

同封書類等

- (1) 住民票（除票）を必要とする対象者一覧
- (2) 住民基本台帳カードの写し（三浦克之）
- (3) 平成22年度 厚生労働科学研究費補助金交付申請書（写し）
- (4) 平成22年度 厚生労働科学研究費補助金交付決定通知書（写し）
- (5) 交付不可の場合の理由書
- (6) 資料：「厚生省循環器疾患基礎調査の追跡調査の成果とその意義」
厚生の指標（厚生統計協会発行） 1999年
- (7) 資料：読売新聞記事「塩分取りすぎ 要介助の危険」（2010年1月7日付）
- (8) 資料：厚生労働科学研究費補助金（指定研究）
循環器疾患・糖尿病等生活習慣病対策総合研究事業
「2010年国民健康栄養調査対象者の追跡開始（NIPPON DATA2010）と
NIPPON DATA80/90の追跡継続に関する研究
(H22-循環器等（生習）-指定-017)」研究組織
- (9) 定額小為替
- (10) 住民票（除票）の写し 返送用封筒

国立大学法人 滋賀医科大学
社会医学講座公衆衛生学部門
教授 三浦 克之 宛

住民票（除票）の写し 交付不可の理由

御市町村名（部課名）：
御担当者氏名
御記入日：

様式A (3)

厚生労働科学研究費補助金交付申請書

平成22年 4月16日

厚生労働大臣 殿

住 所 〒 _____

申請者 氏名 フリカナ ミウラ カズヒコ
生年月日 三浦 克之

平成22年度厚生労働科学研究費補助金（循環器疾患・糖尿病等生活習慣病対策総合研究事業）交付申請について

標記について、次により国庫補助金を交付されるよう関係書類を添えて申請する。

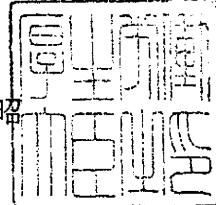
1. 申請金額 : 金 90,000,000 円也 (うち間接経費 15,000,000 円)

2. 研究課題名（課題番号）: 2010年国民健康栄養調査対象者の追跡開始(NIPPON DATA 2010)と
NIPPONDATA80/90の追跡継続に関する研究 (H22-循環器等(生管)-指定-017)

3. 研究事業予定期間 : 平成22年4月1日から平成23年3月1日まで
(3)年計画の(1)年目

4. 申請者及び経理事務担当者

申請者	①所属研究機関	国立大学法人滋賀医科大学			
	②所属部局	社会医学講座公衆衛生学部門			
	③職名	教授			
	④所属研究機関 所在地 連絡先	国立大学法人滋賀医科大学 〒520-2192滋賀県大津市瀬田月輪町 Tel: 077-548-2191 Fax: 077-543-9732 E-Mail:			
	⑤最終卒業校	金沢大学大学院医学研究科	⑥学位	医学博士	
	⑦卒業年次	平成5年	⑧専攻科目	公衆衛生学	
		(フリカナ) ⑨氏名	(カナ)ヤスヒロ 草野 康弘		
経理事務 担当者	⑩連絡先 所属部局 課名	〒520-2192滋賀県大津市瀬田月輪町 Tel: 077-548-2032 Fax: 077-548-2046 E-Mail: 国立大学法人滋賀医科大学会計課出納係			
	⑪研究承諾 の有無	⑫事務委任 の有無	⑬所属研究機関における 間接経費の受入の可否	可	


平成22年度厚生労働科学研究費補助金(循環器疾患・糖尿病等生活習慣病対策総合研究事業)交付決定通知書

三浦 克之

平成22年4月16日で申請のあった平成22年度厚生労働科学研究費補助金(循環器疾患・糖尿病等生活習慣病対策総合研究事業)については、補助金等に係る予算の執行の適正化に関する法律(昭和30年法律第179号)第6条第1項の規定により、次のとおり交付することに決定したので、同法第8条の規定により通知する。

平成22年5月28日

厚生労働大臣 長妻昭

- 1 補助金の交付の対象となる事業(以下「事業」という。)は、厚生労働科学研究費補助金取扱規程(平成10年4月9日厚生省告示第130号。以下「規程」という。)第3条第1項の表第11号に定める事業であり、その内容は平成22年4月16日申請書記載のとおりである。
- 2 事業に要する経費及び補助金の額は、次のとおりである。ただし、事業の内容が変更された場合において、事業に要する経費又は補助金の額が変更されるときは、別に通知するところによるものとする。

事業に要する経費	金 90,000,000 円
補助金の額	金 90,000,000 円
- 3 補助金の額の確定は、規程第5条に定める交付額の算定方法により行うものである。
- 4 この補助金は、規程第12条に掲げる事項を条件として交付するものである。
- 5 事業に係る事業実績報告は、規程第16条に定めるところにより行わなければならぬ。
- 6 この交付の決定の内容又は条件に不服がある場合における補助金等に係る予算の執行の適正化に関する法律第9条第1項の規定による申請の取下げをすることができる期限は、平成22年6月11日とする。

研究組織

研究代表者

三浦 克之

滋賀医科大学社会医学講座公衆衛生学部門 教授

研究分担者

上島 弘嗣

滋賀医科大学 名譽教授

和泉 徹

北里大学医学部循環器内科学 教授

岡山 明

財団法人結核予防会第一健康相談所 所長

岡村 智教

国立循環器病研究センター病院予防健診部 部長

笠置 文善

財団法人放射線影響研究所疫学部 副部長

坂田 清美

岩手医科大学医学部衛生学公衆衛生学講座 教授

中村 好一

自治医科大学地域医療学センター公衆衛生学部門 教授

中村 保幸

京都女子大学家政学部生活福祉学科 教授

清原 裕

九州大学大学院医学研究院環境医学分野 教授

中川 秀昭

金沢医科大学公衆衛生学教室 教授

尾島 俊之

浜松医科大学健康社会医学講座 教授

松村 康弘

桐生大学医療保健学部 教授

斎藤 重幸

札幌医科大学医学部内科学第二講座 講師

西 信雄

国立健康・栄養研究所国際産学連携センター センター長

由田 克士

大阪市立大学大学院生活科学研究科食・健康科学講座 教授

早川 岳人

福島県立医科大学衛生学・予防医学講座 准教授

喜多 義邦

滋賀医科大学社会医学講座公衆衛生学部門 講師

寶澤 篤

山形大学大学院医学系研究科公衆衛生学講座 助教

奥田 奈賀子

財団法人結核予防会第一健康相談所 医員

大久保 孝義

滋賀医科大学社会医学講座公衆衛生学部門 特任准教授

門田 文

滋賀医科大学社会医学講座公衆衛生学部門 特任講師

夕刊

讀賣新聞

2010年(平成22年)

1月7日木曜日

塩分取りすぎ 要介助の危険

食塩を多く摂取する人ほど年齢を重ねてから身の回りの動作に介助が必要になる危険性が高いことが、厚生労働省研究班(代表=上島弘嗣・滋賀医科大学名誉教授)の調査でわかった。食塩の摂取量と介助の必要性の関係を明らかにした研究は、これが初めてだ。

研究班は、1980年の国

民栄養調査のデータをもとに、心血管疾病や高血圧の既往症のない当時52~64歳の男女1510人の食塩摂取量を推定。それから14年後の94年の時点の生活動作を調査して、①排せつ②衣服の着脱③入浴④食事⑤歩行――のいずれかが1人でできない場合を、「介助が必要」として分

厚労省研究班が調査

食塩の摂取量は、男性が1日平均16.6g、女性が同13.9gで、介助が必要だったのは53人だった。食塩の摂取量が、男性で1日5.7g、女性で同4.5g増えるごとに、介助が必要となる危険性は25%ずつ増していく。逆に、野菜などに含まれるカリウムを多く摂取するほど、日常動作の悪化を防ぐ効果があつた。

三浦克之・滋賀医大教授は、「家庭の調味料から摂取する食塩は3割ほどで、外食や加工食品から知らず知らずに食塩を摂取している。意識して食塩の摂取を減らすこと、が、将来の生活の質を維持するためにも大切だ」と話して

た。

食塩と高血圧の関係は知られているが、実際に介助が必要になる人がどれだけいるかは、はつきりしていないなかつた。

研究班は、1980年の国

厚生省循環器疾患基礎調査の追跡調査の成果とその意義

—NIPPON DATA 80および90—

上島 弘嗣*1 岡山 明*2 澤井 廣量*3
飯田 稔*5 柳川 洋*6 飯村 攻*4

I はじめに

循環器疾患基礎調査はほぼ10年おきに、わが国の循環器疾患の動向を把握しその対策を有効に講じるための基礎資料を得る目的で実施されてきた。これは、国民栄養調査の対象者で30歳以上に限定して国民栄養調査の項目に追加する形で実施されてきた。この調査のために、日本循環器管理研究協議会を中心とした調査委員会が設置され、その成績の分析と結果の意味づけを行う上で、日本循環器管理研究協議は重要な役割を担ってきた¹⁾²⁾。

この循環器疾患基礎調査は断面調査であり、調査委員会では追跡の実施は考慮するとあったが、実際には予算の関係やその実効性についての疑問から実施されずにきた。著者らは、1980年の循環器疾患基礎調査が実施されて10年を経過した段階で、この調査の追跡の有用性についての認識を新たにしていた。そして、幸いにも、日本循環器管理研究協議会（理事長飯村 攻 札幌医科大学名誉教授）の事業として、1994年にその追跡のための予算が厚生省より研究補助金として交付されることとなった。ここにわが国で初めて、行政の断面調査をベースにして追跡調査が行われることになり、全国の保健所の協力を得て成功裏に終了することができた。ここでは、その追跡調査の成果とその意義について述べる。

II 国民の代表となる集団の追跡目的

循環器疾患発症の危険因子を明らかにする追跡調査研究は、久山町研究をはじめてとして、北海道、秋田、新潟、山梨、愛知、大阪、広島・長崎、福岡、等における多くの先行する優れた研究がある³⁾。これらの研究で、広島・長崎の放射線影響研究所の追跡調査は、がん・循環器疾患を中心とした広範な疾患を対象とし、他の研究はいずれも脳卒中や心筋梗塞等の循環器疾患を中心とした死亡や罹患を把握しその発症の危険因子を検討してきたものであるが、いずれも特定地域を対象としたものである。これに対して、本研究は国民を代表する集団の追跡調査成績であることと、その対象の1980年、1990年はそれぞれ1万人、8000人という規模の大きさに特徴があり、たとえ死亡の成績のみであっても、循環器疾患による死亡の危険因子やその他の主要な死因の危険因子を検討できたという点で⁴⁾、その意義は極めて大きい。さらに、14年後の追跡時に生存していた65歳以上の高齢者全員に日常生活動作能力（ADL）を調査することにより、寝たきり予防の要因やADL低下要因について検討できることであった。

III 追跡調査の意義と保健所の機能の発揮

1994年9月に厚生省からの補助金の交付が内

NIPPON DATA 80・90研究班

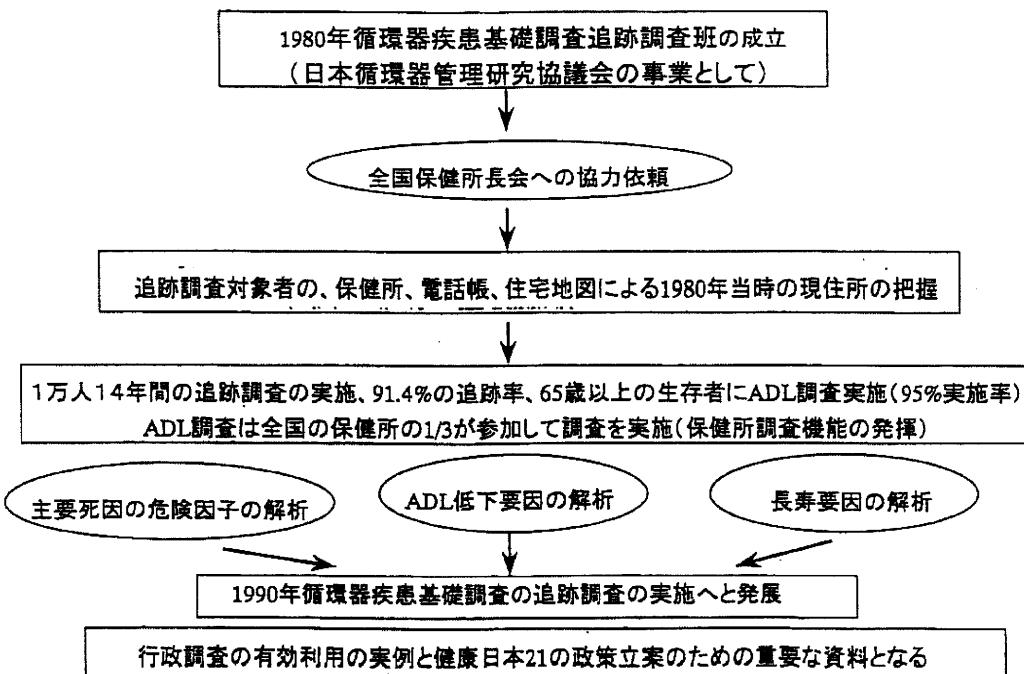
*1 滋賀医科大学福祉保健医学教授 *2 同助教授

*3 日本循環器管理研究協議会事務局長 *4 同理事長

*5 大阪府立成人病センター集団検診第1部部長 *6 自治医科大学公衆衛生学教授

定し、追跡のための研究班（班長上島弘嗣）が組織された⁴⁾。すぐさま、総務庁より承認統計・指定統計の目的外使用の承認を得て追跡調査を開始した。1980年に調査に携わった全国の保健所の約1/3が追跡調査に参加することとなった（図1）。現住所が不明の者については、国会図書館で14年前の全国の電話帳、住宅地図の参照を行い、住所を確定し中央事務局より当該市町村に住民票の請求を住民基本台帳法に基づき行った。これにより、14年後に実施された追跡調査であるにもかかわらず、約91.4%の生死の追跡が可能となった⁴⁾。追跡不能であったのは、もとより現住所の登録がなかった対象者、居住区域そのものが地上げ、開発等により不明となったもの、等であった。

1994年の追跡時、65歳以上の生存者には当該保健所によるADL調査が実施された。これは、訪問、電話でのインタビューにより実施し95%の回答率を得た。現住所が1994年当時より変わり、当該保健所の管轄外に移住した65歳以上の対象者にはADL調査は実施しなかった。


ADLの追跡調査は、保健所の協力なしにはできなかった。とりわけ、全国の保健所がこの調

査事業に一致協力して、3ヵ月程度の短期間に調査を実施できたことは特筆すべきことである。これにより、全国の65歳以上のランダムサンプル対象者のADLの現状を把握でき、また、ADL状況からみた生命予後の検討も可能となった。さらに、生命予後の成績ともあわせて、80歳まで元気でADLが低下しない長寿の要因を1980年の生活習慣や身体・血液生化学的所見にもとづき検討することができた（図1）。

IV 行政調査の有効活用の重要性

循環器疾患基礎調査は、国の行政調査の一つである。アメリカでも国民健康調査があり、断面調査を中心として国民の健康と福祉に役立つ成績が得られている⁵⁾。今回実施した1980年の循環器疾患基礎調査の追跡調査は、わが国で初めて実施された断面の行政調査の追跡調査となった。この追跡調査には、5000万円の調査研究費を要したが、既存の調査の有効な活用がなされたきわめて費用効果の高いものとなった。費用効果が高かった理由は、既存の行政調査を活用したことと、保健所の調査機能の発揮、それ

図1 循環器疾患基礎調査追跡調査（NIPPON DATA80・90）の研究過程とその意義

に大学・研究機関等の研究者の疫学的・公衆衛生学的興味に基づく積極的協力にあった。

V 行政施策への活用

1980年の厚生省循環器疾患基礎調査は、研究班によりNational Integrated Project for Prospective Observation of Noncommunicable Disease and Its Trend in the Aged (NIPPON DATA)と国際誌への発表に向けての命名がなされた⁶⁾。さらに、1980年の追跡調査の継続分析と1990年の循環器疾患基礎調査の追跡調査のために、あらたに研究班（循環器病委託研究による7指一2の研究班、班長上島弘嗣）が成立した（図1）⁷⁾。これにより1980年の追跡調査はNIPPON DATA80となり1990年の追跡調査はNIPPON DATA90となった。NIPPON DATA90は約8,000人の対象者を追跡したが、この追跡率は97%に達し、5年後の65歳以上の生存者には、ADLと主観的Quality of Life (QOL)の調査がこれも全国の保健所の協力のもとに実施された⁷⁾。

これらのNIPPON DATA80と90の成績は、国民を代表する集団特性を有するため、その追跡調査結果や断面調査としてのADL, QOLの成績は、厚生省が国民の健康維持と増進のために定めようとしている施策の基礎資料として大いに活用されようとしている。特に、健康日本21の基礎資料としての利用価値は大きい。本コホート研究は、血圧と循環器疾患、喫煙・飲酒と循環器疾患をはじめとして、肥満度、血糖値、血清総コレステロール値、等さまざまな要因と、総死亡、循環器疾患やその他の死因、ADL・QOL低下との関連などが分析可能な総合的なコホート研究となった。

VI おわりに

NIPPON DATA80・90は既存の行政調査の有効活用という点において、一つの時代を画するものであった。今後、さまざまな国の行政調査の有効利用が望まれる。そのためには、一定

の手続きを踏めば国の諸調査や統計が速やかに公開される流れを作ると共に、一方では、プライバシー保護の立場からも、公共の福祉に反するような利用がなされないような対策を講じると共に、万一、公共の福祉に反するような結果が生じたときには、その責任が問われる体制が作られなければならない。過去の実状は、むしろ情報の公開が制限されること多かったが、今後このような行政調査の有効活用が活発になることを願う。

謝辞

1980・90年の厚生省循環器疾患基礎調査の実施に尽力された、重松逸造、小町喜男先生をはじめ、日本循環器管理研究協議会の皆様、全国の保健所職員の皆様に感謝致します。また、NIPPON DATAの追跡にご協力いただいた、当時の厚生省の担当課（疾病対策課と老人保健課）に感謝致します。

尚、報告書の必要な方は、下記へお問い合わせ下さい。

日本循環器管理研究協議会

〒170-0013 東京都豊島区池袋1-48-10

25 三京ビル 305号

NIPPON DATA80および90研究班員

1) NIPPON DATA 80

委員長：上島弘嗣（滋賀医科大学福祉保健医学）

顧問：飯村 攻（日本循環器研究管理研究会）

委員：飯田 稔（大阪府立成人病センター集団検診第一部）、上田一雄（九州大学医療短期大学部）、岡山 明（滋賀医科大学福祉保健医学）、児玉和紀（放射線影響研究所臨床研究部）、澤井廣量（日本循環器研究管理研究会）、柴田茂男（女子栄養大学臨床栄養部）、田中繁道（札幌医科大学医学部第二内科）、橋本 勉（和歌山県立医科大学公衆衛生）、堀部 博（愛知医科大学衛生学）、簗輪眞澄（国立公衆衛生院疫病学部）、柳川 洋（自治医科大学公衆衛生）

協力委員：川南勝彦（国立公衆衛生院疫病学部）、嶋本 喬（筑波大学医学専門学群地域医療学）、竹内敏博（東京都武蔵調布保健所長）、長谷部 碩（東京都渋谷区渋谷保健所）、草野文嗣（滋賀県長浜保健所）、笠置文善（放射線影響研究所臨床研究部）、全国の保健所関係者、喜

喜多義邦(滋賀医科大学福祉保健医学), 早川岳人(滋賀医科大学福祉保健医学), ソヘル・レザ・チョウドリイ(滋賀医科大学福祉保健医学)

2) NIPPON DATA 90

班長: 上島弘嗣(滋賀医科大学福祉保健医学)

顧問: 飯村 攻(日本循環器研究管理研究会), 柳川 洋
(自治医科大学公衆衛生)

分担研究者および事務局研究者: 斎藤重幸(札幌医科大学医学部第二内科), 中村好一(自治医科大学公衆衛生), 飯田 稔(大阪府立成人病センター集団検診第一部), 館輪眞澄(国立公衆衛生院疫学部), 堀部 博(愛知医科大学衛生学), 草野文嗣(滋賀県長浜保健所), 小玉和紀(放射線影響研究所臨床研究部), 柴田茂男(女子栄養大学臨床栄養部), 橋本 勉(和歌山県立医科大学公衆衛生), 上田一雄(九州大学医療短期大学部), 佐藤 章(全国保健所長会), 川南勝彦(国立公衆衛生院疫学部), 笠置文善(放射線影響研究所臨床研究部), 岡山 明(滋賀医科大学福祉保健医学), 喜多義邦(滋賀医科大学福祉保健医学), 早川岳人(滋賀医科大学福祉保健医学), ソヘル・レザ・チョウドリイ(滋賀医科大学福祉保健医学), 全国の保健所関係者

文献

- 1) 厚生省公衆衛生局. 昭和55年循環器疾患基礎調査報告書, 日本心臓財団, 1982年.
- 2) 厚生省保健医療局編. 第4次循環器疾患基礎調査(平成2年)報告, 循環器病研究振興財団, 1993年.
- 3) 小玉和紀, 笠置文善, 増成直美. 内外の代表的なコホート研究の成果, 循環科学1997; 41: 532-544.
- 4) 「脳卒中などによる寝たきり・死亡の健康危険度評価システム開発事業」班, 「脳卒中などによる寝たきり・死亡の健康危険度評価システム開発事業」「1980年循環器疾患基礎調査」追跡調査報告書, 日本循環器管理研究協議会, 1995年.
- 5) Linn S, Fulwood R, Carroll M, et al. Serum total cholesterol: HDL cholesterol ratios in US white and black adults by selected demographic and socioeconomic variables (HNNES II), Am J Public Health 1991; 81: 1033-1043.
- 6) 上島弘嗣(研究班を代表して). 第31回日本循環器管理研究協議会総会記録 特別報告 1980年循環器疾患基礎調査の追跡調査(NIPPON DATA), 日循協誌 1997; 31: 231-237.
- 7) 上島弘嗣(研究班を代表して). 特別報告 7-2高齢者の循環器疾患による生活の質低下予防策に関する研究, 日循協誌 1999; 34: 58-63.

■新刊

日本の患者と医療施設 —グラフでみる保健統計—1999

A4判 47頁 定価 [本体1,400円] +税

平成8年の医療施設調査, 患者調査をはじめとする保健統計を, カラーグラフを用いてまとめたもの。国外の方々にも紹介できるよう, グラフには英文を併記。

財団法人 厚生統計協会

〒106-0032 東京都港区六本木5-13-14
TEL 03-3586-3361

NIPPON DATA90 20年後生死追跡 電話受付要領

- 7月20日週より、ND90の20年後生死追跡のための、各市町村役場あての住民票（写し）請求を順次開始します。
- それに伴い、市町村担当者の方から問い合わせの電話がかかります（一日数件程度か）。内容は様々ですが、最も多くかつ重要なものとして、「本人承諾の有無」関連が予想されます。この質問については、対応次第で住民票の交付を承諾するか否かが決まるので、基本的に全ての電話に対して、①大原、または、②長澤に回して下さい。 双方不在の場合は、かけ直す旨を伝え、先方の名前と電話番号を受け付けノートに記載して下さい。
- また一部の市町村で、当教室のような第三者が住民票交付申請を行った場合に、本人に承認の確認を行う動きがあり、その結果本人からの問い合わせもあり得ます。 その場合も同様な対応をして下さい。

平成22年7月19日

長澤 晋哉

II. 分担研究報告
③NIPPON DATA80/90 分析報告

(1) 中壮年期の喫煙習慣と老年期の日常生活動作 (ADL) 低下との関連—NIPPON DATA80—

研究協力者 高嶋 直敬 (滋賀医科大学社会医学講座公衆衛生学部門 特任助教)
研究代表者 三浦 克之 (滋賀医科大学社会医学講座公衆衛生学部門 教授)
研究分担者 審澤 篤 (山形大学大学院医学系研究科公衆衛生学講座 講師)
研究分担者 岡村 智教 (慶應義塾大学医学部衛生学公衆衛生学講座 教授)
研究分担者 早川 岳人 (福島県立医科大学衛生学・予防医学講座 准教授)
研究分担者 奥田奈賀子 (公益財団法人結核予防会第一健康相談所生活習慣病予防研究センター 副センター長)
研究協力者 門脇 崇 (滋賀医科大学社会医学講座公衆衛生学部門 客員助教)
研究協力者 村上 義孝 (滋賀医科大学社会医学講座医療統計学部門 准教授)
研究分担者 喜多 義邦 (滋賀医科大学社会医学講座公衆衛生学部門 講師)
研究分担者 中村 保幸 (京都女子大学家政学部生活福祉学科 教授)
研究分担者 岡山 明 (公益財団法人結核予防会第一健康相談所 所長)
研究分担者 上島 弘嗣 (滋賀医科大学生活習慣病予防センター 特任教授)

【目的・背景】中壮年期の喫煙習慣と長期にわたる日常生活動作 (ADL) の低下との関連については報告が少ない。そこで、NIPPON DATA80 を用いてベースライン時に喫煙習慣がその後の ADL 低下に与える影響について検討を行った。

【方法】1980 年の NIPPON DATA80 のベースライン調査時に 47 歳から 59 歳までの男女 2276 名について、1999 年に追跡を行った。ADL 調査は 1890 名の生存者について調査を行った。食事、着替え、入浴、排泄、屋内歩行のいずれかが自立していない場合を ADL 低下とした。ADL 低下のリスクについて非喫煙者に対する多変量調整後のオッズ比と 95% 信頼区間 (95%CI) を性、年齢、肥満度、飲酒、血圧、血清総コレステロール、血清アルブミンレベルを調整したロジスティック回帰解析を用いて算出した。また ADL 低下と死亡を合わせたリスク (composite outcomes) についても算出した。

【結果】1999 年までに、386 名の参加者の死亡が確認された。75 名の参加者は ADL 低下が低下していた。非喫煙者と比較して喫煙者の調整後のオッズ比 (95% 信頼区間) は (OR 2.11 [1.09-4.06]) で有意に高かった。非喫煙者と比較して、喫煙者の ADL 低下のリスクは喫煙本数が増加するに従って高い傾向がみられた (喫煙本数が 20 本/日以下: OR 2.04 [1.02-4.06]、21 本/日以上: OR 2.35 [0.94-5.88]; P for trend = 0.04)。喫煙者の composite outcomes のリスクは 1.83 (1.37-2.41) であった。

【結論】中壮年期の喫煙は将来の ADL 低下のリスクを増加させる。禁煙は死亡のみならず ADL 低下を予防する上においても重要であることが示唆された。

Title: Cigarette smoking in middle age and a long-term risk of impaired activities of daily living:
NIPPON DATA80

Nicotine & Tobacco Research. 2010;12(9):944-949

Original Investigation

Cigarette smoking in middle age and a long-term risk of impaired activities of daily living: NIPPON DATA80

Naoyuki Takashima, M.D., Ph.D.,^{1,2} Katsuyuki Miura, M.D., Ph.D.,¹ Atsushi Hozawa, M.D., Ph.D.,^{1,3} Tomonori Okamura, M.D., Ph.D.,⁴ Takehito Hayakawa, Ph.D.,⁵ Nagako Okuda, M.D., Ph.D.,¹ Takashi Kadowaki, M.D., Ph.D.,¹ Yoshitaka Murakami, Ph.D.,¹ Yoshikuni Kita, Ph.D.,¹ Yasuyuki Nakamura, M.D., Ph.D.,^{1,6} Akira Okayama, M.D., Ph.D.,^{1,7} & Hirotugu Ueshima, M.D., Ph.D.,^{1,8} for the NIPPON DATA80 Research Group

¹ Department of Health Science, Shiga University of Medical Science, Otsu, Japan

² Japan Foundation for Aging and Health, Aichi, Japan

³ Department of Public Health and Forensic Medicine, Tohoku University School of Medicine, Sendai, Japan

⁴ Department of Preventive Cardiology, National Cardiovascular Center, Suita, Japan

⁵ Department of Hygiene and Preventive Medicine, Fukushima Medical University, Fukushima, Japan

⁶ The Cardiovascular Epidemiology, Kyoto Women's University, Kyoto, Japan

⁷ The First Institute for Health Promotion and Health Care, Japanese Anti-Tuberculosis Association, Tokyo, Japan

⁸ Lifestyle-Related Disease Prevention Center, Shiga University of Medical Science, Otsu, Japan

Corresponding Author: Naoyuki Takashima, M.D., Ph.D., Department of Health Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan. Telephone: +81-77-548-2191; Fax: +81-77-543-9732; E-mail: takashima@belle.shiga-med.ac.jp

Received December 21, 2009; accepted June 26, 2010

Abstract

Introduction: Few studies have reported the relationship between smoking in middle age and long-term risk of impaired activities of daily living (ADL).

Methods: We analyzed 2,276 men and women aged 47–59 years at the baseline survey of NIPPON DATA80 in 1980. At the follow-up survey in 1999, ADL was surveyed among 1890 survivors. Multivariate-adjusted odds ratio (AOR) and 95% CI of impaired ADL or of composite outcome of either death or impaired ADL according to baseline smoking status were calculated by multiple logistic regression analyses.

Results: In 1999, 386 participants were dead, and 75 participants had impaired ADL. Compared with nonsmokers, AOR (95% CI) of impaired ADL was significantly higher in current smokers at baseline (odds ratio [OR] 2.11 [1.09–4.06]). Compared with nonsmokers, AOR of impaired ADL was higher as the number of cigarettes increased (OR 2.04 [1.02–4.06] for <20 cigarettes/day and OR 2.35 [0.94–5.88] for >20 cigarettes/day; *p* for trend = .04). AOR of composite outcome for current smoking was 1.83 (1.37–2.41).

Discussion: Smoking in middle age would increase future risks of impaired ADL. Smoking cessation may be important to prevent future impairment of ADL as well as death.

Introduction

Numerous studies have reported that smoking is one of the major risk factors for cardiovascular diseases and cancer (Gandini

et al., 2008; Shinton & Beevers, 1989; Ueshima et al., 2004; Wakai et al., 2006; Wolf, D'Agostino, Kannel, Bonita, & Belanger, 1988). On the other hand, cardiovascular diseases, especially stroke, were reported to be the main cause of impaired activities of daily living (ADL) in Japan (Hayakawa et al., 2000; Kamiyama et al., 1999). The associations between smoking and functional status decline including impaired ADL in the elderly have been previously reported (Ho, Woo, Yuen, Sham, & Chan, 1997; Kamiyama et al.; LaCroix, Guralnik, Berkman, Wallace, & Satterfield, 1993; Lammi, Kivela, Nissinen, Pekkanen, & Punsar, 1989; Parker, Thorslund, Lundberg, & Kareholt, 1996; Strandberg et al., 2008; Stuck et al., 1999; Sulander, Martelin, Rahkonen, Nissinen, & Utela, 2005). Several follow-up study from western countries showed that smoking is a risk factor for functional status decline in elderly people (Ho et al.; LaCroix et al.; Lammi et al.; Parker et al.; Strandberg et al.; Stuck et al.; Sulander et al.). In Asia, where stroke mortality and morbidity are higher than western countries (Ueshima, 2007; World Health Organization [WHO], 2007), several studies reported the association between smoking and functional status in elderly people (Ho et al.; Kamiyama et al.). However, these studies were performed cross-sectionally or in short term and evaluated smoking status in old age. Therefore, the relation between smoking in middle age and long-term risk of impaired ADL in Asian countries has not been well investigated.

In Asian countries including Japan, the prevalence of cigarette smoking is higher than that in western countries, especially in men (Martiniuk et al., 2006). In 2005, the prevalence of smoking was 39.3% in Japanese men and 11.3% in Japanese women (Health and Welfare Statistics Association, 2007). In middle-aged Japanese men, the prevalence of smoking was higher,

doi: 10.1093/ntr/ntq121

Advance Access published on July 30, 2010

© The Author 2010. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.
All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org

approximately 50%. Because the smoking rate is high in Japan and in other Asian countries, it is important to clarify the relationship between smoking and future risk of impaired ADL.

The purpose of this report was to examine whether smoking in middle age increases the risk of future impairment of ADL and composite outcome, including death. A 19-year follow-up study of representative Japanese samples from the National Survey on Circulatory Disorders of Japan was conducted to examine this question.

Methods

Participants and follow-up

Cohort studies of the National Survey on Circulatory Disorders of Japan comprise the National Integrated Project for Prospective Observation of Non-communicable Disease and Its Trends in the Aged (NIPPON DATA). The baseline survey of NIPPON DATA80 was performed in 1980. The detailed methods of this study have been described (Hozawa et al., 2009; Okamura et al., 2007; Ueshima et al., 2004). We analyzed the 19-year follow-up data from NIPPON DATA80 in this study.

In 1999, we asked 300 public health centers from all over Japan to participate in the follow-up ADL survey and 249 of them participated (Hozawa et al., 2009). In these areas, 2,724 men and women aged 47–59 years participated at baseline. Among these participants, we excluded 78 participants with a past history of coronary heart disease or stroke ($n = 34$) or missing information in the baseline survey ($n = 44$). We also excluded 83 participants who moved before the ADL survey. At follow-up, we surveyed 2,646 participants and information about ADL was collected. At follow-up, 386 participants had already died. Consequently, 86.8% ($n = 1,890$) of 2,177 remained survivors completed the ADL survey (Figure 1). Therefore, 1,890 participants were eligible for the analyses. Analyses were also done in 2,276 participants including 386 participants who were died before the ADL survey in 1999.

Detailed methods used to investigate ADL have been described (Hozawa et al., 2009; Nakamura et al., 2009). Briefly, participants were asked about five basic ADL-related items (feeding, dressing, bathing, toileting, and transfer [walking indoors]) modified from Katz, Downs, Cash, and Grotz (1970) and whether each of these could be accomplished without help, with partial help, or with full help. This survey was conducted through face-to-face interviews at home (83.2%), telephone interviews (10.5%), and other methods by physicians and public health nurses in public health centers in 1999. "Impaired ADL" was defined as partial or full support needed to perform any of the five basic ADL items. The composite outcome was defined as either all-cause death or impaired ADL. The Institutional Review Board of Shiga University of Medical Science (NO.12-18, 2000) approved the study.

Biochemical and physical examinations

Baseline blood pressure (BP) was measured by trained observers using a standard mercury sphygmomanometer on the right arm of seated participants after at least 5 min of rest. Hypertension was defined as systolic/diastolic BP $\geq 140/90$ mmHg or receiving

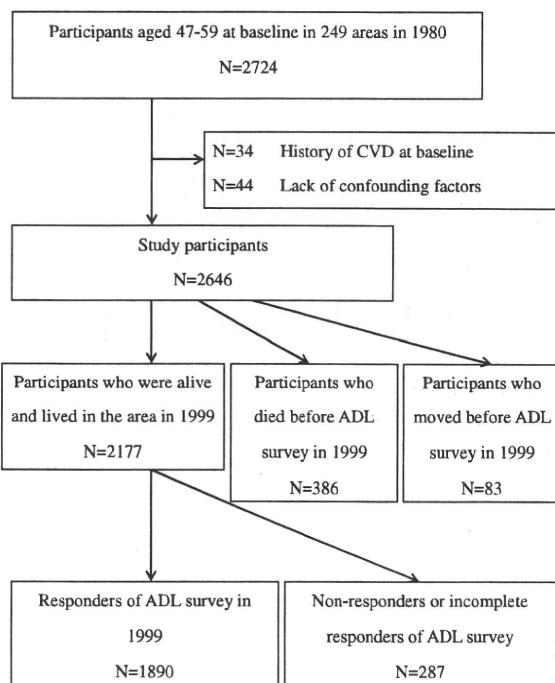


Figure 1. Flow chart of the study participants. N = numbers of participants; ADL = activities of daily living; CVD = cardiovascular diseases.

antihypertensive medication. Body mass index (BMI) was calculated as weight divided by height squared (kilogram per square meter). Public health nurses obtained data including smoking behavior, as well as current health status and medical history. Smoking behavior was categorized as nonsmokers (including former smokers) and current smokers (light smokers [20 cigarettes/day or less] and heavy smokers [more than 20 cigarettes/day]). In 1980, nonfasting blood samples were separated by centrifugation within 60 min of collection and stored at -70°C . Serum albumin and total cholesterol levels were measured using a sequential autoanalyzer (SMA12/60; Technicon, Tarrytown, NY) by bromocresol green staining for albumin and the Lieberman–Burchard direct method for total cholesterol at a specific laboratory (presently named Osaka Medical Center for Health Science and Promotion).

Statistical analysis

The relationship between smoking categories and impaired ADL or composite outcome of either death or impaired ADL was examined by multiple logistic regression analyses. The multivariate-adjusted odds ratio (AOR) and 95% CI for impaired ADL or a composite outcome was adjusted for age, gender, BMI (three categories: less than 18.5, 18.5–25, and 25 kg/m^2 and over), drinking (nondrinking and current drinking), BP (less than 120/80, 120–139/80–89, 140–159/90–99, and 160/100 mmHg and over or antihypertension medication), and serum total cholesterol and albumin levels. The nonsmoking group was set as the reference group. All analyses were performed by SAS 9.1 (Statistical Analysis System; SAS Institute, Cary, NC).

Cigarette smoking and ADL

Table 1. Baseline characteristics of participants, NIPPON DATA80, 1,021 men and 1,255 women aged 47–59 years

	Men		Women	
	Nonsmoker ^a	Current smoker	Nonsmoker ^a	Current smoker
Number of participants (N)	340	681	1,161	94
Age (year)	52.8 ± 3.5	53.1 ± 3.5	53.2 ± 3.8	53.7 ± 3.8
BMI (kg/m ²)	23.2 ± 2.9	22.3 ± 2.7	23.3 ± 3.4	22.8 ± 3.2
Serum albumin (g/dl)	4.42 ± 0.24	4.37 ± 0.26	4.37 ± 0.24	4.37 ± 0.22
Serum total cholesterol (mg/dl)	193.1 ± 32.9	184.4 ± 34.4	197.4 ± 32.9	198.7 ± 33.2
SBP (mmHg)	140.5 ± 20.4	140.1 ± 20.2	138.2 ± 20.5	132.3 ± 21.3
DBP (mmHg)	86.4 ± 12.2	84.5 ± 12.4	82.4 ± 11.3	79.3 ± 13.0
Prevalence of hypertension ^b (%)	57.1	55.8	50.3	39.4
More than 20 cigarettes/day (%)	—	39.4	—	6.4
Current drinking (%)	70.3	78.0	14.6	38.3

Note. Values are number, % or mean ± SD. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure.

^aNonsmokers include former smokers.

^bHypertension was defined as SBP/DBP ≥ 140/90 mmHg or receiving antihypertensive medication.

Results

Baseline characteristics of participants are shown in Table 1. For men, current smokers had lower total cholesterol levels ($p < .001$) and lower BMI levels ($p < .001$) than nonsmokers. For both men and women, smokers had a higher prevalence of current drinking ($p < .01$) than nonsmokers.

At the ADL survey in 1999, 31 men and 44 women had impaired ADL. Table 2 shows the relationship between smoking categories and impaired ADL. The OR of impaired ADL in smokers was significantly higher than that in nonsmokers after multivariate adjustment (OR 2.11 [95% CI: 1.09–4.06]). The ORs were similar when analyzed for men and women separately (OR 2.23 [0.91–5.42] in men and 2.25 [0.81–6.24] in women).

Table 2. Relationship between baseline smoking status and impaired ADL assessed 19 years later, NIPPON DATA80, 1980–1999

	Nonsmoker	Current smoker
Men and women combined (n = 1,890)		
Number of participants alive at the end of follow-up	1,314	576
Number of participants who developed impaired ADL (%)	47 (3.6%)	28 (4.9%)
Unadjusted OR (95% CI)	1	1.38 (0.85–2.22)
Age and sex AOR (95% CI)	1	1.63 (0.87–3.05)
Multivariate AOR (95% CI) ^a	1	2.11 (1.09–4.06)
Men (n = 778)		
Number of participants alive at the end of follow-up	281	497
Number of participants who developed impaired ADL (%)	8 (2.8%)	23 (4.6%)
Unadjusted OR (95% CI)	1	1.66 (0.73–3.75)
Age AOR (95% CI)	1	1.60 (0.71–3.65)
Multivariate AOR (95% CI) ^a	1	2.23 (0.91–5.42)
Women (n = 1,112)		
Number of participants alive at the end of follow-up	1,033	79
Number of participants who developed impaired ADL (%)	39 (3.8%)	5 (6.3%)
Unadjusted OR (95% CI)	1	1.72 (0.66–4.50)
Age AOR (95% CI)	1	1.66 (0.63–4.36)
Multivariate AOR (95% CI) ^a	1	2.25 (0.81–6.24)
Men and women combined (n = 1,890)		
Number of participants alive at the end of follow-up	1,314	<20 cigarettes/day
Number of participants who developed impaired ADL (%)	47 (3.6%)	383
Unadjusted OR (95% CI)	1	19 (5.0%)
Age and sex AOR (95% CI)	1	1.41 (0.82–2.43)
Multivariate AOR (95% CI) ^a	1	1.57 (0.81–3.06)
		>20 cigarettes/day
		193
		9 (4.7%)
		1.32 (0.64–2.74)
		1.81 (0.75–4.41)
		2.35 (0.94–5.88)

Note. ADL = activities of daily living; OR = odds ratio.

^aAdjusted for age, gender, body mass index, drinking, blood pressure, serum total cholesterol and albumin levels.

Table 3. Relationship between baseline smoking status and composite outcomes (death or impaired ADL) assessed 19 years later, NIPPON DATA80, 1980–1999

	Nonsmoker	Current smoker
Men and women combined (n = 2,276)		
Number of participants	1,501	775
Number of composite outcomes	234 (15.6%)	227 (29.3%)
Unadjusted OR (95% CI)	1	2.28 (1.85–2.80)
Age and sex AOR (95% CI)	1	1.69 (1.29–2.22)
Multivariate AOR (95% CI) ^a	1	1.83 (1.37–2.41)
Men (n = 1,021)		
Number of participants	340	681
Number of composite outcomes	67 (19.7%)	207 (30.4%)
Unadjusted OR (95% CI)	1	1.78 (1.30–2.43)
Age AOR (95% CI)	1	1.75 (1.28–2.41)
Multivariate AOR (95% CI) ^a	1	1.84 (1.32–2.55)
Women (n = 1,255)		
Number of participants	1,161	94
Number of composite outcomes	167 (14.4%)	20 (21.3%)
Unadjusted OR (95% CI)	1	1.60 (0.95–2.68)
Age AOR (95% CI)	1	1.55 (0.91–2.62)
Multivariate AOR (95% CI) ^a	1	1.82 (1.05–3.16)
Men and women combined (n = 2,276)		
Number of participants	1,501	<20 cigarettes/day 276
Number of composite outcomes	234 (15.6%)	135 (27.1%) 92 (33.3%)
Unadjusted OR (95% CI)	1	2.03 (1.60–2.58) 2.78 (2.10–3.70)
Age and sex AOR (95% CI)	1	1.51 (1.13–2.02) 2.18 (1.54–3.10)
Multivariate AOR (95% CI) ^a	1	1.64 (1.21–2.21) 2.34 (1.64–3.33)

Note. ADL = activities of daily living; OR = odds ratio.

^aAdjusted for age, gender, body mass index, drinking, blood pressure, serum total cholesterol, and albumin levels.

Compared with nonsmokers, the AOR of impaired ADL was higher with higher number of cigarettes (light smokers, OR 2.04 [1.02–4.06], and heavy smokers, OR 2.35 [0.94–5.88]; *p* for trend = .04).

Table 3 shows the relationship between smoking and composite outcome of impaired ADL or all-cause death. The multivariate AOR of composite outcome in current smokers was significantly higher than that in nonsmokers (OR 1.83 [1.37–2.41]). Results were similar in both men and women (OR 1.84 [1.32–2.55] in men and 1.82 [1.05–3.16] in women). Compared with nonsmokers, the AOR of composite outcome was higher with higher number of cigarettes (light smokers, OR 1.64 [1.21–2.21], and heavy smokers, OR 2.34 [1.64–3.33]; *p* for trend < .001).

et al., 2008; Stuck et al., 1999; Sulander et al., 2005). However, most studies were from western countries and in short follow-up period. A recent study from Finland demonstrated the relationship between smoking habit in midlife and physical functional status in old age in a 26-year follow-up study (Strandberg et al.). These results from western countries are consistent with our results in Japan where the disease structure is different (Ueshima, 2007; WHO, 2007). In Asian countries, several studies reported a significant association between smoking in elderly and future functional status decline (Ho et al.; Kamiyama et al., 1999). Compared with these previous studies, our study covered a larger number of participants, had a longer follow-up period, and evaluated smoking status in younger age. Therefore, to our knowledge, this study is the first one to report the association between smoking in middle age and long-term risk of future impaired ADL in an Asian population.

A few studies have investigated the prevalence of impaired ADL in Asian countries. A survey by the Ministry of Health, Labour and Welfare of Japan reported that the prevalence of impaired ADL was 3.4% among elderly Japanese aged 65–74 years (The Research Group for Impaired Activity Daily Living and Quality of Life in the Elderly, 1997). Other studies in Japan and Singapore reported that the prevalence of impaired ADL among elderly was 6.4% and 6.6% (Konno et al., 2004; Ng, Niti, Chiam, & Kua, 2006); the prevalence was similar to that in our study (4.0%), which is relatively lower than that in western countries.

Discussion

In this long-term follow-up study of a representative sample of the Japanese population, it was demonstrated that the risk of future impaired ADL was twice higher in smokers than that in nonsmokers in middle age. This trend was similar for composite outcome including all-cause death.

Several follow-up studies reported that smoking was related to future functional status decline (Ho et al., 1997; LaCroix et al., 1993; Lammi et al., 1989; Parker et al., 1996; Strandberg

Cigarette smoking and ADL

Our analysis on impaired ADL as the endpoint did not consider participants who were dead before ADL survey. Some of them might be impaired their ADL before death. Therefore, we analyzed the relation between smoking status and composite outcome (death or impaired ADL). In this analysis, we found that both results on the risk of impaired ADL and of composite outcome (death or impaired ADL) were similar. Nonsmokers would be able to live longer and to spend healthier life without impaired ADL than smokers.

A possible mechanism for the relationship between smoking and impaired ADL could be the occurrence of stroke (Hayakawa et al., 2000; Kamiyama et al., 1999) and chronic obstructive pulmonary disease (COPD; Garrod, Bestall, Paul, Wedzicha, & Jones, 2000; Lundback et al., 2003). Certainly, previous studies reported that smoking is a strong risk factor for stroke (Shinton & Beevers, 1989; Ueshima et al., 2004; Wolf et al., 1988) and COPD. Another mechanism by which smoking impairs ADL could be osteoporosis and occurrence of bone fracture (Katz et al., 1970). Osteoporosis was a major cause of bone fracture in older adults, and smoking was reported to be an important risk factor for osteoporosis (Wong, Christie, & Wark, 2007). The bone fracture in elderly due to smoking might be one mechanism for impaired ADL. We have previously reported that in our 1994 survey of NIPPON DATA80, 54% of impaired ADL was due to stroke in men and 22% in women. Also, 30% of impaired ADL was due to lower limb fracture in women (Hayakawa et al.). In the present study, 38.7% and 15.9% of male and female survivors with impaired ADL had self-reported history of stroke after baseline survey (data not shown). Stroke events caused by smoking would more strongly contribute to impaired ADL in Asian populations than in western populations.

This study has several limitations. First, we did not assess the baseline ADL conditions in 1980. However, it is unlikely that individuals with impaired ADL participated in the baseline survey because participants had to attend the local public health centers on foot without any assistance. Moreover, we did not consider the results of ADL survey in 1994 because the number of participants who had ADL data both in 1994 and in 1999 was not enough to analyze. Second, the category of nonsmokers includes former smokers because of the small sample size of the study. Therefore, the risk of impaired ADL among smokers may be underestimated. Third, we assessed ADL only in 1999. Some of participants who died before 1999 may have developed impaired ADL. Therefore, this analysis would have a potential impact of selection bias due to missing information of participants who died until ADL survey in 1999. Fourth, ADL assessment was conducted by face-to-face interviews for most of participants; however, other methods were used in 17% of participants.

In conclusion, our results suggest that smoking in middle age substantially increases the future risk of impaired ADL as well as composite outcome including death. Not only to prevent cardiovascular disease and cancer but also to prevent future disability, the importance of smoking cessation should be emphasized to smokers.

Funding

NT is supported by Japan Foundation for Aging and Health fellowship programs for young researcher. This work was sup-

ported by a Grant-in-Aid from the Ministry of Health and Welfare under the auspices of the Japanese Association for Cerebro-cardiovascular Disease Control, a Research Grant for Cardiovascular Diseases (7A-2) from the Ministry of Health, Labour and Welfare, and a Health and Labour Sciences Research Grant, Japan (Comprehensive Research on Aging and Health: H11-chouju-046, H14-chouju-003, H17-chouju-012, and H19-chouju-014). There was no role of the financial sponsors in the design, execution, analysis and interpretation of data, or writing of the study.

Declaration of Interests

None declared.

Acknowledgments

The authors thank all public health centers in Japan that cooperated with our study. The members of the NIPPON DATA80 Research Group are listed elsewhere (Hozawa et al., 2009).

References

Gandini, S., Botteri, E., Iodice, S., Boniol, M., Lowenfels, A. B., Maisonneuve, P., et al. (2008). Tobacco smoking and cancer: A meta-analysis. *International Journal of Cancer*, 122, 155–164.

Garrod, R., Bestall, J. C., Paul, E. A., Wedzicha, J. A., & Jones, P. W. (2000). Development and validation of a standardized measure of activity of daily living in patients with severe COPD: The London Chest Activity of Daily Living Scale (LCADL). *Respiratory Medicine*, 94, 589–596.

Hayakawa, T., Okayama, A., Ueshima, H., Kita, Y., Choudhury, S. R., & Tamaki, J. (2000). Prevalence of impaired activity of daily living and the impact of stroke and lower limb fracture in elderly persons in Japan. *CVD Prevention and Control*, 3, 187–194.

Health and Welfare Statistics Association. (2007). *Annual statistical report of national health conditions* (Japanese). Tokyo, Japan: Author.

Ho, S. C., Woo, J., Yuen, Y. K., Sham, A., & Chan, S. G. (1997). Predictors of mobility decline: The Hong Kong old-old study. *Journal of Gerontology*, 52A, M356–M62.

Hozawa, A., Okamura, T., Murakami, Y., Kadokawa, T., Okuda, N., Takashima, N., et al. (2009). High blood pressure in middle age is associated with a future decline in activities of daily living. NIPPON DATA80. *Journal of Human Hypertension*, 23, 546–552.

Kamiyama, T., Muratani, H., Kimura, Y., Fukiyama, K., Abe, K., Fujii, J., et al. (1999). Factors related to impairment of activities of daily living. *Internal Medicine*, 38, 698–704.

Katz, S., Downs, T. D., Cash, H. R., & Grotz, R. C. (1970). Progress in development of the index of ADL. *The Gerontologist*, 10, 20–30.

Konno, K., Katsumata, Y., Arai, A., & Tamashiro, H. (2004). Functional status and active life expectancy among senior citizens

in a small town in Japan. *Archives of Gerontology and Geriatrics*, 38, 153–166.

LaCroix, A. Z., Guralnik, J. M., Berkman, L. F., Wallace, R. B., & Satterfield, S. (1993). Maintaining mobility in late life. II. Smoking, alcohol consumption, physical activity, and body mass index. *American Journal of Epidemiology*, 137, 858–869.

Lammi, U. K., Kivela, S. L., Nissinen, A., Pekkanen, J., & Punsar, S. (1989). Functional capacity and associated factors in elderly Finnish men. *Scandinavian Journal of Social Medicine*, 17, 67–75.

Lundback, B., Lindberg, A., Lindstrom, M., Ronmark, E., Jonsson, A. C., Jonsson, E., et al. (2003). Not 15 but 50% of smokers develop COPD?—Report from the Obstructive Lung Disease in Northern Sweden Studies. *Respiratory Medicine*, 97, 115–122.

Martiniuk, A. L., Lee, C. M., Lam, T. H., Huxley, R., Suh, I., Jamrozik, K., et al. (2006). The fraction of ischemic heart disease and stroke attributable to smoking in the WHO Western Pacific and South-East Asian regions. *Tobacco Control*, 15, 181–188.

Nakamura, Y., Hozawa, A., Turin, T. C., Takashima, N., Okamura, T., Hayakawa, T., et al. (2009). Dietary habits in middle age and future changes in activities of daily living—NIPPON DATA80. *Gerontology*, 56, 707–713.

Ng, T. P., Niti, M., Chiam, P. C., & Kua, E. H. (2006). Prevalence and correlates of functional disability in multiethnic elderly Singaporeans. *Journal of the American Geriatric Society*, 54, 21–29.

Okamura, T., Hayakawa, T., Hozawa, A., Kadokawa, T., Murakami, Y., Kita, Y., et al. (2007). Lower levels of serum albumin and total cholesterol associated with decline in activities of daily living and excess mortality in a 12-year cohort study of elderly Japanese. *Journal of the American Geriatrics Society*, 56, 529–535.

Parker, M. G., Thorslund, M., Lundberg, O., & Kareholt, I. (1996). Predictors of physical function among the oldest old: A comparison of three outcome variables in a 24-year follow-up. *Journal of Aging and Health*, 8, 444–460.

Shinton, R., & Beevers, G. (1989). Meta-analysis of relation between cigarette smoking and stroke. *British Medical Journal*, 298, 789–794.

Strandberg, A. Y., Strandberg, T. E., Pitkälä, K., Salomaa, V. V., Tilvis, R. S., & Miettinen, T. A. (2008). The effect of smoking in midlife on health-related quality of life in old age: A 26-year prospective study. *Archives of Internal Medicine*, 168, 1968–1974.

Stuck, A. E., Walther, J. M., Nikolaus, T., Bula, C. J., Hohmann, C., Beck, J. C., et al. (1999). Risk factors for functional status decline in community-living elderly people: A systematic literature review. *Social Science & Medicine*, 48, 445–469.

Sulander, T., Martelin, T., Rahkonen, O., Nissinen, A., & Uutela, A. (2005). Associations of functional ability with health-related behavior and body mass index among the elderly. *Archives of Gerontology and Geriatrics*, 40, 185–199.

The Research Group for Impaired Activity Daily Living and Quality of Life in the Elderly. (1997). *The report of the research group for impaired Activity Daily Living and Quality of Life in the elderly 1997*. Tokyo, Japan: The Japanese Association for Cerebro-Cardiovascular Disease Control (in Japanese).

Ueshima, H. (2007). Explanation for the Japanese paradox: Prevention of increase in coronary heart disease and reduction in stroke. *Journal of Atherosclerosis and Thrombosis*, 14, 278–286.

Ueshima, H., Choudhury, S. R., Okayama, A., Hayakawa, T., Kita, Y., Kadokawa, T., et al. (2004). Cigarette smoking as a risk factor for stroke death in Japan: NIPPON DATA80. *Stroke*, 35, 1836–1841.

Wakai, K., Inoue, M., Mizoue, T., Tanaka, K., Tsuji, I., Nagata, C., et al. (2006). Tobacco smoking and lung cancer risk: An evaluation based on a systematic review of epidemiological evidence among the Japanese population. *Japanese Journal of Clinical Oncology*, 36, 309–324.

Wolf, P. A., D'Agostino, R. B., Kannel, W. B., Bonita, R., & Belanger, A. J. (1988). Cigarette smoking as a risk factor for stroke. The Framingham Study. *Journal of the American Medical Association*, 259, 1025–1029.

Wong, P. K., Christie, J. J., & Wark, J. D. (2007). The effects of smoking on bone health. *Clinical Science*, 113, 233–241.

World Health Organization. (2007). *World health statistics 2007*. Geneva, Switzerland: Author.

(2) 日本人男女における血清 γ -glutamyltransferaseと心臓死亡 および脳卒中死亡リスクとの関連：NIPPON DATA90

研究協力者 藤吉 朗 (滋賀医科大学社会医学講座公衆衛生学部門 特任助教)
研究代表者 三浦 克之 (滋賀医科大学社会医学講座公衆衛生学部門 教授)
研究分担者 審澤 篤 (山形大学大学院医学系研究科公衆衛生学講座 講師)
研究協力者 村上 義孝 (滋賀医科大学社会医学講座医療統計学部門 准教授)
研究協力者 高嶋 直敬 (滋賀医科大学社会医学講座公衆衛生学部門 特任助教)
研究分担者 奥田奈賀子 (公益財団法人結核予防会第一健康相談所生活習慣病予防研究センター 副センター長)
研究協力者 門脇 崇 (滋賀医科大学社会医学講座公衆衛生学部門 客員助教)
研究分担者 喜多 義邦 (滋賀医科大学社会医学講座公衆衛生学部門 講師)
研究分担者 岡村 智教 (慶應義塾大学医学部衛生学公衆衛生学 教授)
研究分担者 中村 保幸 (京都女子大学家政学部生活福祉学科 教授)
研究分担者 早川 岳人 (福島県立医科大学衛生学・予防医学講座 准教授)
研究分担者 岡山 明 (公益財団法人結核予防会第一健康相談所 所長)
研究分担者 上島 弘嗣 (滋賀医科大学生活習慣病予防センター 特任教授)

背景 血清 γ -glutamyltransferase (GGT)と心血管病リスクとの独立した関連がこれまで示されてきた。しかしながら、アジア人集団においてGGTが心臓病と脳卒中とに同様に関連しているかどうかは明らかでない。われわれは日本人男女の集団に関する血清GGT値と脳卒中死亡、心臓病死亡との関連を検討した。

方法 無作為抽出した日本全国300地域に居住する成人男女（年齢30-95歳）で冠動脈疾患と脳卒中既往のない7,488人（男性3,089人）を対象にした。Coxの比例ハザードモデルを用いて、性特異的GGT階級ごとの調整ハザード比を推算した。

結果 調査期間中に心臓病死亡165例（男性83例）、脳卒中死亡135例（男性66例）を観察した。GGTがもっとも低い階級を基準にした25, 50, 75, 90パーセンタイルの交絡因子調整後の心臓死亡ハザード比はそれぞれ女性で1.61, 2.28, 2.48, 4.59（トレンド P 値=0.001）、男性で0.90, 0.74, 1.42, 1.56（トレンド P 値=0.250）であった。対応する脳卒中死亡ハザード比は女性で1.52, 0.95, 1.22, 1.34（トレンド P 値=0.785）、男性で0.75, 0.91, 1.26, 1.02（トレンド P 値=0.642）であった。非飲酒者に限った解析でも結果は同様であった。

結論 日本人の代表的集団である本コホートの研究結果から、ベースライン時のGGTは独立した心臓病死亡の予測因子であり、特に女性ではそうであるといえた。一方、GGTは脳卒中死亡の予測因子ではなかった。

Title: γ -Glutamyltransferase and mortality risk from heart disease and stroke in Japanese men and women: NIPPON DATA90

CVD Prevention and Control. 2010;5:27-34