Th1 CD4* T cells after autologous HSCT for $S¢

Fic. 4 Immune reconstitution after ASCT. Change in absolute cell counts of immune cells. (A) CD3*, CD4*, CD8*, CD19*
cells. (B) CD4*, CD4*CD45R0*, CD4*CD45RA" cells. (C) CD4*, CD4+CD25*cells. (D) CD19*, CD19*CD27* cells. Data
are presented as mean (s.0.). The x-axis is not drawn to scale. The data obtained before mobilization and just before
transplantation (HSCT) are shown as BM and BT, respectively. *P < 0.05 vs BM. Normal ranges (NR: 95% Cl) are

shown as right-sided vertical bars.
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increased at 1 month and reached a plateau at 6 months
after ASCT (Fig. 5B). The skewed reconstitution of Th1
CD4* T cells was maintained for 36 months after HSCT.
There were no significant correlations between the
changes in mRSS and those in Th1/Th2 balance.

Discussion

in this study, the resolution of disease was progressively
obtained in SSc patients for 36 months after ASCT. This
durable effect was not due to the reconstitution of naive
CD4* T celis, regulatory T cells or the correction of B-cell
imbalance. On the other hand, the elimination of Th2 cells
by high-dose CYC as well as the predominant reconstitu-
tion of Th1 cells were observed after ASCT. Reflecting the
resolution of clinical symptoms of SSc, serum levels of
anti-Scl-70 progressively decreased after ASCT. Serum
levels of KL-6 and SP-D, indicators for IP activity, were
also significantly decreased.

In patients with SSc, production levels of type 2 cyto-
kines such as IL-4, IL-6 and IL-13 by stimulated peripheral
blood mononuclear cells and cultured CD4* T cells
decreased [24, 25]. Our data showed that the ratio of
IFN-y- to IL-4-producing CD4* T cells was significantly
increased in a month and was sustained for 36 months
after ASCT. The predominant reconstitution of IFN-y-
producing cells is associated with amelioration of skin
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sclerosis, probably due to an ability of IFN-y to reduce
excessive collagen synthesis by scleroderma-derived
fibroblasts [26]. IL-4 increases collagen production of
fibroblasts and induces the production of TGF-§ in
patients with SSc [27]. Therefore, the elimination of
IL-4-producing T cells provides a favourable effect on
SSc. The limitation of this study was small sample size
and that there were not significant correlations between
the changes in mRSS and those in Th1/Th2 balance. it is
unclear how predominant reconstitution of Th1 CD4*
T cells after ASCT is induced. Polarization of CD4*
T cells after ASCT may depend on the local levels of cyto-
kines such as IL-12 or IL-4 when naive CD4* T cells de-
velop into functional T cells [28]. Predominant
reconstitution of Th1 CD4* T cells after ASCT may also
oceur in patients with other autoimmune diseases when
treated by ASCT. Therefore, it is conceivable that ASCT is
potently effective for Th2-related diseases such as SSc
and SLE, while its effect on Thi-related diseases such
as RA is limited [4]. Macrophage activation syndrome is
often observed in patients with JIA after ASCT [29)]. It may
be associated with a Th1 immune response after ASCT.
Our data showed that despite the resolution of clinical
symptoms of SSc, patients did not achieve normaliza-
tion of lymphocyte compartment, even 3 years after
ASCT. The recovery of CD4* T cell was delayed until
36 months after ASCT. Muraro et al. [13] reported that
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Fic. 5 Evaluation of Th1/Th2 balance after ASCT. (A) Representative expression of IFN-y and IL-4 in the cytoplasm of
CD4* T cells (Case 9) before mobilization, 3 months and 24 months after ASCT. IFN-y /IL-4 was defined as the ratio of
IFN-y*/IL-4~ to IFN-y~/IL-4*. Number of analysed cells was decreased after ASCT since ratio of CD4* T cells in gated
cells was decreased after ASCT. (B) Change in the ratio of intracellular IFN-y* to IL-4* CD4* T cells after ASCT in patients
with SSc. Data are presented as mean (s..). The x-axis is not drawn to scale. The data obtained before mobilization and
just before transplantation (HSCT) are shown as BM and BT, respectively. *P < 0.05 vs BM. Normal range (NR: 95% Cl) is

shown as right-sided vertical bar.
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naive CD45RA* T cells with diverse TCR repertoire and of
thymic origin, were increased after ASCT in patients with
MS, and that the increase of such cells was associated
with long-term suppression of inflammatory activity of MS.
In contrast, the present study revealed that the recovery of
naive CD4*CD45RA* T cells was so severely suppressed
for 36 months after HSCT and that most of the recovered
CD4* T cells were memory CD45RO™* T cells (Fig. 4B). This
discrepancy of T-cell recovery after ASCT between SSc
and MS, may be due to the difference of disease and/or of
age at inclusion. In the study of Farge et al. [14], the level
of naive CD4*CD45RA™ T cells was also suppressed for
9 months after ASCT in SSc patients. In the study of
Storek et al. [30], naive and memory CD4* T cells were
equally recovered in 24 months after ASCT in patients
with MS or SSc.

CD25*CD4*Foxp3™* regulatory T cells are a major regu-
lator of adaptive immunity [22]. Patients with JIA showed a
significant increase in thymus-derived regulatory T cells
(CD25*CD4* Foxp3™) following ASCT [22]. However, in
this study, the recovery of CD25*CD4* T cells was severely
delayed compared with that of CD25CD4* T cells
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(Fig. 4C); the number of CD25*CD4" T cells did not reach
the lower limit of normal even at 36 months after ASCT. It is
unlikely that the number of regulatory T cells was increased
after ASCT, even if we considered that CD25*CD4* T cells
included activated T cells as well as regulatory T cells.
When we analysed CD4*Foxp3™ T cells in nine patients
with SSc, their recovery after ASCT was retarded. These
results show that the expansion of regulatory T cells after
ASCT was not the cause of the efficacy of ASCT on SSc.

The number of CD19*CD27* memory B cells was low in
contrast to an increased number of CD19"CD27~ naive B
cells at the baseline. Sato et al. [23] reported the B-cell
abnormality including the expanded naive B cells and di-
minished memory B cells in SSc patients. Unexpectedly,
recovery of memory CD19*CD27* B cells was severely
suppressed even at 36 months after ASCT (Fig. 4D). In
the study of Storek et al. [30], both naive and memory
B cells recovered to the normal range in 6 months after
ASCT. Collectively, the resolution of clinical SSc after
ASCT was not due to the reconstitution of naive CD4*
T cells or to that of regulatory T cells or to the correction
of B-cell imbalance.
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An anti-Scl-70 antibody, a useful marker in establishing
the diagnosis of SSc, predicts diffuse skin involvement
and pulmonary fibrosis, and the increased level of this
antibody is associated with a poor prognosis. In this
study, we, for the first time, showed that the level of an
anti-Scl-70 antibody was continuously decreased for
36 months after ASCT, and that the changes in
anti-Scl-70 level were correlated significantly with those
in mRSS. These results are consistent with a previous
report that showed the correlation of serum anti-Scl-70
levels with disease activity in SSc [31], although the role
of anti-Scl-70 in the pathogenesis of SSc was not clearly
demonstrated in this article. It is of interest that the
changes in serum anti-Scl-70 levels were independent of
those in serum immunoglobulin levels, which returned to
the baseline level at 12 months after ASCT (Fig. 2). In the
study of Storek et al. [30], the level of anti-Scl-70 contin-
ued to be abnormally high throughout 24 months after
ASCT. This difference might come from the difference in
transplant conditioning (CYC 200 vs CYC 120 mg/kg + to-
tal body irradiation 8 Gy + anti-thymocyte globulin) or in
the purity of the CD34" cells.

Dysregulated cytokine production was reported in SSc
patients [32, 33]. In this study, serum levels of TNF-a,
TGF-B, IL-6 and slL-2R increased before mobilization
as previously reported [32], but their levels signifi-
cantly decreased after ASCT (Fig. 3). Serum levels of
VEGF and monocyte chemotactic protein 1 (MCP-1),
however, did not decrease after ASCT (data not shown).
The decreased levels of profibrotic cytokines after ASCT
might reflect resolution of the disease.

Patient 7 died due to progressive IP in spite of the im-
provement of skin sclerosis at 20 months after ASCT. In
this patient, IP was already highly advanced (per cent VC
39%) at the time of ASCT. Immune reconstitution after
ASCT was similarly obtained in terms of Th1/Th2 balance
and serum levels of pro-fibrotic cytokines. Therefore, the
disease was fatal because of advanced and refractory IP
that did not respond to the resolution of autoimmune re-
actions. This result suggests that patients with advanced
organ involvement need to be excluded in a future study.

In conclusion, ASCT with purified CD34" cells was ef-
fective in controlling the disease activity of SSc.
Improvement of skin sclerosis was significantly asso-
ciated with the change in serum anti-Scl-70 level after
ASCT. Th1/Th2 ratio was significantly increased for at
least 3 years after ASCT.

Rheumatology key messages

e ASCT causes durable remission in patients with
SSc.

e Th1/Th2 ratio was significantly increased for at least
3 years after ASCT.
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