI, National Center for Biotechnology Information; PA, phosphatidic
acid; PI, phosphatidylinositol.

" Nucleotide sequence data are available in the DDB]/EMBL/GenBank
dalz})bases under the accession numbers AB377215 (mouse).
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e-mail: hshindou-tky@umin.ac jp

$!The online version of this article (available at http:/ /www,jIr.org)

contains supplementary data in the form of one table and three figures.

Copyright ©2009 by the American Saciety for Biochemistry and Molecular Biology. Inc.

This article is available online at hitp://www.jlr.org

6002 ‘v Iudy uo Areiqr [eaipajp 0A¥0] J0 Alun e Bio | Mmmm woly papeojumoq]



D 3,

Ao

ASBMB

JOURNAL OF LIPID RESEARCH /

1

A B

mLPAAT1 . seq 1 MELWPGAWTALLQLLLLLLSTLWFCSSSAKYFFKMAFYNGWILFLATLATPVCAVR--GR s8
mLPAATZ . seq 1 MDPWP--WLTAALLLLLLLVQL - - - SRTARFYAKVGLYCVLCLSFSAAASIVCL LRHGGR 55
LPAAT mLPAAT3 . seq 1 --MGLLAYLKTQFVVHLL TGFVFVVSGLTINFTQLCTLALWPTSKHLYRRINCRLAYSLW 58
LPAAT2 ‘ - . *

(AGPAT2) (AGPAT7) AT LikeiB & s msg@ e ¥y 5 . L L ST
LPAATY LysoPAFAT/LPCAT2 mLPAATL.seq 58 NVENMKILRLLLLHVKYLYGIRVEVRGAHHFPPTQPYVVVSNHOSSLDLLGMMEVLPDRC 118
MLPAATZ. seq 55 TVDNMSIISWFVRSFKYVYGLRFEVSGOKKLEVDGPCVILS, MMGLMEILPKRC 115
(AGPAT1) LPCATH MLPAAT3 . seq 58 SQLVMLLEWWSCTECTLFTDQATVDHFGKEHVVVILNHNFETDFLCGNTMCERFGVLGSS 118

*
GPAT4 ’ *

(AGPATE) MLPAAT1.seq 118 VPIAKRELLWAGSAGLACWLAGIIFIDRKRTGDAISVMSEVAQTL-LTODVRWVFPEGT 177
GPAT1  mLPAATZ.seq 115 VQIAKRELMFTGPVGLIMYLGGVYFINRQQARTAMSVMADLGDLM-VKENLKVWIYP 174
mMLPAAT3.seq 118 KVLAKRELLCVPLIGWTWYFLEIVFCKRKWEEDRDTVIEGLRRLADYPEYMNFLLYCEGT 178

GPATa . _‘*‘*-‘A . *_ L. % i‘ .. 4*. . " G ek
GpAT2  MLPAATL.seq 177 RNHNGSMLPFKRGAFHLAVQAQVPIIPIVMSSYQDFYSKKERRFTSPGRCQURVLPPVST 237
mLPAAT2.seq 174 RNDNGDLLPFKKGAFYLATQAQVPTIPVVYSSFSSFYNVKTKLFTS-GTIKVQVLDAVPT 233
LPGAT1 MLPAAT3.seq 178 RFTETKHRISMEVAASKGLPPLKYHLLPRTKGFTTAVQCLRGTVAAIYDVTLNFRGNKNP 238

ALCAT1 L

LPAAT: (LCLAT1)

(AGPATS)TPAATI\ LPAATS MLPAAT1.seq 237 EGLTPDDVPALADSVRHSMLTIFRETSTDGLGGGDCLKKPGGAGEARL -~~~ 285
MLPAAT2.Seq 233 NGLTDADVTKLVDTCYQSMRATFLQISQIPQENSA- IKEPGVLPAQ- -~~~ -~ 278

(AGPAT3 (AGPAT4)

mLPAAT3 . seq 238

SLLGILYGKKYEADMCVRRFPLEDIPADETSAAQWLHKLYQEKDALQEMYKQKGVFPGEQ 298
* . . .. - .. - . .

mLPAAT1.seq 285 285
mLPAATZ . seq 278 278
mLPAAT3 . seq 298 358
mLPAAT1.seq 285 285
mLPAAT2 . seq 278 278
mLPAAT3.seq 358 TEIEKGSSYGNQELKKKE 376

Fig. 1. Phylogenetic tree of AGPAT family members and alignment of mLPAATT, 2, and 3. A: A phylogenetic tree was drawn by using
ClustalW, DDBJ (http://www.clustalw.ddbj.nig.ac.jp/top-.html). Sequences of mouse acyltransferases are available in the DDBJ/EMBL/
GenBank databases. mLPAATS3 is circled. B: mLPAAT1, mLPAAT2, and mLPAATS sequences were aligned using Genetic-Mac software. Con-
served putative catalytic motif NHX,D and binding motif EGTR are underlined. Mutated amino acids are indicated by arrows (see Fig. 5).
The accession numbers are shown as follows: GPAT1 (NP_032175), GPAT2 (NP_001074558), GPAT3 (NP_766303), GPAT4 (NP_061213),
LPAATT (NP_061350), LPAAT2 (NP_080488), LPAATS (AB377215), LPGAT1 (NP_758470), ALCAT1 (acyl-CoA:lysocardiolipin acyltransfer-
ase 1; also called as LCLAT1) (Q3UNO02), LPCAT! (BAE94687), LysoPAFAT/LLPCAT2 (BAF47695), LPAATS (NP_080920), LPAATe

(NP_081068), LPAATY (NP_997089), and AT Like 1B (NP_081875).

are relatively well characterized. Lysophosphatidic acid acyl-
transferase (LPAAT) activity of mouse LPAAT1 (previously
known as mouse AGPAT1) and mouse LPAAT2 (or mouse
AGPAT?2) is well documented (21, 37), and mutations in
human LPAAT?2 cause congenital generalized lipodystrophy
(41). Recently, mouse AGPAT6 was shown to have glycerol-
3-phosphate acyltransferase activity (33). Mouse AGPATS has
been investigated in the past, but the characterization was
far from being done (37). The existence of at least seven
members in AGPAT family raises questions as to the specific
role of each member. Therefore, investigation of their tissue
distributions or biochemical properties will be important in
understanding their biological roles.

We present here, to our knowledge, the first detailed bio-
chemical and biological characterization of mouse AGPAT3
(mAGPAT3). Surprisingly, nAGPAT3 possesses both LPAAT
and lysophosphatidylinositol acyltransferase (LPIAT) activ-
ities and prefers arachidonoyl-CoA as a donor, indicating its
dual roles in the de novo and remodeling pathways. Point
mutations in highly conserved motifs NHX,;D or EGTR
completely suppressed both LPAAT and LPIAT activities.
The enzyme was localized in the endoplasmic reticulum
(ER) and expressed in the liver, kidney, and testis. In the
testis, cytidine diphosphodiacylglycerol (CDP-diacylglycerol)
synthase 1 is highly expressed and particularly converts 1-
stearoyl-2-arachidonoyl-PA to CDP-diacylglycerol, a phospho-
lipid precursor (42, 43). This might suggest that mLPAATS

produces PI effectively. Additionally, mAGPAT3 expression
in the testis increases significantly in an age-dependent
manner. Since B-estradiol induced this enzyme in testicular
cell line, mAGPAT3 may play an important role in the testis
coupled with sex hormone. We renamed this enzyme as
LPAAT3 according to a proposal for the standardization of
LPLAT nomenclature by Shindou and Shimizu (6).

MATERIALS AND METHODS

Materials

DMEM, 12F-HAM, and RPMI11640 were obtained from Sigma-
Aldrich (St. Louis, MO). TLC silica gel plates (type 5721) were
purchased from Merck (Darmstadt, Germany). Various lysophos-
pholipids and acyl-CoAs were from Avanti Polar Lipids (Alabaster,
AL). [1-'C]Oleoyl-CoA (1.924 GBq/mmol), [1-"*C]Linoleoy-CoA
(2.035 GBq/mmol), and [1-'"*C]JArachidonoyl-CoA (2.035 GBq/
mmol) were purchased from Moravec Biochemicals (Mercury
Lane, CA). [1-"*C]Palmitoy-CoA (2.22 GBq/mmol) and [*H]acetyl-
CoA (185 GBq/mmol) were obtained from GE Healthcare (Buck-
inghamshire, UK).

Cloning of mLPAAT1 and mLPAAT3

The entire coding region of mLPAAT3 [DNA Data Bank of
Japan (DDBJ) accession number AB377215] was identified in
the National Center for Biotechnology Information (NCBI) data-
base. A 1.1 kb cDNA clone encoding the fulllength mLPAATS was
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obtained by PCR amplification using a forward primer designed
to encode FLAG epitope (DYKDDDDK) in frame with the start
codon of target DNA coding region (5-CTAGCTAGCCACCATG-
GATTACAAGGATGACGATGACAAGGGCCTGCTTGCCTACCT-
GAAGACCC), and a reverse primer (CCGCTCGAGTTATTCCT
TTITTCTTAAGCTCTTGGTTGCC-3). Mouse heart cDNA was
used as a template. Amplified PCR products were cloned into the
PCXN2.1 vector (44) and sequenced. Similarly, mLPAAT1 (DDBJ
accession number NM_018862) was identified in NCBI, and
full-length mLPAAT1 was obtained by PCR amplification using
a forward primer designed to encode FLAG epitope in frame
(CTAGCTAGCCACCATGGATTACAAGGATGACGATGACAAG-
GAGCTGTGGCCCGGGGCCTGE) and a reverse primer (CCGCT:
CGAGTCAGAGCCGGGCTTCGCCCGCTCCCCO).

Mutagenesis of mLPAAT3

mLPAAT3 constructs with single mutations in the highly con-
served motif NHX4D (His—Ala or Asp—Ala) or EGTR (Glu—Ala)
were made using cloned mLPAAT3 cDNA as a template. Amplified
PCR products were cloned into the pCXN2.1 vector and sequenced.
Details of the method have been described previously (39).

Expression of FLAG-mLPAATS3 in Chinese hamster
ovary-K1 cells

Chinese hamster ovary (CHO)-K1 cells were seeded onto 10 cm
dishes, at a density of 3 X 10° cells /dish 1 day before transfection.
Twelve micrograms each of pCXN2.1 vector or FLAG-mLPAATS-
PCXN2.1 was transfected using Lipofectamine 2000 (Invitrogen).
At 48 h after transfection, transfected cells were scraped into 1 ml
of ice-cold buffer containing 20 mM Tris-HCI (pH 7.4), 300 mM
sucrose, and a proteinase inhibitor cocktail Complete (Roche
Applied Science) and sonicated three times on ice for 30 s each
time. Cell lysates were centrifuged at 9,000 g for 15 min. Super-
natants were then centrifuged at 100,000 g for 1 h. Pellets were
suspended in buffer containing 20 mM Tris-HCI (pH 7.4), 300 mM
sucrose, and 1 mM EDTA. The protein concentration was mea-
sured by the method of Bradford (45) using a commercially pre-
pared protein assay solution (Bio-Rad) and BSA (fraction V, fatty
acid-free; Sigma-Aldrich) as a standard.

Production of anti-mLPAATS3 antiserum

Antiserum was generated at SCRUM (Tokyo, Japan). C-terminal
peptides were used for immunization of rabbits (EKGSSYGNQELK
and FPGEQFKPARRPWT). Specificity of the antiserum was exam-
ined by Western blot analysis using mircosomes from vector- and
mLPAAT3-transfected cells. Microsomal fractions from mAGPAT4-
or AGPAT5-transfected cells were also used as negative controls.

Western blot analysis

Cell lysates were centrifuged at 800 g for 10 min. Supernatants
were centrifuged at 9,000 g for 15 min. Supernatants were then
centrifuged at 100,000 g for 1 h. Initial 9,000 g pellets were ho-
mogenized again and centrifuged at 9,000 g The pellets were
used as 9,000 g pellets. Two micrograms each of 9,000 g pellets,
100,000 g pellets, and 100,000 g supernatants were resolved by
10% SDS-PAGE and transferred to a Hybond ECL nitrocellulose
membrane (GE Healthcare UK). The membrane was blocked
with 5% skim milk, incubated with anti-FLAG M2 mAb (IBI/
Kodak) or anticytochrome c oxidase antibody (Invitrogen), and
washed and incubated with horseradish-peroxidase-labeled anti-
mouse IgG (GE Healthcare UK). After washing, the membrane
was exposed to ECL reagents (GE Healthcare UK) and X-ray
film (GE Healthcare UK) to visualize immunoreactive proteins.
Expression of the FLAG-tagged target protein was confirmed. For
the examination of endogenous mLPAAT3 subcellular localization,
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rabbit anti-mLPAATS antiserum and horseradish-peroxidase-labeled
anti-rabbit IgG (GE Healthcare UK) were used as primary and
secondary antibodies, respectively.

Confocal microscopy

CHO-K1 cells transfected with pCXN2.1 vector or FLAG-
mLPAAT3-pCXN2.1 cells were fixed with 4% paraformaldehyde
and permeabilized with methanol/acetone solution (1:1, v/v).
Cells were incubated with 10 pg/ml primary antibody for 30 min.
As a marker, M5 anti-FLAG mouse mAb or anti-FLAG rabbit
antibody (Sigma-Aldrich) for FLAG epitope, anti-calnexin anti-
body (BD Biosciences) for ER, anticytochrome ¢ oxidase antibody
(Invitrogen) for mitochondria, and anti-GM130 (Invitrogen) for
Golgi were used. Cells were blocked with 1% BSA and then in-
cubated with 10 pg/ml Alexa Fluor 546 goat anti-rabbit IgG
(Eugene, OR) and Alexa Fluor 488 goat anti-mouse IgG (Eugene,
OR). Confocal microscopy was performed using an LSM510 laser
scanning microscope (Carl Zeiss, Germany) equipped with a
X63 water immersion objective lens (numerical aperture = 1.9).
Cells were observed by excitation at 543 nm with a He/Ne laser
and emission through a 585-nm long-pass filter for the detection
of red fluorescence. For the detection of green fluorescence, the
excitation was at 488 nm with an argon laser, and emissions were
collected using a 505 to 550 nm band-pass filter.

Assay of LPLAT activity

Acyltransferase activity was measured by the transfer of
[1-"“Clacyl-CoAs or [Hlacetyl-CoA to lysophospholipids to form
phospholipids. Reaction mixtures contained 100 mM Tris-HCl
(pH 7.4), 1 mM EDTA, and indicated concentrations of acyl-
CoA, lysophospholipids, and enzyme (100,000 g pellets) in a total
volume of 100 pl. The amount of total protein and concentrations
of acceptors and donors are described in corresponding figure
legends. After incubation at 37°C for 10 min, reactions were
stopped by the addition of 300 ul of chloroform:methanol
(1:2, v/v). The reaction progressed linearly at least for 10 min.
Total lipids were extracted using the Bligh-Dyer method (46) and
subsequently analyzed by TLC in chloroform:methanol:acetic
acid:water (50:25:8:4, v/v/v/v). Bands at positions corresponding
to the expected products were visualized with I vapor, cut off the
plate, placed in Microscinti-O (Perkin-Elmer Life Sciences), and
analyzed in an LS6500 liquid scintillation counter (Beckman).

Quantitative real-time PCR

Total RNA was prepared using RNeasy Mini Kit (Qiagen). First-
strand cDNAs were synthesized using Superscript II (Invitrogen).
PCR was conducted in microcapillary tubes, in 20 wl reaction
volumes consisting of 2 pl of cDNA solution, 1X FastStart DNA
Master SYBR Green I (Roche Applied Science), and 0.5 uM each
of the forward and reverse primers. Sequences of primers used in
PCR are shown in supplementary Table I.

Stimulation of testicular cell line TM4 cells with various
sex hormones

Testicular cell line TM4 cells were cultured in F12-HAM:DMEM
(1:1,v/v) containing 5% horse serum (Gibco) and 2.5% FBS. Cells
(1 X 10% were incubated with either mock, 100 nM B-estradiol
(Sigma-Aldrich), dihydrotestosterone (Sigma-Aldrich), or testoster-
one (Sigma-Aldrich) for 24 h and collected.

Animals

C57BL/6] mice were obtained from Clea Japan (Tokyo, Japan).
Mice were maintained at 21°C in a light-dark cycle with light from
08:00 to 20:00. Mice were fed with a standard laboratory diet and
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water ad libitum. All animal studies were conducted in accordance
with the guidelines for Animal Research at the University of Tokyo
and were approved by the University of Tokyo Ethics Committee
for Animal Experiments.

Statistics
Data are presented as mean + SD. P values < .05 were con-

sidered statistically significant. All statistical calculations were per-
formed using Prism 4 (GraphPad Software).

RESULTS

Cloning of mLPAAT3

To identify novel LPLATs, we focused on AGPAT family
proteins. A phylogenetic tree was drawn by pairwise com-
parisons of the amino acid sequences of LPAAT family
members using ClustalW, DDB] (http://www.clustalw.ddbj.
nig.ac.jp/top-.html) (Fig. 1A) (47). The amino acid se-
quences of mLPAAT1, mLPAAT2, and mLPAATS are
shown in Fig. 1B. A 1.1 kb ¢cDNA clone encoding the
full-length mLPAAT3 enzyme was obtained by PCR amplifi-
cation. mLPAAT3 encodes a 376 amino acid protein of 43.3
kDa, containing four transmembrane domains, predicted
by ConPred II (48), and the conserved motifs (NHX D and
EGIR) found in members of AGPAT family (Fig. 1B). The
protein also possesses the C-terminal sequence motif
KKXX (49), suggesting that mLPAAT?3 localizes to the ER,
similar to LPCAT1 and LysoPAFAT /LLPCAT2 (15, 16).

Tissue distribution of mLPAAT3 and mMBOA7

The tissue distribution of mLPAAT3 mRNA was analyzed
by quantitative real-time PCR analysis. mLPAAT3 was predom-
inantly expressed in the testis (Fig. 2A), whereas mMBOA7
was ubiquitously expressed (Fig. 2C). We examined mLPAAT3
expression profile in protein level by Western blot analysis
using rabbit anti-mLPAAT3 antiserum. mLPAAT3 was highly
expressed in the testis (Fig. 2B). mLPAAT3 was also ex-
pressed in the liver and kidney (Fig. 2B). Discrepancy be-
tween mRNA and protein expression level of mLPAAT3
may possibly be due to the difference in translational effi-
ciency from mRNA into protein and/or halflife of this
enzyme within tissues.

Subcellular localization of FLAG-mLPAAT3 and
endogenous mLPAAT3

To facilitate immunocytochemical and Western blot ana-
lyses of mLPAAT3, we constructed an mLPAAT3 fusion pro-
tein that contains the FLAG epitope fused in frame to the N
terminus of mLPAAT3. FLAG-mLPAAT3 was transfected
into CHO-K1 cells, and the subcellular localization was
examined by confocal microscopy after 48 h. Cells were
stained for ER (anticalnexin N-terminal), Golgi (anti-
GM130), or mitochondrial (anticytochrome c oxidase)
markers. The subcellular distribution pattern of FLAG-
mLPAAT3 was similar to that of calnexin N-terminal (see
supplementary Fig. I). Neither Golgi nor mitochondrial
marker protein distributions overlapped with mLPAAT3
(data not shown). To confirm these observations, CHO-K1
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Fig. 2. Expression profile of mLPAAT3 and mMBOA7 (LPIAT1) in
mice. Expression levels of mLPAAT3 mRNA (A) and mMBOA7
(LPIAT1) mRNA (C) in 21 tissues from C57BL/6] mice were ana-
lyzed using quantitative real-time PCR. mLPAAT3 (A) was ex-
pressed predominantly in the testis, whereas mMBOA7 (LPIAT1)
(C) was ubiquitously expressed. Similar results were obtained in a
separate independent experiment. B: Expression of mLPAAT3 was
analyzed at the protein level by Western blots using anti-mLPAATS
antiserum. Three micrograms of 100,000 g pellets from various tis-
sues were loaded in each lane. Br, Lu, Li, Sp, Ki, and Te stand for
brain, lung, liver, spleen, kidney, and testis, respectively. mLPAAT3
was highly expressed in the testis. High expression was noted in the
liver and kidney as well. The results are representative of three in-
dependent experiments.

cells were transiently transfected with FLAG-mLPAAT3
and homogenized, and differential subcellular fractions
were collected using an ER extraction kit (Sigma-Aldrich).
When the subcellular fractions were analyzed by Western
blots using anti-FLAG M2 antibody, the enzyme was found
in ER fraction (Fig. 3A), consistent with the data obtained
by confocal microscopy (see supplementary Fig. I). FLAG-
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Fig. 3. Subcellular localization of FLAG-mLPAATS in CHO-KI
cells and endogenous mLPAAT3 in TM4 cells. A: At 48 h after trans-
fection, proteins from CHO-K1 cells were subjected to Western blot
analysis using anti-M2 FLAG antibody. Expression of FLAG-
mLPAAT3 was confirmed by Western blots. Homogenates of
pCXN2.1 vector or FLAG-mLPAAT3-pCXN2.1-transfected CHO-K1
cells were separated by differential centrifugation using an ER ex-
traction kit (Sigma-Aldrich) as described in Materials and Methods.
Two micrograms of 9,000 g pellets (indicated as Mito) and 100,000 g
pellets (ER) were loaded in the lanes indicated. Molecular sizes are
indicated on the left in kilodaltons. Results are representative of
two independent experiments. B: As a marker of mitochondria,
anticytochrome ¢ oxidase antibody was used. Molecular sizes are
indicated on the left in kilodaltons. Results are representative of
two independent experiments. C: Subcellular localization of endog-
enous mLPAATS in testicular cell line TM4 cells was confirmed by
Western blots. One and a half micrograms of 9,000 g pellets
(Mito) and 100,000 g pellets (ER) were loaded in the lanes indi-
cated. mLPAAT3 was detected using rabbit anti-mLPAATS antiserum.
Results are representative of two independent experiments. D: As a
marker of mitochondria, anticytochrome ¢ oxidase antibody was
used. Molecular sizes are indicated on the left in kilodaltons. Re-
sults are representative of two independent experiments.

mLPAAT3 had an apparent molecular mass of ~37 kDa,
slightly less than the predicted molecular mass of 48.3 kDa.
The discrepancy in molecular mass was observed in other
acyltransferases possessing multiple membrane spanning
domains as previously described (17). To examine subcel-
lular localization of endogenous mLPAAT3, subcellular
fractions of testicular cell line TM4 cells were analyzed
by Western blots using rabbit anti-mLPAAT3 antiserum.
Consistent with the finding in the FLAG-mLPAATS overex-
pression system, endogenous mLPAATS was predominant-
ly localized to the ER fraction (Fig. 3B).

Substrate selectivity of mLPAAT3

Using [1-14()]a1*achidonoyl—CoA as an acyl donor, we ana-
lyzed the substrate specificity of mLPAAT3 using a variety
of lysophospholipid acceptors (Fig. 4A). The microsomal
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fraction from CHO-K1 cells transfected with mLPAATS had
detectable LPLAT activity for LPA, LPC, and LPI (Fig. 4A).
However, its LPC acyltransferase activity was not pursued
further because of its very limited activity. We also checked
substrate selectivity using [1-'*Cloleoyl-CoA as an acyl do-
nor and did not observe any significant LPLAT activity of
mLPAAT3S (data not shown).

Next, we examined the preference of mLPAAT?3 for various
LPA acceptors using [1-'*CJoleoyl-CoA or [1-"*CJarachidonoyl-
CoA as acyl donors. As seen in Fig. 4B, mLPAATS exhibited
strong LPAAT activity using arachidonoyl-CoA as a donor with
palmitoyl-LPA, stearoyl-LPA, oleoyl-LPA, and octadecenyl-
LPA as acceptors (Fig. 4B). We then examined the acyl-CoA se-
lectivity of mLPAAT3 using palmitoyl-LPA as an acceptor.
mLPAAT3 demonstrated a clear preference for arachidonoyl-
CoA as a donor (Fig. 4C). We also examined the acyl-CoA
selectivity of mLPAAT3 using l-acyl-LPI as an acceptor.
mLPAAT3 showed LPIAT activity using arachidonoyl-CoA
as a donor (Fig. 4D). Other LPI acyltransferases, such as
MBOA7, would explain the high endogenous activity with
vector-transfected cells.

Kinetics of mLLPAAT3 expressed in CHO-KI1 cells

We examined the acyltransferase activity of mLPAATS
using palmitoyl-LPA and arachidonoyl-CoA. The pH opti-
mum for the reaction was between 7.4 and 10, and the
reaction did not require Ca®" (data not shown). A kinetic
analysis was conducted by measuring acyltransferase ac-
tivity in the microsomal fraction derived from vector- and
mLPAAT3-transfected CHO-K1 cells, using increasing con-
centrations (1.5-100 pM) of [1—14C]arachidonoy1—COA in
the presence of 50 uM palmitoyl-LPA or using increas-
ing concentrations (6.25-100 wM) of palmitoyl-LPA in
the presence of 25 pM [1-'*CJarachidonoyl-CoA (see sup-
plementary Fig. ITA, B). The K,, values of mLPAAT3
were 15.9 pM for arachidonoyl-CoA and 26.3 puM for
palmitoyl-LPA. The corresponding V,,,, values were 50.4
and 21.8 nmol/min/mg.

The role of the highly conserved motifs NHX,D and
EGTR on enzyme activity

We constructed three single point mutants of mLPAATS
(H96A, D101A, and E176A; arrows in Fig. 1B). Both LPAAT
and LPIAT activities of mLPAAT3 were completely sup-
pressed by these mutations (Fig. 5A). Expression of wild-
type, HI96A, D101A, and E176A mutants was confirmed by
Western blot analysis (Fig. 5B). These results indicate that
the motifs are critical for the enzymatic activity and that
both enzymatic activities (LPAAT and LPIAT) reside on a
single protein.

Age-dependent mLPAAT3 expression and LPAAT activity
in the testis

Total RNA of the testis was prepared from C57BL/6]
mice at various ages. Interestingly, mLPAAT3 mRNA level
was upregulated significantly until 15 weeks and then in-
creased only slightly (Fig. 6A). In another independent
experiment, after 15 weeks, mLPAATS expression level
decreases slightly (data not shown). The trend of this
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Fig. 4. Substrate selectivity of mLPAATS3. A: Lysophospholipid preferences of mLPAATS were determined.
Acyltransferase activity was examined using 2 pg protein (100,000 g pellet), 25 pM [l—]"C]an’acllidorxoyl—
CoA (33,000 dpm), and 50 M lysophospholipids. Data are shown as mean + SD of triplicate measurements.
Statistical significance was analyzed using ANOVA with Tukey post hoc pairwise comparisons. *P < 0.05. B:
The preference of mLPAATS3 for various LPA acceptors was examined using oleoyl-CoA or arachidonoyl-CoA
as a donor. Acyltransferase activity was examined using 2 pg protein, 25 uM [l-MC]oleoyl-CoA (33,000 dpm),
and 50 pM lysophospholipids. Data are shown as mean + SD of triplicate measurements. Statistical signifi-
cance was analyzed using ANOVA with Tukey post hoc pairwise comparisons. Only for stearoyl-LPA group. ¢-test
was used for analysis. *P < 0.05. C: The acyl-CoA selectivity of mLPAAT3 was examined using palmitoyl-LPA
as an acceptor. Acyltransferase activity was examined using 2 pg protein, 25 pM acyl-CoAs (33,000 dpm),
and 50 wM palmitoyl-LPA, with the exception that 100 M acetyl-CoA (111,000 dpm, 185MBq / mmol)
was used. Data are shown as mean + SD of triplicate measurements. Statistical significance was ana-
lyzed using ANOVA with Tukey post hoc pairwise comparisons. *P < 0.05. D: The acyl-CoA selectivity of
mLPAAT3 was examined for LPIAT activity. Acyltransferase activity was examined using 2 pg protein, 25 pM
acyl-CoAs (33,000 dpm), and 50 uM LPI with exception of acetyl-CoA. The concentration of acetyl-CoA used
was 100 pM (111,000 dpm, 185MBq/mmol). Data are shown as mean + SD of wriplicate measurements.
Statistical significance was analyzed using ANOVA with Tukey post hoc pairwise comparisons. #P < 0.05. In
A-D, results are representative of two independent experiments.
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