Figure legends
Fig 1. Clinical presentation of the patient. Tense blisters involve the fingers (A),

forearms (B) and lips (C).

Fig 2. Histologic examination of skin specimens from the patient's left forearm.
(A) Hematoxylin-eosin stain, subepidermal blister (x40) with infiltration of
eosinophils (arrows) in the blister cavity (x200). Direct immunofluorescence of
perilesional skin samples shows linear deposition of C3 (B) and IgG (C) at the
dermo-epidermal junction (x40). Immunological characterization of
autoantibodies. (D) Indirect immunofluorescence on 1M NaCl split skin.
Circulating IgG antibodies bind to both the epidermal and the dermal sides (titer
1:20). (E) Immunoblot analysis using human epidermal extracts. Lane 1: a
reference bullous pemphigoid serum reacting with 180-kDa (COL17) and
230-kDa (BP230) antigens; lane 2: a reference pemphigus vulgaris serum with
positive bands at 130 kDa (Dsg3) and 160 kDa (Dsg1); lane 3: the patient’s
serum. IgG in the patient’s serum reacts with BP230. (F) Immunoblot analysis
using human dermal extracts. Lane 1: a reference EBA serum reacting with a

290-kDa molecule (type VI collagen); lane 2: a reference anti-laminin y1
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pemphigoid serum with a positive band at 200 kDa (p200, laminin y1); lane 3: the

patient’s serum; lane 4: a reference normal serum. IgG in the patient’'s serum

reacts with the 200-kDa antigen. (G) Immunoblot analysis using purified

laminin-332 (a courtesy qift from Dr S. Amano, Shiseido Life Science Research

Center, Yokohama, Japan). Lane 1: a reference of Ponceau S stain of

laminin-332 consisting of a3 (165 kDa, 145 kDa), 3 (140 kDa), and y2 (105

kDa) subunits; lane 2: the patient’'s serum; lane 3: a reference normal serum;

lane 4: a reference of D4B5 (Millipore, Bedford, MA), a mouse monoclonal

antibody against the y2 subunit of laminin-332. IgG from the patient’s serum and

D4B5 reacts with the y2 subunit of laminin-332 (105 kDa).
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Skin serves as a protective barrier against invasion by pathogens and harmful antigenic particles.
Filaggrin is a key structural protein that facilitates terminal differentiation of the keratinocytes
and formation of the skin barrier. Since the establishment of a sequencing method for the entire
filaggrin gene (FLG) in 2006, approximately 40 loss-of-function FLG mutations have been
identified in patients with ichthyosis vulgaris and/or atopic dermatitis (AD). Notably, there is a
clear difference in filaggrin genetics between the European and Asian races. Overall, approximately
25-50% of AD patients have been found to harbor filaggrin mutations as a predisposing factor.
In addition, filaggrin mutations are significantly associated with asthma. The restoration of skin
barrier function seems a feasible and promising strategy for prophylactic treatment of AD
patients with FLG mutations. This article reviews the discovery of filaggrin mutations; their
association with AD, asthma and other atopic diseases; and FLG-related potential treatment

strategies.

Keyworps: atopic dermatitis » eczema o filaggrin ® FLG ichthyosis vulgaris

Filaggrin, which is processed from profilaggrin, isa
key structural protein that facilitates terminal dif-
ferentiation of the epidermis and formation of the
skin barrier. Mutations in FLG, the gene encoding
filaggrin, have been identified as the cause of ich-
thyosis vulgaris (IV), a relatively common genetic
keratinization disorder that is clinically character-
ized by scaling, especially on the extensor limbs,
and palmoplantar hyperlinearity [1-3). In 2006,
the molecular basis and full sequencing of FLG
were established [4]. Approximately 40 FLG muta-
tions have been reported, and the prevalent ones
are distinct in different populations [s]. Recent
studies have shown that FLG mutations are also
a key predisposing factor for atopic dermatitis
(AD) (6], and for other atopic disorders, includ-
ing asthma and allergic rhinitis (7). This article
reviews the discovery of filaggrin mutations and
its association with AD.

Skin barrier function

The primary function of the skin is to act as a
protective barrier against invasion by harmful
organisms, such as bacteria, viruses, fungi and
other antigenic particles. Keratinocytes are the
principal cells within the epidermis. The ter-
minal differentiation of keratinocytes (Ficure 1)
results in the formation of an impenetrable
barrier (the horny layer) that is the uppermost
layer of the epidermis. The successive stages of

keratinocytic differentiation in the epidermal
layers are in the basal cell, spinous cell and gran-
ular cell layers (Ficure 2). While spinous cells dif-
ferentiate into granular cells, they begin to accu-
mulate keratinocyte-specific proteins involved in
terminal differentiation of the horny layer. There
are three major components in the skin barrier
of the horny layer: intercellular lipid layers; the
cornified cell envelope; and the keratin network
and keratohyaline granules (8]. Genetic defects in
any of these components may result in various
dermatoses, such as ichthyoses, which are usually
characterized by dry, thickened, scaly or flaky
skin (‘ichthyosis’ comes from the Ancient Greek
word ‘ichthys’, meaning ‘fish’).

The keratin filament network is an important
basic structure for maintaining the integrity
and dimensions of the cornified cell, and the
degraded product of keratohyalin granules —
that is, filaggrin — aggregates keratin filaments
in apoptosed keratinocytes into bundles and pro-
motes the flattening of dead-cell remnants [9-12).
This layer of collapsed cells, which is reinforced
by other structural proteins, forms an effective
barrier against external allergens in normal skin.

Filaggrin

The term ‘filaggrin’ (a shortening of the phrase
‘filament aggregation protein’) first appeared in
1981 to describe a class of structural proteins that
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are isolated from the horny layer (9]. Filaggrin is initially synthesized
as profilaggrin, an approximately 500-kDa, highly phosphorylated,
histidine-rich polypeptide that consists of an amino-terminal S100
calcium-binding domain, a B-domain and two imperfect filaggrin-
repeat domains flanking 10-12 essentially identical filaggrin repeats,
as well as of a carboxy-terminal domain (Ficure 2) (13.14]. During
the post-translational processing of profilaggrin, the 10-12 indi-
vidual 37-kDa filaggrin polypeptides cleave proteolytically and
then dephosphorylate. As mentioned above, the liberated filaggrin
subsequently and highly efficiently aggregates the keratin filaments,
which causes the keratinocytes in the stratum corneum to collapse
(9.12). Filaggrin subsequently degrades into amino acids, which actin
retaining epidermal moisture [12,15]. The aspartate-specific protease
caspase 14 plays an important role in the cleavage of profilaggrin
(16]. Caspase-14-knockout mice show an abnormal accumulation of
filaggrin fragments with a low molecular mass (12—15 kDa) within
the stratum corneum [17). Filaggrin is a key protein during terminal
differentiation, and it is essential for the formation of an intact,
protective and properly moisturized skin barrier [8,12].

Filaggrin loss-of-function
ichthyosis vulgaris
Ichthyosis vulgaris (OMIM 146700) is a common inherited skin
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disorder that is estimated to affect one in 250 individuals. IV is
characterized by generalized dry and scaly skin prominent on the
extensor surfaces of limbs, and is associated with palmoplantar
hyperlinearity (Ficure 3) [1.4]. Histologically, IV is characterized by
a decrease in the size and number of keratohyaline granules in the
granular layer, or in their complete absence there (Ficure 3) [1.18].
An association between IV and profilaggrin had long been sus-
pected, but the gene that encodes profilaggrin, FLG, proved to
be technically challenging to sequence. FLG resides on human
chromosome 1q21 within the so-called epidermal-differentiation
complex (EDC). The EDC contains an area of 1.62 megabases
harboring more than 70 genes that are expressed during terminal
differentiation of keratinocytes [19.20]. These EDC proteins, such
as loricrin, involucrin, small protein-rich proteins and late envelop
proteins, share similar important sequences, and phylogenic study
suggests that these proteins derive from a common ancestor [21].
Of these EDC proteins, filaggrin is the key member.

The initiation codon of the FLG gene is in exon 2, and most
of the profilaggrin protein is encoded by exon 3 (Ficure 2). Exon
3 is extremely large (>12 kb) and it encodes most of the profilag-
grin polypeptides, with almost completely homologous 10, 11
or 12 repeats. There exist polymorphic variations in the number
of filaggrin repeats. Some individuals have a duplication of the
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eighth and/or tenth domain. The huge
size, polymorphic variations in the num-
ber of filaggrin repeats and highly repeti-
tive nature prevent the entire gene from
being sequenced. However, the improve-
ments in PCR strategy that involve long-
range sequencing and multiple-alignment
techniques that permit comprehensive
sequencing of the entire FLG gene have
recently been developed [4.13]. Smith
et al. first identified the homozygous or
compound heterozygous FLG mutations
R501X and 2282del4 as the cause of mod-
erate or severe IV in 15 kindreds [4]. Those
investigators also demonstrated that IV is
a semi-dominant condition with incom-
plete penetrance (~90% in homozygotes).
Homozygotes or compound heterozygotes
had a severe form of IV, whereas heterozy-
gotes displayed mild or no IV phenotype.
A fewer number of FLG repeat domains
might be associated with the dry-skin phe- -
notype [22). Individuals with an absence of
the 12-repeat profilaggrin allele (i.e., with
allelotypes 10, 10; 10, 11; or 11, 11) were
at least four-times more likely to report
skin dryness than those who carried one
or two 12-repeatalleles (i.e., 10, 12; 11,12;  © s
or 12, 12 allelotypes) [22]. The genotype
and phenotype correlation in FLG mutations is still lacking. FLG
mutations at any site were reported to result in similarly severe
deficiency of profilaggrin/filaggrin processing [13]. Currently, it is
hypothesized that the profilaggrin C-terminal region is essential
for proper profilaggrin processing. The hypothesis is supported by
the finding of nonsense mutation p.Lys4022X in the C-terminal
incomplete filaggrin repeat. In the epidermis of patients carry-
ing this mutation, levels of profilaggrin/filaggrin peptides are
remarkably reduced, even though FLG mRNA expression is not
reduced significantly and expresses mRNA-inclusive messages
derived from both the wild-type alleles and the mutant alleles [23].
All the truncation mutations are now generally regarded as lead-
ing to serious loss of filaggrin peptides, resulting in absence of
genotype/phenotype correlations with respect to FLG mutations
in IV or AD.
Prevalent filaggrin mutations: distinct in each race
Since the establishment of sequencing methods for the entire FLG
coding region in 2006 [4.13.24], approximately 40 loss-of-function
FLG mutations have been identified in IV and/or AD [5.21] (Ficure 4).
The FLG mutations were initially identified in European fami-
lies [4,24,25]. Using this methodology, we identified two novel FLG
mutations (3321delA and §2554X) in four Japanese families with
IV [26]. Subsequently, six additional FLG mutations in Japanese
have been identified (26-31]. The study was repeated for other Asian
populations, including Chinese [32], Taiwanese [28] and Korean

S

populations [33]. Only two mutations (R501X and E2422X) were
reported in both European and Asian populations [31,32]. Further
haplotype analysis of the European-specific mutation R501X in the
Japanese family showed that the mutation was not inherited from
a European ancestor, but recurred de novo in Japan [31]. In Asian
populations, 3321delA was found in all four East Asian popula-
tions [26,28,31-33], and Q2417X was reported in both Chinese and
Taiwanese populations [28,32]. These results revealed the differences
in filaggrin population genetics between Europe and Asia (Ficure 4).

Filaggrin mutations: a major predisposing factor
for AD
Aropic dermatitis is a common chronic pruritic inflammarory skin
disease with high prevalence in developed countries, and it is respon-
sible for a notable share of morbidity and health service costs [34,3].
A systematic review estimated the annual costs of treating AD in
the USA at US$364 million—3.8 billion (36). The costs will likely
increase in proportion to the increasing prevalence of the disease [36].
The clinical manifestations of AD vary with age [35.37]. In infancy,
the lesions are generally more acute and usually present on the face
and scalp. Serous exudates or crusted erosions frequently appear
secondary to scratching. During childhood, AD lesions involve flex-
ures, nape and the dorsal aspects of the limbs. In adolescence and
adulthood, lichenified plaques usually affect flexures, head and neck.
Atopic dermatitis has been regarded as a genetically complex
disorder with a strong environmental component [2]. There are two
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Flgure 3. Clinic pathologlcal features of cchthyosm vulgarls. (A) Ichthyosis vulgaris
(IV) with dry and scaly skin on the pretibial region, and IV associated with (B) apparent
palmoplantar hyperlmeanty (C & E) Hematoxylin and eosin staining. An IV patient
heterozygous for 3321delA (C) shows a lack of granular layers in the epidermis, where
only a small amount of basophilic substance, resembling keratohyalin, is occasionally
‘present. In contrast, normal control skin (E) has abundant keratohyalin granules in the

granular layers. (D & F) In immunohistochemica
shows a marked reductlon in stalmng for filagg
strongly. ,

proposed hypotheses explaining the mechanism [35]. One suggests
that the primary defect is immuno-aberration, evidenced by serum
IgE elevation and eosinophilia; thus, skin barrier dysfunction is a
consequence of local inflammation. The other proposes that AD
originates from an intrinsic defect of epithelial cells that leads to
barrier dysfunction; thus, the immunologic aspects are epiphe-
nomena. A main hallmark of AD is xerosis. Transepidermal water
loss, the measurement of skin barrier function, was reported to
increase in AD patients due to skin barrier defect [38,39). Significant
correlations were observed between penetration rates of a hydro-
philic dye and elevated IgE levels in patients with severe AD [40].
Taken together, these findings strongly support the hypothesis
that patients with AD have a skin barrier defect.

Before 2006, despite considerable efforts to elucidate genes asso-
ciated with AD susceptibility, no gene with strong, reproducible
effect was identified [41]. There were three clues suggesting that
FLG mutation plays an important role in the pathogenesis of AD.
First, to dermatologists, it has been well understood that AD
often occurs in IV patients, although the precise mechanisms of
this co-occurrence remain unknown [42-44]. Second, the linkage
of AD to a chromosome locus on 1q21 where FLG resides was
also demonstrated [45]. Third, the skin in patients with AD also
demonstrates decreased filaggrin expression at both the mRNA
and the protein levels [46,47). In addition, it has been long pro-
posed that the permeability barrier abnormality in AD is not just
an epiphenomenon, but rather is an important driver of disease
activity (48], and that the severity of the permeability barrier abnor-
mality precisely parallels the AD severity [39.49]. Therefore, the
two loss-of-function mutations in FLG found initially in IV were
soon applied in the genetic investigation of families with AD [24].

ining, a 3321delA heterozygote (E)
whereas normal control skin (F) stains

Palmer ez al. first reported that decreased
or absent FLG expression due to loss-of-
function mutations leads to impaired bar-
rier function that manifests as AD [24]. They
found that AD manifested in heterozygous
carriers of two null FLG mutations (R501X
and 2282del4) with a relative risk (odds ratio
[OR]) for AD of 3.1, suggesting a causal
relationship. Thereafter, numerous studies
established FLG as a major genetic predis-
posing factor for AD [13,50-56]. Baurecht ez al.
performed a meta-analysis of nine studies of
FLG mutations and AD, focusing on the
mutations prevalent in Europeans (R501X
or 2282del4) [41). They found an overall
OR 0of 4.09 (95% CI: 2.64—6.33) from the
case—control studies and a summary OR of
2.06 (95% CI: 1.76-2.42) from the family
studies [41]. The strong association between
FLG mutations and AD was a milestone in
the genetic study of the complex allergic
disorders. The FLG gene is the most likely
candidate as a predisposing gene for AD so
far. Based on the information of population-
specific FLG mutations, many cohort stud-
ies on FLG mutations in AD were performed, and approximately
25-50% of AD patients were revealed to harbor FLG mutations
as a predisposing factor [3].

One factor affecting the frequency of FLG mutation is the
number of identified mutations among specific population. For
example, we first identified two null mutations (p.Ser2554X and
c.3321delA) among 11 patients from seven Japanese IV fami-
lies, but only 5.6% of 143 AD patients carried either or both of
these FLG mutations [26]. We identified two additional novel FLG
mutations (S2889X and $3296X) in seven Japanese families with
IV 27, and more than 20.6% of patients in 102 AD cases carried
either or both of these FLG mutations [27]. Eight FLG variants
have been identified in the Japanese population, including six
that are prevalent, and we found that approximately 27% of the
patients in our Japanese AD case series carry at least one of these
eight FLG mutations and that these variants are also carried by
3.7% of Japanese general control individuals [23]. Thus, informa-
tion on population genetics of FLG mutation is essential for global
FLG mutation screening in AD patients.

As mentioned above, every population is likely to have a unique
set of FLG mutations. FLG mutation screening in one population
using the FLG mutations reported in other populations may result
in false-negatives. For example, Ching ez a/. found that the FLG
mutations that are prevalent in Caucasian and non-Chinese Asian
populations are rarely found in childhood AD among the Chinese
(57). It is therefore important to identify novel FLG mutations in
different populations by sequencing this important AD candidate
gene in order to establish global population genetic maps that will
facilitate research into that gene’s pathogenetic roles for AD.

Flaky tail (ft/ft) is a spontaneous autosomal-recessive mutation

4
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in mice that results in dry, flaky skin and annular tail in the neo-
natal period. Presland ez a/. demonstrated that ft/ft mice express
alower-molecular-weight form of profilaggrin (220 kDa) instead
of the normal high-molecular profilaggrin (~500 kDa). In addi-
tion, the abnormal profilaggrin is not proteolytically processed
into profilaggrin intermediates or into filaggrin. The absence of
filaggrin and, in particular, the hygroscopic filaggrin-derived
amino acids that function in epidermal hydration, underlies the

WWW.EXpert-r eviews.com

dry, scaly skin characteristic of ft/ft mice. This animal model
provides a tool for understanding the role of filaggrin in nor-
mal epidermal function (s8]. Recently, Fallon ez a/. demonstrated
that topical application of allergen to flaky-tail (ft/ft) mice results
in cutaneous inflammatory infiltrates and enhanced cutaneous
allergen priming, resulting in development of allergen-specific
antibody and cytokine responses mimicking human AD. These
data provide experimental evidence for the barrier hypothesis of
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AD pathogenesis [59].

FLG mutations also associated with asthma _
Atopic dermatitis is typically the first clinical manifestation of
allergic diseases, followed by the development of asthma and aller-
gic rhinitis. Atopic diseases progress in the so-called ‘atopic march’,
which suggests that these various atopic diseases share a common
etiology. Previous studies demonstrated that 70% of patients with
severe AD developed asthma, compared with 30% of patients with
mild AD and approximately 8% of the general population [60].

Filaggrin is expressed in the vestibulum of the nose, but not in
the nasal or tracheal mucosae [61,62]. How does the FLG mutation
confer the pathogenesis of asthma? An AD animal study found
that dysfunction of the skin barrier not only enhances sensitiza-
tion to allergens, but also leads to systemic allergic responses such
as increased IgE levels and airway hyperreactivity [63]. Recent
studies hypothesized that skin barrier defects caused by FLG
mutations allow allergens to penetrate the epidermis and inter-
act with antigen-presenting cells, the Langerhans cells and der-
mal dendritic cells, which might further initiate Th2 immune
response and lead to the development of atopic disorders including
AD, asthma and allergic rhinitis [64.65].

Studies in European populations have reported that variants
in the FLG gene are associated with eczema and concomitant
asthma [50-54] or eczema alone [25]. One recent meta-analysis
showed that FLG mutations are significantly associated with
asthma (OR: 1.48; 95% CI: 1.32-1.66). However, although
strong effects for the compound phenotype asthma plus eczema
(OR: 3.29; 95% CI: 2.84-3.82) were observed, there appears

to be no association with asthma in the absence of eczema [66).

Prospective treatments for AD based on skin barrier
function & recent FLG mutation studies
In light of the discussion above, the restoration of skin barrier
function seems a feasible and promising strategy for prophylactic
treatment of AD patients with FLG mutation. Clinically, there are
efficient methods for restoring skin barrier function, including
topical application of general moisturizer or specific lipid replace-
ment therapy [67). When used under nursing supervision, moistur-
izers have been shown to alleviate the need for topical steroids [68].
In addition, the topical application of ceramide dominant lipid
replacement therapy has been proven effective in improving skin
barrier defects and reducing AD severity significantly in child-
hood AD patients [39). Most FLG mutations are caused by pre-
mature termination codons, which account for numerous genetic
disorders, such as thalassemia and cystic fibrosis. Recently, several
pharmaceuticals targeting nonsense mutations in genetic diseases
have been developed [69]. For example, PTC124, a small molecule
designed to induce ribosomes to selectively read through prema-
ture stop codons during mRNA translation, has been proven
effective in restoring the function of the CFTR gene, whose muta-
tion accounts for some cases of cystic fibrosis [70]. Skin diseases,
such as IV and AD, might be even more feasible targets through
topical application of similar pharmacological agents.

A large number of patients with severe AD do not have the

FLG mutation, and there are healthy subjects with FLG muta-
tions who do not express AD or IV lesions. This fact suggests
additional factors modulating the expression of the FLG gene. The
skin lesion of AD is characterized by the overexpression of Th2
cytokines, including IL-4 and IL-13 [71,72). Howell ez a/. showed
that in vitro keratinocytes exhibited significantly reduced filaggrin
gene expression in the presence of IL-4 and IL-13 [73]. Therefore,
it is possible that correction of the Th2 immune response could
increase filaggrin gene expression and thereby restore the skin
barrier function. For example, Kootiratrakarn ez a/. found that
oligodeoxynucleotides containing CpG motifs prevented the
development of Th2-mediated responses in a new, unique mouse
cutaneous eosinophilic inflammation model (74]. The screening
of other compounds or approaches to restore filaggrin expression
in the epidermis may lead to the new development of efficient
treatments for [V and AD.

Expert commentary
The concept that epidermal barrier dysfunction caused by FLG
mutations is a major contributor to the pathogenesis of AD has
opened up a new era. As mentioned above, most FLG muta-
tions are specific to each population, such as Europeans [13],
Japanese [27.29-30], Singaporean—Chinese [32] and Taiwanese [28].
It is therefore important to establish global population genetics
maps of FLG mutations for the development of better diagnostic
tests or the further design of novel treatments for IV and AD.
No genotype/phenotype correlation has been observed in
patients with FLG mutations. Mutations at any site within FLG
appear to cause significant reductions in profilaggrin/filaggrin
peptide amounts in the epidermis. Our recent study showed that
mutations in C-terminal imperfect filaggrin repeats also con-
tribute to significant phenotypes, which supports the hypothesis
that the C-terminal region is essential for proper processing of
profilaggrin into filaggrin peptides [29]. Further study on the exact
functions of each genetic component within FLG is necessary for
a better understanding of skin barrier function.

Five-year view

Although methods are underway to restore skin barrier func-
tion, the concept of FLG mutation has not yet translated into
therapeutic advances. Two therapeutic strategies focusing on FLG
mutation were proposed, and related research is well underway in
McLean’s laboratory [75]. One strategy is to upregulate FLG gene
expression by small molecules acting on pathways controlling
FLG gene expression, and the other strategy is to read through
premature termination codon mutations by interfering ‘nonsense-
mediated decay’, which is a cellular mechanism of mRNA surveil-
lance that functions to detect nonsense mutations [76]. We expect
therapeutic modalities focusing on FLG mutation, especially topi-
cal agents, to evolve in coming years.

Atopic dermatitis is a genetically complex disorder compli-
cated by a strong environmental component (2], so developing
diagnostic criteria and classification is challenging. Although
various validated sets of diagnostic criteria have been developed
over the past few decades, there is disagreement about these [77].

Expert Rev. Dermatol. 5(3), (2010)
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Review

Brenninkmeijer ez al. performed a methodological review of
27 validation studies of various diagnostic criteria for AD [78].
Two frequently quoted criteria focusing on clinical presentation
showed variable sensitivity and specificity. Hanifin and Rajka
diagnostic criteria sensitivity and specificity ranged from 87.9 to
96.0% and from 77.6 to 93.8%, respectively. The UK diagnos-
tic criteria showed sensitivity and specificity ranging from 10 to
100% and 89.3 to 99.1%, respectively [78]. The FLG mutation
study is expected to have a major impact on the diagnostic criteria.
In addition, we expect that in the future, classification of AD
may be based on the presence or absence of FLG mutations. Such
disease classification and treatment focusing on FLG mutation

Key issues

» Filaggrin, processed from profilaggrin, is a key structural protein that facilitates terminal differentiation of the epldermls and formation

will complement each other.
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SUMMARY

In most stem cell systems, the organization of the
stem cell niche and the anchoring matrix required
for stem cell maintenance are largely unknown. We
report here that collagen XVII (COL17A1/BP180/
BPAG?2), a hemidesmosomal transmembrane colla-
gen, is highly expressed in hair follicle stem cells
(HFSCs) and is required for the maintenance not
only of HFSCs but also of melanocyte stem cells
(MSCs), which do not express Col717a1 but directly
adhere to HFSCs. Mice lacking Col17a1 show prema-
ture hair graying and hair loss. Analysis of Col17a1-
null mice revealed that COL17A1 is critical for the
self-renewal of HFSCs through maintaining their
quiescence and immaturity, potentially explaining
the mechanism underlying hair loss in human
COL17A1 deficiency. Moreover, forced expression
of COL17A1 in basal keratinocytes, including HFSCs,
in Col17a1-null mice rescues MSCs from premature
differentiation and restores TGF-B signaling, demon-
strating that HFSCs function as a critical regulatory
component of the MSC niche.

INTRODUCTION

The stem cell microenvironment, or niche, is critical for stem cell
maintenance (Li and Xie, 2005; Moore and Lemischka, 2006).
Accumulating evidence has confirmed that cell-cell and cell-
extracellular matrix adhesion within the niche is essential for
the establishment and maintenance of niche architecture in
different stem cell systems (Raymond et al., 2009). Adhesion to
the underlying extracellular matrix has been suggested as an
important factor in epidermal stem cell maintenance (Green,

1977; Watt, 2002), but a specific stem-cell anchoring matrix for
stem cell maintenance has not yet been identified. Hair follicle
stem cells (HFSCs) are found in the hair follicle bulge, a distinct
area of the outer root sheath that overlies the basement
membrane at the lower permanent portion in mammalian
hair follicles (Blanpain and Fuchs, 2006; Cotsarelis, 2006). The
HFSC population is composed of multipotent keratinocyte
stem cells and is responsible for the cyclic regeneration of hair
follicles as well as a transient supply of progeny to the interfollic-
ular epidermis (IFE) and to sebaceous glands after wounding
(Blanpain and Fuchs, 2006; Cotsarelis, 2006; Oshima et al.,
2001). The HFSC population in the bulge area normally supplies
a short-term reservoir to the secondary hair germ (subbulge
area), which is located just below the bulge area but above the
dermal papilla and corresponds to the lowermost portion of
resting hair follicles (Figure S1A available online; Greco et al.,
2009). Melanocyte stem cells (MSCs), which are originally
derived from the neural crest, also reside in the follicular bulge-
subbulge area (Figure S1A). MSCs supply pigment-producing
melanocytes to the hair matrix during each hair cycle to maintain
hair pigmentation (Nishimura et al., 2002). Therefore, the bulge-
subbulge area houses at least two distinct stem cell populations
with different origins. However, it is still unclear to what extent
these two different stem cells interact to promote each other’s
maintenance.

Hemidesmosomes are multiprotein adhesion complexes that
promote stable epidermal-dermal attachments. The transmem-
brane protein collagen XVII (COL17A1/BP180/BPAG?2) is a struc-
tural component of the outer hemidesmosomal plaque, which
projects beneath hemidesmosomes in epidermal basal keratino-
cytes into the underlying basement membrane to mediate
anchorage (Masunaga et al., 1997; Nishizawa et al., 1993; Powell
et al., 2005). In patients with COL77A1 deficiency, a subtype of
congenital junctional epidermolysis bullosa blistering disease,
hemidesmosomes are poorly formed (McGrath et al., 1995;
Nishie et al., 2007) and there is a characteristic premature
hair loss (alopecia) with hair follicle atrophy (Darling et al.,
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Figure 1. Hair Graying and Hair Loss Are Preceded by Depletion of MSCs in Col17a1 Deficiency
(A) Macroscopic phenotype of Col17a1~’~ mice at different times as noted and of Col17a1*'~ littermates at 10 months of age.

(B) Deletion of Col17a1 affects the maintenance of MSCs in the bulge-sububulge area. The distribution and morphology of Dct-lacZ-expressing melanoblasts is
normal in the bulge-subbulge area of 5-day-old Col17a7~/~ mice (a and d). At 12 weeks of age, abnormal melanocytes with dendritic morphology were found in
the bulge area of Col17a1~/~ anagen follicles (e). Inset in (e) shows magnified view of ectopically pigmented melanocytes in the hair follicle bulge-subbulge of
Col17a1~’~ mice. By 5 months of age, Dct-lacZ-expressing cells were lost both in the bulge-subbulge area and in the hair bulb (f). Bulge-subbulge areas are
demarcated by brackets.

(C) COL17A1 expression in the bulge area (demarcated by brackets). (a) COL17A1 (a: red) is expressed in KRT15 (a: green)-expressing bulge keratinocytes and in
basal cells of the IFE (b: green) in wild-type skin. (b) Dct-lacZ-expressing melanoblasts (b: red) are located close to COL17A1* basal cells (b: green) in wild-type
follicles. Scale bars represent 40 pm.

(D) RT-PCR analysis; the level of Col77a1 mRNA is below the detection limit in flow cytometry-sorted GFP-tagged melanoblasts.

(E) Light and electron micrographs of Dct-lacZ-expressing melanoblasts in the bulge area (MSCs). The arrowheads in (a) and (b) point to Dct-lacZ-expressing
melanocytes in the bulge areas in semithin sections of the skin. The ultrastructural high-power view is of the boxed areas shown in (b) and (c). X-gal reaction
products accumulated in association with the nuclear membrane (d: white arrows). Dct-lacZ-expressing melanocytes lack hemidesmosome formation in the
basement membrane zone (f), whereas adjacent keratinocytes form mature hemidesmosomes in the bulge area (e: red arrows).

(F) Dct-lacZ-expressing melanoblasts (blue) are in direct contact with keratin 15 (KRT15)-expressing keratinocytes in the bulge area (yellow brown). Scale bar

represents 20 pm.

M, melanocytes in bulge; K, keratinocytes in bulge; Sg, sebaceous gland; IFE, interfollicular epidermis. See also Figure S1.

1997; Hintner and Wolff, 1982) that suggests that COL17A1
plays a role in hair follicle homeostasis. We previously reported
premature hair loss in Col17a1-deficient mice (Nishie et al.,
2007), although the precise underlying mechanism is unknown.
In this study, we used Col717a7 knockout mice and COL17A1-
expressing transgenic mice to show that Col717a1 plays essential
roles in the maintenance of HFSCs, which provide a functional
niche for MSCs.

RESULTS

Defective MSC Maintenance and Resultant Hair Graying
in Col17a1-Null Mice

To understand the role of collagen XVII in hair follicle homeo-
stasis, we performed a careful chronological analysis of Col717a7-
deficient mice. As shown in Figure 1A, Col17a1 null mice showed

2 Cell Stem Cell 8, 1-11, February 4, 2011 ©2011 Elsevier Inc.
STEM 834

premature hair loss generally preceded by extensive hair graying.
Conversely, heterozygous mice displayed a normal phenotype.
The hair coats in Co/77a7-null mice were indistinguishable from
control littermates for 8 weeks after birth. However, progressive
hair graying started from the snout at around 12 weeks of
age and then became pronounced on their backs at around
4-6 months of age and was associated with a sparser hair distri-
bution that was subsequently followed by progressive and more
extensive hair loss (Figure 1A). It is notable that these hair
changes were not accompanied or preceded by any apparent
changes in the skin. Skin friction, such as attempting to artificially
peel neonatal skin, can induce skin erosions in Col77a1-null mice
(Nishie et al., 2007) but did not significantly accelerate hair gray-
ing or hair loss. Thus, it is unlikely that the hair changes are
a secondary outcome of skin detachment but is more likely that
the hair graying and hair loss are programmed through the
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Col17a1 deficiency in the hair follicles. Our previous studies
demonstrated that defective maintenance of MSCs in the hair
bulge causes hair graying (Nishimura et al., 2005). Thus, we first
examined the distribution and morphology of MSCs in Col17a1-
null mice by using a melanocyte-targeted Dct-lacZ transgene
(Mackenzie et al.,, 1997). As shown in Figures 1Ba and 1Bd,
Dct-lacZ-expressing cells showed a normal morphology and
distribution in the bulge area during hair follicle morphogenesis
until initiation of the hair regeneration cycle both in Col17a1*/~
and in Col17a1™'~ mice. At around 12 weeks after birth, pig-
mented melanocytes with a dendritic morphology that expressed
melanocyte markers appeared in the hair follicle bulge of
Col17a1™'~ mice (Figure 1Be; Figure S1Be). At 5 months of
age, Dct-lacZ-expressing cells were almost completely lost in
the follicle bulge area as well as in the hair bulbs of Col17a1-
null mice (Figure 1Bf; Figure S1Bf). These data demonstrate
that MSC maintenance is defective in Col17a7-deficient mice
and that this mechanism results in progressive hair graying.

Preferential Expression of COL17A1 in HFSCs

but Not in MSCs

Collagen XVII is a hemidesmosomal transmembrane collagen
expressed by basal keratinocytes of the IFE (McGrath et al.,
1995). However, neither the expression of mouse Col717a1 nor
hemidesmosome assembly in melanocyte lineage cells and/or
in bulge keratinocytes has been reported, so we first examined
the expression of mouse COL17A1 protein in hair follicles by
using immunohistochemistry. As shown in Figure 1Ca and
Figures S1C and S1D, mouse COL17A1 was preferentially local-
ized along the dermal-epidermal junction of bulge keratinocytes
that express markers for HFSCs but not in follicular keratinocytes
outside of the bulge area. However, the localization of COL17A1
in basal cell surface of MSCs could not be determined via normal
immunohistochemical methods, because the attachment site of
MSCs to the basement membrane is limited (Figure 1Cb). We
therefore examined Col717a71 expression by using RT-PCR in
flow cytometry-sorted GFP* cells from melanocyte lineage-
tagged GFP transgenic mouse skin (Osawa et al., 2005). In sharp
contrast to the significant expression of Col717a1 in control kera-
tinocytes, expression in GFP* melanocytes was not detectable
(Figure 1D). To support this finding, we used transmission
electron microscopy to check whether Dct-lacZ-expressing
melanoblasts within the bulge area in wild-type animals have
hemidesmosomes. As shown in Figure 1E, hemidesmosomes,
which form regularly spaced electron-dense structures along
the epidermal basement membrane zone (McMillan et al.,
2003), were completely absent in Dct-lacZ-expressing melano-
blasts in the bulge (Figures 1Ed and 1Ef), whereas typical hemi-
desmosomes were seen overlying the basal plasma membrane
in surrounding bulge keratinocytes (Figure 1Ee). As these bulge,
keratinocytes adjacent to Dct-lacZ-expressing melanoblasts
express HFSC markers (Figure 1F), these data indicate that
HFSCs but not MSCs are anchored to the underlying basement
membrane via hemidesmosomes. We also confirmed the
localization of COL17A1 to hemidesmosomes in basal keratino-
cytes but not in melanocytes by immunogold electron micro-
scopic analysis of human epidermis (Figure S1E). Therefore,
we conclude that MSCs do not express COL17A1 and do not
assemble any discernible hemidesmosomal structures at their

surface. These findings suggested that the depletion of MSCs
in Col17a1-null mice is caused by defects in the HFSC popula-
tion that forms the main supportive cells surrounding MSCs.

Abrogated Quiescence and Immaturity of HFSCs Result
in Depletion of HFSCs in Co/17a1-Null Mice

Previous studies on wild-type mouse skin reported that mature
hemidesmosomes exist at the follicular-dermal junction just
below the level of sebaceous glands (Hojiro, 1972) and in hair
germs of telogen hair follicles (Greco et al., 2009). Consistently,
we found mature hemidesmosomes at these junctions within
the hair follicle bulge (Figure 1Ee). However, mature hemidesmo-
somes have not been found in the transient portion of hair folli-
cles (Hojiro, 1972), where COL17A1 expression is undetectable.
These data suggested that hemidesmosome formation is impor-
tant for anchoring of HFSCs located in the bulge-subbulge area
of hair follicles to the basal lamina.

To test whether the abnormalities observed in Col17a1 defi-
ciency are specifically caused by any functional defects of
HFSCs or by their detachment from the basal lamina, we first
carefully examined the junctions of hair follicles in the dorsal
skin of Col717a71-null mice and their controls by transmission
electron microscopy (TEM). A significant number of hemidesmo-
somes are poorly formed in the bulge keratinocytes of Col17a1-
deficient mice (Figure S2B), as seen in epidermal keratinocytes
of those mice (Nishie et al., 2007). However, we did not find
any significant microscopic separation at the follicular-dermal
junction in sections of trunk skin from Col17a7-null mice (Fig-
ure 2; Figures S2A and S2B). Furthermore, we did not find signif-
icant inflammatory cell infiltrates or any signs of cell death, such
as the appearance of eosinophilic cell bodies or TUNEL-positive
or cleaved caspase 3-positive cells, at the follicular-dermal junc-
tion area of Col717a7-null mouse skin (Figure S2C and data not
shown). Basement membrane thickening/reduplication, a sign
of repeated regeneration of the epidermal and dermal junction,
was also not found. These findings suggested that the hair gray-
ing and hair loss phenotypes in Col717a1-null mice cannot be
explained simply by HFSC detachment from the basal lamina
but instead may result from dysregulation or altered cell proper-
ties of HFSCs caused by Col77a1 deficiency.

To examine whether HFSCs show any dysregulation caused
by Col17a1 deficiency, we carefully examined the hair follicle
cycle progression, which alternates phases of growth (anagen),
regression (catagen), and rest (telogen) in synchronization with
the activation status of HFSCs, in Col77a1-null mice. While the
first short telogen phase was transiently seen around 22 days
after birth both in Col77a1-null mice and in control littermates,
the second telogen phase was significantly shortened in
Col17a1-null mice (Figure 2, summarized on the right side). At
6 weeks of age, just before normal hair follicles on the dorsal skin
enter the second telogen phase, most hair follicles in Col17a1~/~
mice were not distinguishable from those in Col77a1*~ mice
either in morphology or in hair cycle progression. The second tel-
ogen phase is normally seen at around 7 weeks after birth and
lasts about 4-5 weeks over the entire skin surface of wild-type
mice (Paus and Cotsarelis, 1999; Paus et al., 1999). This phase
was shortened to less than 2 weeks in all Co/17a7~/~ mice exam-
ined at 8-12 weeks of age, whereas such an aberrant pattern
was seen in only 14.3% of Col17a1*/~ mice. The subsequent
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anagen phase was rather prolonged in Col17a1™~ mice

compared to their control littermates. These findings suggest
that HFSCs are unable to remain quiescent for a sufficient time
from the second telogen phase and thereafter in the absence
of Col17a1.

To search for early events or changes in HFSCs in Col17a1-
null mice, we performed immunohistochemical analysis with
four different markers for HFSCs, keratin 15 (KRT15), CD34,
a6-integrin, and S100A6, at different stages (Figure 3A; Fig-
ure S3; Morris et al., 2004; Tumbar et al., 2004). At 5 weeks of
age, there was no difference in the expression of HFSC markers
or the number of HFSC marker-positive cells between control
and Col717a7-null mice. However, at around 8 weeks of age,
HFSC marker-expressing cells were absent in the bulge area in
selected null mouse hair follicles (Figures 3A and 3B; Figure S3A),
and the number of these marker-deficient follicles increased
over time. By 6 months of age, the HFSC population had been
lost in most hair follicles of Col17a7-null mice (Figure S3B).
Flow cytometric analysis also confirmed that the a6-integrin™o"
CD34* population (Blanpain and Fuchs, 2006), which represents
basal HFSCs in the bulge area, was diminished (Figure 3C). Hair
follicle atrophy with the loss of hair follicle structures were also
observed once the HFSC population was diminished (Figure 3D).
These data indicate that Col77a7-null HFSCs fail to maintain
their stem cell characteristics, including their quiescence and
immaturity, after the second telogen phase, resulting in hair
follicle atrophy. Conversely, epidermal hyperplasia was also
transiently found in some focal areas of the Col77a7-null skin
at around 6 months of age (Figure 3D, arrowheads) but was
normalized and subsequently became atrophic at later stages,
which suggests that the epidermal stem cell population might
also be gradually losing its self-renewing potential with age in
Col17a1 deficiency compared to controls.

To examine whether HFSC maintenance fails because the
cells lose their immaturity or quiescence in the absence of
Col17a1, we analyzed the expression of markers for keratinocyte
differentiation and proliferation in Col17a7-null hair follicles.
Interestingly, keratin 1 (KRT1), a differentiation marker for the
IFE, was ectopically expressed in the bulge area of Col17a7-
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H null mice at 8 weeks of age (Figure 4A).
KRT1-positive cells in the bulge areas of
affected hair follicles were found in 60%
of Col17a1-null mice but not in control
mice at that age. Ectopic expression of
other epidermal differentiation markers,
such as involucrin and KRT10, was also
present in the bulge areas of Col717a7-null mice at 8 weeks of
age (Figure S4A). Furthermore, Ki67-positive cells were located
in the bulge area of Col77a7-null mice, and those Ki67-positive
cells showed an absent or reduced level of KRT15 expression
(Figure 4A).

The maintenance of quiescence and immaturity of somatic
stem cells in tissues is a prerequisite for sustained stem cell
self-renewal, and which can be assessed for HFSCs by means
of a colony-formation assay in vitro (Barrandon and Green,
1987; Oshima et al., 2001). We therefore took advantage of the
type of assay by using neonatal epidermal keratinocytes, which
contain the presumptive HFSC population (Nowak et al., 2008),
to assess the self-renewal potential of that population in
Col17a1-null mice. As shown in Figures 4Ba and 4Bb, Col17a1
homozygous null keratinocytes showed defects in colony-form-
ing ability on 3T3-J2 feeder cells compared to keratinocytes from
control mice. Colonies larger than 0.5 mm in diameter were
significantly decreased in number with Col77a7-null keratino-
cytes (Figure 4Bc). Although Col77a7-null keratinocytes showed
defective binding ability to collagen I-coated dishes (Figure S4B),
they showed no detectable defects in their ability to directly
adhere to 3T3-J2 feeder cells (Figure 4Bd). These data strongly
suggest that Col17a7-null keratinocytes have a much lower
renewal capability than control keratinocytes. Taken together
with the in vivo findings, we conclude that COL17A1 is critical
for the self-renewal of HFSCs by maintaining their immaturity
and quiescence.

Loss of TGF-B Expression by HFSCs and the Associated
Differentiation of Adjacent MSCs

To examine whether the early changes in HFSC in Col17a1
mutant mice affects the maintenance of MSCs in the hair follicle
bulge, we carefully examined MSCs in hair follicle bulge areas in
Col17a1-null mice beginning to show HFSC defects. At 8 weeks
of age, when HFSCs in Col77a1-null mice are prematurely acti-
vated, KIT* melanoblasts within the bulge area prematurely
coexpressed TYRP1, a melanocyte differentiation marker, in
Col17a1-null mice but not in control mice (Figure S5A). At around
12 weeks of age, pigmented melanocytes with a mature
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