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To the Editor:

Epidermolytic hyperkeratosis (EHK) (OMIM#113800), also termed as
bullous congenital ichthyosiform erythroderma, is a rare genetic disorder
of keratinization. We report a generalized EHK case showing extremely

severe palmoplantar hyperkeratosis with digital contractures.

A 45-year-old Japanese man visiting our hospital reported that he had
been born with erythroderma. He had exhibited skin blistering, erosions
and hyperkeratosis on the erythrodermic skin since infancy. The blistering
and erosion gradually diminished with age. He had developed severe
palmoplantar hyperkeratosis and digital contractures at the age of 7 years.
At the age of 24 years, surgical operation was performed to improve the
contraction of his toes. Physical examination revealed hyperkeratosis on
the whole body, especially at the ankles, elbows and knees, and erosions
were observed on the inner side of the elbows and knees (Fig. 1a-d).
Palmoplantar hyperkeratosis was severe with digital contracture. The
morphology of his hair, nails and teeth were normal. There was no known
family history of skin disease. Skin biopsy from the left upper arm
showed severe granular degeneration in all the suprabasal layers (Fig. 1e).
Ultrastructural analysis revealed clumping of the intermediate filaments

within keratinocytes of the suprabasal layers (Fig. 11).

Direct sequencing of the whole coding regions of KR7! and KRT10
(GenBank accession numbers: NT029419.11. NT010755.15) was

performed as previously described' and a novel heterozygous KRT']

missense mutation ¢.1457T>G (p.Leud486Arg) was identified in exon 7.

This mutation was verified by restriction enzyme Mspl digestion. The

mutation p.Leu486Arg was not found in 100 normal, unrelated Japanese
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alleles (50 healthy unrelated individuals) by sequence analysis (data not

shown).

The present novel KRT1 mutation p.Leu486Arg is in the 2B segment of
keratin 1 (Fig. 2a, b). This mutation occurred within the highly conserved
helix termination motif (HTM) of the K1 protein. The palmoplantar
hyperkeratosis was extremely severe. It is noteworthy that another
mutation at the identical position of K1, p.Leu486Pro, was reported in
EHK with severe palmoplantar hyperkeratosis (Fig. 2¢) and digital
contracture, and the affected individuals exhibited clinical features similar
to our patient’s.” Thus, our data further suggest that a non-conservative
amino-acid change at codon 486 of K1 results in a severe form of
generalized EHK.

The rod domains consist of four alpha-helical segments that possess a
repeating heptad amino acid residue peptide motif (a-b-c-d-e-f-g)n that
has the potential to form a two-chain coiled coil with a corresponding
sequence (Fig. 2d).”” The residues at positions a,d,e,g are considered to

be highly sensitive to mutations.®

The present patient with generalized EHK had some of the most severe
palmoplantar hyperkeratosis of previously reported cases with mutations
in KRT1. The leucine residue at codon 486 is located in the a position of
the heptad repeat at the C-terminal end of the 2B helix and the substitution
of arginine for leucine alters the character of amino acid seriously. Thus, it
1s reasonable to say that this mutation caused generalized EHK with
severe palmoplantar hyperkeratosis, compared with that seen in patients

harbouring mutations in the other residues.
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26 EHK cases including the present case with point mutations at the
helix initiation motif (HIM) and HTM of KRT1 have been reported to date
(Fig. 2c) (Human Intermediate Filament Database,
http://www.interfil.org/). Only 9 cases including the present case were
diagnosed as generalized EHK with severe palmoplantar hyperkeratosis,
and 7 cases out of 9 harboured missense mutations in the heptad repeat
position a, d, e and g. These facts indicate that the mutation site and the
nature of amino acid alterations in K1 may determine the level of severity

of palmoplantar hyperkeratosis.
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FIGURE LEGENDS

Fig. 1. Clinical, histopathological and ultrastructural features of the
patient. Severe diffuse hyperkeratosis and scales are seen on the palms (a)
and soles (b). Warty brown hyperkeratosis and scales are present on the
margins and the dorsa of the foot (c). Generalized erythroderma and
scaling on the trunk (d). Histopathological examination revealed
acanthosis and hyperkeratosis, coarse keratohyaline granules, and severe
granular degeneration in the entire spinous and granular layers of the
epidermis (e). Ultrastructurally, clumping of the keratin filaments (arrows)

is seen within an upper epidermal keratinocyte of the epidermis (f).

Fig 2. Summary of mutations in the helix initiation motif (HIM) and helix
termination motif (HTM) of K1 from Human Intermediate Filament
Database (http://www.interfil.org/). (a) Molecular structure of K1. (b)
Heptad repeats in HIM and HTM of K1 and mutation sites. The majority
of cases (22 out of 26) had mutations in the heptad repeat position a, d, e
and g. The present mutation is located at the a position leucine residue at
codon no.486 (red characters) in the C-terminal-most heptad repeat. (c)
Summary of the KRT/ mutations in HIM and HTM, alterations of
hydropathy index and levels of palmoplantar hyperkeratosis. Eight cases
including the present one were reported as showing severe palmoplantar
hyperkeratosis and 7 of those 9 patients harbored mutations in the
important a, d, ¢ and g position of heptad repeats. Mutations in this
486-leucine residue may seriously perturb the stability of keratin
intermediate filaments. The substitution of arginine for leucine alters the
character of amino acid from that of a hydrophobic, apolar amino acid
(hydropathy index of leucine: +3.8) to that of the most hydrophilic, basic
amino acid (hydropathy index of arginine: -4.5). (d) Heptad structure of
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the rod domain: Schematic of a transverse cut through the last heptad
(abcdefg) of the HTM of K1 and K10, showing hydrophobic interactions
between positions @ and d (dashed lines) and ionic hydrogen interactions
between positions e and g (dotted lines). Position a is occupied by apolar,
hydrophobic amino acids. The a residues are thought to interact with
amino acids located in the d position of the partner molecule of the
heterodimer through hydrophobic interactions which stabilize the
two-chain coiled-coil molecules. When the two strands coil around each
other, positions a and d are internalized, stabilizing the structure, while
positions b,c,e,f,g are exposed on the surface of the protein. Residues at
positions e and g stabilize dimer formation through ionic and hydrogen
bonds.
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Abstract y :

Background Mutations in the plectin gene (PLEC) generally lead to epidermolysis bullosa
simplex (EBS) associated with muscular dystrophy. It has been recently demonstrated that
PLEC mutations can also cause a different clinical subtype, EBS associated with pyloric
atresia (EBS-PA), which shows early lethality. Prenatal diagnosis (PND) of EBS-PA using

From the Department of Dermatology,
Hokkaido University Graduate School of
Medicine, Sapporo, Japan

Correspondence
Dr Hideki Nakamura

Department of Dermatology

Hokkaido University Graduate School of
Medicine

North 15 West 7, Sapporo

Japan

E-mail: shimizu@med.hokudai.ac.jp

mutation screening of PLEC has not been described.

Objective This study aimed to perform DNA-based PND for an EBS-PA family.

Materials and methods The EBS-PA proband was compound-heterozygous for a paternal
¢.1350G>A splice-site mutation and a maternal p.Q305X nonsense mutation. Genomic
DNA was obtained from amniocytes taken from an at-risk fetus of the proband’s family.

Direct sequencing and restriction enzyme digestion of polymerase chain reaction products

Conflicts of interest: The authors
declare no conflicts of interest.

from the genomic DNA were performed.
Results Mutational analysis showed that the fetus harbored both pathogenic mutations,

suggesting that the fetus was a compound-heterozygote and therefore affected with
EBS-PA. The skin sample obtained by autopsy from the abortus confirmed the absence of
plectin expression at the dermal—epidermal junction.

Conclusions This is the first successful DNA-based PND for an EBA-PA family.

Introduction

Epidermolysis bullosa (EB) comprises a group of diseases
that are classified into four categories — EB simplex
(EBS), junctional EB (JEB), dystrophic EB and Kindler
syndrome — depending on the depth of the dermal-epider-
mal junction split." The four categories are subcatego-
rized into minor subtypes, some of which show severe
prognosis and lead to early demise.

Prenatal diagnosis (PND) of lethal EB subtypes has been
performed for more than two decades. Electron micros-
copy and immunofluorescence analysis of fetal skin sam-
ples were the mainstay for PND of EB fetuses.> However,
morphologically based PND had technical difficulties and
abortion risks from the fetal skin biopsies. As the genes
responsible for EB have been indentified, DNA-based PND
has been available for many lethal EB subtypes.*?
Recently, other techniques such as immunofluorescence
analysis of villous trophoblasts,* preimplantation genetic

© 2010 The International Society of Dermatology

analysis® and preimplantation genetic haplotyping® have
been described as useful for PND of EB.

Among the lethal EB subtypes, EB associated with
pyloric atresia (EB-PA) has been known to result from
mutations in the genes encoding either plectin (PLEC), or
a6 (ITGA6) or B4 integrin (ITGB4)." EB-PA can either
manifest as JEB with PA (JEB-PA) or EBS with PA (EBS-
PA), and is categorized as hemidesmosomal variant of
EB. EB-PA due to ITGA6 or ITGB4 mutations is gener-
ally characterized by blister formation at the level of the
lamina lucida as JEB-PA, although skin separation within
basal keratinocytes has been described in a few cases.” In
contrast, it has been recently reported that another subset
of lethal EB-PA shows an intra-epidermal level of cleav-
age consistent with EBS, caused by mutations in the gene
encoding plectin (PLEC).””® To date, PND of EBS-PA
using mutation screening of PLEC has not been reported
in the literature. This paper describes the first DNA-based
PND for an EBS-PA family.

International Journal of Dermatology 2010
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Materials and Methods

The EBS-PA family

We previously reported this family with EBS-PA, in which the
first and second newborns exhibited the clinical features of
blistering and PA, and died shortly after birth.” We then
identified the precise genetic abnormality in the family through
immunohistochemical analysis and genetic screening using the
candidate gene approach. PLEC mutation analysis of genomic
DNA from the parents and the proband demonstrated a
paternal ¢.1350G>A splice-site mutation and a maternal
p.Q305X nonsense mutation.” ¢.1350G>A was originally
described as ¢.1344G>A and corrected according to the latest
sequence information (GeneBank Accession No. NM_000445),
plectin isoform 1c.'® The parents were found to be
heterozygous carriers and the proband was compound-
heterozygous. The parents sought PND for a subsequent
pregnancy.

PND
Amniocentesis was performed at 16 weeks gestation. Genomic
DNA isolated from 1-week-cultured amniocytes maintained in
Amniomax medium (Invitrogen, Carlsbad, CA, USA) was
subjected to polymerase chain reaction (PCR) amplification,
followed by direct automated sequencing using an ABI Prism
3100 genetic analyser (Advanced Biotechnologies, Foster City,
CA, USA). PCR amplification of the PLEC gene exons 9 and 12+«
was performed using the following primers. Primers 5’- GTCGCT
GTATGACGCCATGC-3" and 5-TGGCTGGTAGCTCCATC
TCC-3" were used for amplification of exon 9, producing : a 387-4
bp fragment. Primers 5'-CCCACTCGCCTTAGGACAGT-3' and
5’-AAACCAACTCTGCCCAAAGC-3" were used for amplmcatlon r
of exon 12, synthesizing a 428-bp fragment. PCR nondltlons
were 5 min at 94 °C for one cycle, followed by cycles of

@ . (b)

Nakamura et al.

45s at94 °C, 30 s at 57 °C or 60 °C, and 1 min at 72 °C. The
genomic DNA nucleotides, the cDNA nucleotides and the amino
acids of the protein were numbered based on the latest /
sequence information (GeneBank Accession No NM 000445)
Written informed consent was obtained fromi the parents.>
PND was approved by the Institutional Ethlcal Commlttee of
Hokkaido University Graduate School of Medicine. This study
was conducted according to the Decl of Helsinki
Principles.

Immunofluorescence analysis .
Immunofiuorescence analysis using a senes of antibodies
against basement—membrane-assoc:ated molecules on cryostat
skin sections was performed as previously described.'" Skin
biopsy was performed for th : aborted fetus and a healthy
volunteer as the normal.control. The following monoclonal
antibodies (mAbs) were used: mAb HD1-121 (a gift from

Dr K. Owaribe of Nagoya University) against plectin; mAb
GoH83 (a gift from Dr A. Sonnenberg of the Netherlands Cancer
Institute) against «6 integrin; and mAb 3E1 (Chemicon, CA,
USA) against 4 integrin.

Mutation ‘analysis of genomic DNA from amniocytes

showed both paternal c.1350G>A splice-site mutation
and maternal p.Q305X nonsense mutation (Fig. 2a). g
These mutation data were briefly mentioned in our recent
paper on plectin expression patterns in patients with

~EBS."* Each mutation was confirmed by restriction

enzyme digestion of PCR products. The ¢.1350G>A and
p-Q305X mutations resulted in the loss of a restriction
site for Hph 1 and Pst 1, respectively (Fig. 2b). The prena-
tal molecular genetic diagnosis suggested that the fetus

Exon 12 Exon 9
CAGTCGGTGAG AGCT TGCAGCTG
I 1 E’_ 2 180 em— 1 120 eomeee
Normal Normal
TN N
c.1350G>A p.Q305X
/ | 1
1 2 3 CAG TCNGTG AG AGCTGNAGCTG
(present case) ——2.90 2 — ) 2O

Father (I-1)

Mother (I-2)

Heterozygous ¢.1350G>A Heterozygous Q305X

Figure 1 Family tree of the present case, and the causative PLEC mutations. (a) The first and second newborns exhibited
clinical features typical of EBS-PA, and died shortly after birth. The proband (the second newborn) is indicated by an arrow.
(b) The paternal splice-site mutation was a c.1350G>A transition at the end of exon 12. The maternal nonsense mutation
was a ¢.913C>T transition in exon 9, leading to the substitution of glutamine 305 with a nonsense codon (p.Q305X)
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@) () 53 14 N

428 bp

c.1350G>A p.Q305X 221bp

1 1 207 bp
CAGTCNGTG AG AGCTGNAGCTG
80 e 1% 120 —— 1

Hph 1
Exon 12 Exon 9

Present case (I -3)

Pst 1

Figure 2 Analysis of the plectin gene mutations in genomic DNA from amniocytes of a fetus at risk. (a) Mutation analysis of
genomic DNA from amniocytes shows both the ¢.1350G>A mutation in exon 12 and p.Q305X mutations in exon 9. (b) The
presence of the mutations was verified by restriction enzyme digestion. The paternal mutation abolished a recognition site for
the HpblI restriction enzyme. In the case of the normal allele, the 428-bp fragment was digested to 221 bp and 207 bp (lane
N), whereas in the case of the mutant allele, a 428-bp fragment resisted digestion in the PCR product (father: lane I-1; present
fetus: lane II-3). The maternal mutation also abolished a recognition site for the Pst restriction enzyme. In the case of the nor-
mal allele, the 387-bp fragment was digested to 240 bp and 147 bp (lane N), whereas in the case of the mutant allele, a 387-
bp fragment resisted digestion in the PCR product (mother: lane I-2; present fetus: lane 1I-3)

GoH3 (a6 integrin)

Abortus
skin (II-3)

Normal
skin

(d)

3E1 (B4 integrin)

(b)

HD1-121 (plectin)

Figure 3 Absence of plectin expression in the abortus. a6 integrin (mAb GoH3) and B4 integrin (mAb 3Ex) are expressed

in the abortus skin (a, b) and the control skin (d, e). Staining with monoclonal antibody for plectin (mAb HD1-121) shows
positive in the control skin (f), but negative in the skin of the abortus (c: blue frame). Note that the skin tissue from the abortus
was subject to degeneration before skin sampling. Thus, protein localization cannot be evaluated in the degenerated tissue.

Scale bar: 50 pm

was a compound-heterozygote and affected by JEB-PA.
The parents elected for the fetus to be terminated at
20 weeks gestation.

Immunofluorescence analysis showed that immunoreac-
tivity using the mAbs HD1-121 (plectin), GoH3 (a6 inte-
grin) and 3E1 (B4 integrin) was positive in the normal
control skin (Fig. 3d-f). The skin sample obtained from
the abortus tested positive for a6 integrin and B4 integrin
(Fig. 3a,b), but negative for plectin (Fig. 3c).

© 2010 The International Society of Dermatology

Discussion

This is the first successful PND of plectin-deficient EBS-
PA, and the correct diagnosis was reconfirmed in the skin
of the abortus. Given the universal mortality of EBS-PA
due to PLEC mutations, there might be unreported PND
cases for this form of EB. The prognosis of plectin-defi-
cient EBS-PA is poor, and most patients commonly die
within the first year of life,"? as happened in the first- and
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second-born progeny in the present family. Fetuses at risk
of this condition are frequently terminated during preg-
nancy, and DNA-based PND plays an important role in
prohibiting unnecessary termination of healthy fetuses at
risk. Due to the recent elucidation of the causative genetic
defects for genetic skin disorders, it has become possible
to make DNA-based PND for severe genodermatoses by
sampling of the chorionic villus or amniotic fluid in the
earlier stages of pregnancy with a lower risk to fetal
health and with a reduced burden on the mothers.
Plectin, a component of the hemidesmosome inner pla-
que, is involved in the attachment and crosslinking of the
cytoskeleton and intermediate filaments to specific mem-
brane complexes.” It has been described that EBS associ-
ated with muscular dystrophy (EBS-MD) results from
PLEC mutations.***5 Mutations in the rod domain of
PLEC are known to cause EBS-MD.>*#*5 In addition,
recent reports have confirmed that some PLEC mutations
also lead to EBS-PA.7”®'> One alternative splice PLEC
mRNA transcript that lacks exon 31 encoding the central
core rod domain was identified in rat tissues.’® By plec-
tin-domain-specific reverse transcriptase-PCR, expression
of this rodless alternative spliced form was confirmed in
human keratinocytes.”” Recently, our group demonstrated
that loss of the full-length plectin with maintenance of

the rodless plectin leads to EBS-MD, whereas complete
loss or marked attenuation of full-length and rodless plec-

tin expression underlies the EBS-PA phenotype.”* The
present family further supports the hypothesis that homo-

zygotes or compound-heterozygotes for mutations that

cause plectin truncation outside the rod domain how the
EBS-PA phenotype.
In summary, this is the first report of DNA-
of EBS-PA. EBS-PA has now been added to the list of severe
genodermatosis for which DNA-based PND feamble
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