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Abstract The gastrointestinal immune system is a major
component of the mucosal barrier, which maintains an
immunologic homeostasis between the host and the harsh
environment of the gut. This homeostasis is achieved by
immunologic quiescence, and its dysregulation is thought
to result from the development of immune diseases such as
food allergies. Recent findings have revealed versatile
pathways in the development of intestinal allergies to
certain food antigens. In this review, we summarize the
regulatory and quiescence mechanisms in the gut immune
system and describe aberrant interactions between the host
immune system and the gut environment in the develop-
ment of food allergies.

Keywords Food allergy - Mucosal immunology - Vitamin -
Commensal bacteria

Introduction

During the past several decades, the number of people
suffering from allergic diseases has increased to the point at
which it is a major concern worldwide [1]. Food allergy is a
serious disease associated with diarrhea; vomiting; drops in
body temperature; weight loss; and, occasionally, life-
threatening anaphylactic responses. Aberrant responses to
dietary materials are due mainly to type I allergic responses,
which are mediated by sequential immune disorders (Fig. 1).
Initially, allergen-specific IgE production is induced by the

J. Kunisawa * H. Kiyono (X) .

Division of Mucosal Immunology, Institute of Medical Science,
The University of Tokyo,

Tokyo 108-8639, Japan
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T-helper type 2 (Th2) environment along with dysregula-
tion of regulatory immune responses, which promote mast
cell infiltration into the intestine. Subsequently, secondary
cross-linking by the allergen on mast cells via Fce receptor
results in the production of various allergic mediators by
mast cells (e.g., histamine, platelet-activating factor, leuko-
trienes, and mast cell protease-1). These mediators increase
intestinal permeability, exacerbating the allergic symptoms
[2].

Although classic immediate food allergies are mediated
by mast cells, food allergens lead to the induction of
delayed or chronic allergic reactions as well. The mecha-
nisms underlying these delayed reactions are not fully
understood but are thought to involve the accumulation of
eosinophils in the gut (Fig. 1) [3]. A pathogenic mediator,
major basic protein, was detected in the accumulated place
of eosinophils in the gut, causing gut tissue damage and
associated symptoms, including diarrhea, bloody stools,
and blood eosinophilia [3].

In spite of continual ingestion of the same dietary
materials, many people show no aberrant reactions to
allergens. This unresponsiveness is associated with an
immunologic tolerance known as oral tolerance, which
involves the specific suppression of cellular and humoral
immune responses to ingested antigens [4]. Several lines of
evidence indicate that oral tolerance is achieved by a unique
gut immune system made up of complex regulatory
networks among immunocompetent cells (e.g., dendritic
cells [DCs] and T cells) [5]. The establishment of food
allergy models using experimental animals allows the
investigation of possible pathways involved in the abroga-
tion of the immunologic regulatory network and the
consequent development of food allergies [6¢]. It also
allows the identification of some immunologic character-
istics as they appear in human patients, revealing basic

@ Springer
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Fig. 1 Multiple steps in the
development of allergic
responses. 1, Several stresses,
including psychological, bacte-
rial, and cytokine stimulation,
disrupt the epithelial barrier,
permitting the penetration of
allergens. 2, The immunologic
environment mediated by den-
dritic cells (DCs) and presum-
ably basophils results in the
preferential induction of T- 2 .

helper type 2 (Th2) cells, which - Suppression of regulatory
leads to 3, the induction of IgE immune: network and
production and mast cell infil- induction of Th2 cells
tration. 4, Mast cells produce
inflammatory mediators (e.g.,
histamine, prostaglandins, and
leukotrienes) upon cross-linking
of IgE with the allergen, leading
to 5, the constriction of smooth
muscle cells and the recruitment
of eosinophils. EC—epithelial
cell; IL—interleukin; Treg—
regulatory T cell

1

Disruption of physical and
biological barriers at
epithelium

3
IgE production and mast
cell infiltration

4

Production of inflammatory
mediators from mast cells
upon secondary stimulation
with relevant allergen
Inflammatory mediators

5

Infiltration of eosinophils
producing inflammatory
mediators, and
constriction of smooth
muscle cells

aspects of allergic responses and potential clinical targets
against food allergies.

Accumulating evidence indicates that environmental
factors in the gut (e.g., commensal bacteria) play an
important role in maintenance and disruption of gut
immune quiescence [7]. Indeed, previous studies using
germ-free mice showed that stimulation by commensal
bacteria promotes the development of active and quiescent
immune responses [8]. Recent advances in genome-based
bacterial analyses have revealed quantitative and qualitative
aspects of commensal bacteria, including unculturable
bacteria, in the development and dysregulation of the host
immune system [9]. Other recent nutritional studies have
indicated that diversification in food, particularly Western-

@ Springer
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ized diets, may be associated with the increased number of
allergic patients [1].

In this review, we focus on the gut immune system in the
development of food allergies from the viewpoint of the
quiescent immune system and cross-talk with environmen-
tal factors.

Gut Regulatory Immune Networks and Their
Disruption in the Development of Food Allergies

The gut immune system is a unique system that can
distinguish between harmless and harmful nonself materials
[10]. Accumulating evidence shows that various immuno-
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competent cells participating in different gut immune
responses, including physical, innate, and acquired immu-
nity, use immunologic cross-talk to negatively regulate the
immune responses to harmless materials. The tight junction
among epithelial cells (ECs) is an example of a physical
barrier that prevents the uptake of allergenic materials.
Disruption of epithelial barriers promotes the development
of food allergies: psychological stress [11], bacterial
infection (e.g., by Candida albicans) [12], and cytokine
stimulation (e.g., by IL-9) [13¢¢] resulted in the increased
permeability of epithelial layers, which increased the
susceptibility to allergens. Similarly, immature development
of the epithelial barrier in infants may explain the
prevalence of food allergies in infants younger than 3 years
old [1]. Additionally, ECs are not simply a physical barrier;
they also influence the biological nature of allergenic
macromolecules through the production, formation, and
synthesis of secretory IgA and digestive enzymes. Thus,
ECs pose physical, physiologic, and immunologic barriers
to allergenic materials.

At the T-cell level, the classic paradigm is that Th2
responses favor the development of allergic responses,
whereas Thl responses inhibit them [14]. In this context,
our group reported that the homodimeric form of interleu-
kin (IL)-12 p40 (p80) is produced predominantly in the
large intestine of allergic mice and plays an important role
in the induction of Th2 responses by competing with
heterodimeric IL-12 (p40 + p35), an essential cytokine for
the induction of Th1 responses (Fig. 2) [15]. Although it is
not clear which kinds of cells are responsible for the 11.-12
p80 production, it could be worthwhile to examine
basophils as immunoregulatory antigen-presenting cells
involved in the process of inducing an aberrant Th2-type
environment. Recent reports show that basophils express
major histocompatibility complex class II and costimulatory
molecules (e.g., CD80 and CD86) together with the
predominant production of IL-4, initiating Th2 responses
(Fig. 2) [16¢, 17¢¢, 18¢e]. Surprisingly, DCs are not required
for the induction of Th2 responses; basophils alone are
sufficient. Although the role of basophils in the develop-
ment of food allergies has not yet been tested, this is an
important point to be investigated.

The development of allergic responses is not explained
simply by the classic Th1/Th2 paradigm. Current attention
is focused on the regulatory T-cell (Treg) network. This
network, composed of Treg, Trl, Th3, and CD8ax T cells,
plays a key role in the achievement of immunologic
quiescence (Fig. 2) [19, 20]. Tregs are abundant in the
intestinal compartments for the creation of immunologic
quiescent conditions in their harsh environments. As Tregs
developing naturally in the thymus, de novo-generated
intestinal Tregs express forkhead box P3 (FoxP3), a master
transcription factor for the differentiation of Tregs, and

have been implicated in the negative regulation of allergic
responses [21, 22¢]. The de novo differentiation of Tregs
from naive CD4 T cells requires transforming growth factor
(TGF)-B, a cytokine that is abundant in the intestine.
Importantly, costimulation with IL-6 plus TGF-§ leads to
the exclusive induction of IL-17-producing T (Th17) cells,
which are involved in the induction and inhibition of
inflammatory and allergic diseases (Fig. 2) [23-25].
Reciprocally, all-trans retinoic acid (at-RA), a metabolite
of vitamin A produced particularly by intestinal CD103*
DCs, prevented the differentiation of Th17 cells but
enhanced Treg induction in the intestine (Fig. 2) [26ee,
27ee, 28ee, 29+¢]. It was reported recently that ECs educate
intestinal CD103" DCs to be tolerogenic through the
production of TGF-B and at-RA (Fig. 2) [30]. Addition-
ally, Tregs reciprocally educate DCs to produce IL-27 for
the subsequent induction of Trl cells, a distinct Treg
population (Fig. 2) [31e]. Like Tregs, Trl cells produce
IL-10, but unlike Tregs, they do not express FoxP3. These
data suggest that the cytokine milieu created by T cells,
DCs, ECs, and basophils is critical for the creation and
maintenance of immunologic homeostasis in the gut.
Further molecular and cellular investigation of this intesti-
nal regulatory system is required for the development of
new immunotherapy for food allergies.

Commensal Bacteria in the Regulation of the Gut
Immune System

Because the prevalence of food allergies has increased very
rapidly in industrialized countries, environmental and host
factors are considered to be involved. Among several
environmental factors, commensal bacteria are likely to be
pivotal in the regulation of the gut immune system because
they initiate their intestinal habitation at birth and contin-
uously grow and are required for the maturation of the gut
immune system, including the induction of oral tolerance
[32]. This idea, known as the hygiene hypothesis, suggests
that the improvement of hygiene, the development of
antibiotics and vaccines, and the intake of almost-sterile
food have reduced the gut’s exposure to microorganisms
and thus have led to the failure of the maturation of the gut
immune system [7]. The hygiene hypothesis is supported
by several epidemiologic studies, although the issue is still
controversial [7]. Supporting the hypothesis, it was reported
that mice lacking Toll-like receptor 4 (TLR4), a receptor for
lipopolysaccharide, showed high susceptibility to food
allergy [33], suggesting that signals dependent on innate
immunity influence the allergic responses. Allergic TLR4-
deficient mice showed Th2-biased responses in intestinal
and systemic (e.g., spleen) compartments. This finding
correlated with another finding that a defect in MyD88, an
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Fig. 2 Versatile pathways for the induction of regulatory and
pathological T-cell network. Epithelial cells (ECs) produce trans-
forming growth factor (TGF)-p and all-trans retinoic acid (at-RA),
which make CD103" dendritic cells (DCs) tolerogenic. Naive CD4™ T
cells activated by CD103™ DCs differentiate into regulatory T cells
(Tregs) also via at-RA and TGF-B. Tregs subsequently educate
plasmacytoid DCs (pDCs) to produce interleukin (IL)-27, which is

adopter molecule for many TLRs, moved the T-cell responses
toward the Th2 type [34]. Reciprocally, stimulation with DNA-
containing unmethylated CpG induces Thl-type immune
responses via TLR9 [33]. In addition to Thl-type immune
responses, a TLR9-mediated signal is a prerequisite for the
efficient induction of regulatory-type T cells (e.g., Tregs and
Trl cells). Indeed, oral administration of a TLRY agonist
inhibited the development of allergic responses to peanuts
[33]. In this context, a recent study revealed a reciprocal
relationship between retinoic acid and TLR9-mediated signals
in the induction of Tregs [35¢¢]. As mentioned previously,
costimulation of CD4 T cells with at-RA enhances TGF-
B-mediated FoxP3 expression; however, at-RA inhibits IL-10
induction [35¢¢]. On the other hand, stimulation of DCs via
TLR9Y reduces FoxP3 expression and upregulates IL-10
induction in CD4 T cells (Fig. 2). Although the physiologic
roles of the reciprocal regulation systems via at-RA and TLR9
in the development of food allergies are still unclear, these
reports reveal a multilayered system involved in the negative
regulation of antigen (or allergen)-specific immune responses
in the harsh environment of the gastrointestinal tract.

In addition to hematopoietic cells (e.g., T cells and DCs),
ECs also express various kinds of TLRs [36]. For instance,
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CpG

required for the induction of IL-10-producing Trl cells, another type
of Treg. Trl cells are also induced by CpG-treated DCs. On the other
hand, IL-23 and IL-12 p70 are involved in the induction of T-helper
type 17 (Th17) and Thl cells, respectively. Th2 cells, a major T-cell
population in the development of allergic responses, require IL-4,
which is predictably produced by basophils. TLR—Toll-like receptor

the tight junction between ECs is enhanced by a TLR2-
mediated signal, indicating that bacterial stimulation is
required for the first physical barrier to prevent the
penetration of allergens as almost intact protein [37]. In
addition to TLR2, TLRY is a potential innate receptor in the
regulation of EC function. TLR9 recognizes unmethylated
CpG-containing bacterial DNA and is expressed on the
apical and basolateral surfaces of ECs [36]. Intriguingly,
TLR9 stimulation at the apical site activates nuclear factor-
kB without the production of inflammatory cytokines,
whereas basolateral stimulation of TLR9 results in the
robust production of inflammatory cytokines [38].

In line with the hygiene hypothesis, probiotic bacteria
are used to prevent allergic diseases [39]. Although the
precise mechanisms used by probiotics to prevent and treat
allergies are not fully understood, several pathways are
considered possible mechanisms. In addition to imposing a
physical barrier to compete with pathogenic bacteria,
probiotics directly stimulate the immune system to establish
a regulatory network, particularly in the induction of
inhibitory cytokines (e.g., IL-10) [40]. Furthermore, pro-
biotics contribute indirectly to the regulation of the immune
system by producing immunomodulatory molecules
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through the consumption of foodstuffs. For instance, pro-
biotic bacteria digest exogenous and endogenous materials
(e.g., fibers and mucins), and the broken down products
affect the host immune system [40]. A recent study reported
that short-chain fatty acids produced from fiber by
commensal bacteria are required for the normal resolution
of inflammatory responses through G-protein—coupled
receptor 43 [41°].

Although many bacteria universally produce various TLR
ligands (e.g., lipopolysaccharide and CpG-motif DNA) and
consume dietary materials, not all bacteria can establish
regulatory networks in the gastrointestinal tract. Instead,
some commensal bacteria induce inflammatory cells. For
instance, recent studies have shown that segmented filamen-
tous bacteria preferentially induce Th17 cells, not Tregs [42,
43]. In line with these findings, it was reported that
exogenous adenosine triphosphate derived from commensal
bacteria induced Th17 cells [44]. Lactobacillus and
Bifidobacterium are used in the probiotic treatment of
allergic diseases on the basis that allergic patients have
decreased counts of both [39]. However, among several
species of each, only some strains have strong potential as
probiotic bacteria. Therefore, the key functions that
determine probiotic ability must be determined.

Dietary Materials and Milk in the Development of Food
Allergy

The gastrointestinal tissues are vital for the digestion and
absorption of nutriénts. Because allergic diseases are
prevalent in Westernized countries, interactions between
dietary factors abundant in Western food and the gut
immune system could be involved in the development of
food allergies [1]. Among dietary factors, considerable
evidence indicates that dietary lipids directly regulate
allergic responses, especially omega-3 (e.g., linolenic acid)
and omega-6 (e.g., linoleic acid) fatty acid [45]. Mammals
must ingest both forms of these essential fatty acids. Some
inflammatory lipid mediators (e.g., prostaglandins and
leukotrienes) are derived from omega-6 fatty acids, whereas
anti-inflammatory mediators (e.g., eicosapentaenoic acid
and docosahexaenoic acid) are generated from linolenic
acid. Thus, the balance between omega-6 and omega-3 fatty
acids in dietary oils seems critical to the development of
allergic diseases [45]. In support of this notion, clinical
studies have shown that omega-3 dietary supplementation or
frequent consumption of fish containing abundant omega-3
fatty acids decreases the risk of allergic diseases [46].

Our group showed an immunologic function of another
lipid mediator, sphingosine 1-phosphate (S1P), in the
development of food allergy [47]. SIP is generated from
sphingomyelin and ceramide and regulates cell trafficking

through interactions with its receptors [48]. On the basis of
our findings on S1P function in the regulation of the gut
immune system [49, 50], we suspect that cell trafficking of
pathogenic cells (e.g., activated pathological T and mast
cells) is also regulated by SIP. In fact, treatment of an
experimental animal model with an SIP inhibitor resulted
in the inhibition of allergic diarrhea, which is associated
with decreased accumulation of pathogenic T and mast cells
in the large intestine, without affecting serum IgE produc-
tion [47]. Because it is possible that S1P precursors are
present in dietary oils, these oils could be additional factors
in the determination of allergic diseases.

Milk is the major dietary material for neonates. Previ-
ously, breast milk was thought to be responsible for the
allergic responses in neonates as a source of allergens;
however, several studies demonstrated that removing
allergens from the diet during pregnancy and lactation did
not prevent allergies [S1]. On the other hand, recent
evidence has revealed that breast milk contains molecules
that induce tolerance, including IL-10, TGF-B, and immu-
noglobulins [51]. In agreement with this idea, mouse pups
suckled by allergen-exposed mothers showed tolerance to
those allergens [52¢s, 53]. A recent study showed that
feeding of breast milk induced tolerance that was dependent
on TGF-B but was not dependent on the transfer of
immunoglobulins or IL-10 [52¢¢]. The nucleus and biolog-
ical nature of dietary materials, including lipids and milk,
may provide us with new candidate regulatory molecule(s)
that can mimic the mucosal Treg cell network system.

Conclusions

Progress in our understanding of immunologic tolerance
and its abolition in the development of food allergies
suggests several strategies against food allergies [54]. One
is the re-education of the disordered gut immune system to
induce oral tolerance. Although the prevention of food
allergies still requires the prolonged elimination of the
allergenic diet, several studies have already achieved
immune therapy to prevent food allergy. Immunologic
homeostasis between the host immune system and the gut
environment is maintained by complex pathways. In
particular, interactions among host immunocompetent cells
(e.g., T cells, DCs, ECs, and basophils) and immunologic
modification via dietary materials (e.g., vitamin A and
short-chain fatty acids) and bacterial products (e.g., CpG
and adenosine triphosphate) are critical events for the
formation and maintenance of immunologic quiescence,
and their dysregulation leads to the development of food
allergies. Further studies of immunologic cross-talk with
gut environments are needed to develop novel strategies for
the prevention and treatment of food allergies.
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