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Figure 5. Hierarchical clustering of differentially expressed gangliosides. (A) The percentage of Ac-GD2. GD2 and GD]a to the total gangliosides of NB cell
lines. (B) The clustering tree shows the expression pattern and similarity in cell lines. The strength of the gangioside expression was gradually increased on

the heat map.
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Figure 6. Analysis of expression of neural-differentiation-related genes and
glycosyltransferase genes by RT-PCR. (A) Glycosyitransferase genes (Fig. 1).
1B) Phox2a. paired-like (aristaless) homeobox 2a: Phox2b. paired-like
homeobox 2b: TrkA. neurotrophic tyrosine kinase. receptor, type i. also
known as NTRKI: TrkC. neurotrophic tyrosine kinase. receptor. type 3. also
known as NTRK3: NF-M. neurofilament 160 kDa subunit: NF-H. neuro-
filament 200 kDa subunit: CHGA, chromogranin A: N-CAD, N-cadherin and
NCAM. neural cell adhesion molecule, (C) PTN, pleiotrophin, (D) MYCN.

v-myc myelocytomatosis viral related oncogene. (E) B-actin was used as an
internal control.

The biological significance of ganglioside acetylation has
not been fully elucidated, but it is thought to modulate cell
function by regulating the ability of gangliosides to bind cell
adhesion molecules. For example. CD22B (also called
Siglec-2) is a B-cell-restricted phosphoprotein that mediates
interactions with other cells via binding with «2-6-linked
sialic acids on glycoconjugates. and the fact that the binding
can be inhibited by 9-O-acetylation of sialic acids suggests
that CD228 adhesion events are regulated by ganglioside
acetylation (14,15). In childhood acute lymphoblastic
leukemia, on the other hand. administration of exogenous
GD3 induces apoptosis. whereas O-acetylated GD3 fails to
induce similar effects, suggesting that O-acetylation of GD3
promotes leukemia cell survival by preventing apoptosis
(16,17). Although the significance of acetylated GD2 in NB
cells still remains largely unknown, further investigation
should shed light on the functional role of gangliosides in the
biological behavior of NB cells.

The NB cell lines were classified into three types based
on their of ganglioside expression profiles determined by LC-
MS analysis, namely. type A. with a high level of expression
of GD1la but low level or no expression of GD2/acetylated
GD2, and consisting of SK-N-SH. SK-N-RA, NB69. GOTO
and NB9 cells, type B, with a high level of expression of
GD2/acetylated GD2 but low level or no expression of GDla.
and consisting of IMR32, NB1,. NB16 and CHP126 cells. and
type AB, which express both GDla and GD2/acetylated
GD2. and consisting of CHP134 and KP-N-NS cells. The
results of the RT-PCR analyses indicated that the ganglioside
expression profiles of NBs correlated with their ganglioside
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synthase expression pattern. As shown in Fig. 6. ST8sial,
which catalyzes the synthesis of GD3 from GM3, was expres-
sed only in the types B and AB NB cell lines and not in any
of the type A NB cell lines, whereas B4galntl. which catalyzes
the synthesis of both GM2 and GD2, was expressed in all
the NB cell lines tested in this study.

Expression of GD2 ganglioside is charactenistic of cells
of neuroectodermal origin. and a high level of expression has
been reported in NB cells. whereas the GD2 distribution in
humans is limited to neurons and peripheral nerve fibers (18).
Thus. GD2 appears 1o be useful as a target for the treatment
of NB. However. our findings in this study indicated that the
level of GD2 expression in NB cells is variable and that NB
cells can be classified based on their pattern of expression of
ganglio-series gangliosides. including GD2. Since increased
shedding of GD2 ganglioside and MYCN amplification jointly
characterize the aggressive type of NB cells (19), classification
of NBs based on their ganglioside expression profile may
have prognostic value. Our observation that the ganglioside
expression profiles are closely related to the expression of
neural-differentiation-related genes appears to further support
this notion.

In conclusion, we have demonstrated the usefulness of
the LC-MS analysis system as a tool for glycosphingolipid
research. Eighteen species of glycosphingolipids containing
gangliosides of a and b pathways and their acetylated forms
were detected. The expression ratios of the glycosphingo-
lipids were determined. and were compared among 11 of NB
cell lines. Based on the results, it was indicated that these NB
cell lines could be classified into three categories. Although
more detailed experiments are clearly needed. further investi-
gations using the new method should provide a new approach
to determining the biological significance of glycosphingo-
lipids in NBs and identifying novel biomarkers for predicting
the outcome of NB.
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Bmil is a MYCN target gene that regulates tumorigenesis through
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Recent advances in neuroblastoma (NB) research ad-
dressed that epigenetic alterations such as hypermethyla-
tion of promoter sequences, with consequent silencing
of tumor-suppressor genes, can have significant roles in
the tumorigenesis of NB. However, the exact role of
epigenetic alterations, except for DNA hypermethylation,
remains to be elucidated in NB research. In this paper, we
clarified the direct binding of MYCN to Bmil promoter
and upregulation of Bmil transcription by MYCN.
Mutation introduction into an MYCN binding site in the
Bmil promoter suggests that MYCN has more important
roles in the transcription of Bmil than E2F-related Bmil
regulation. A correlation between MYCN and polycomb
protein Bmil expression was observed in primary NB
tumors. Expression of Bmil resulted in the acceleration of
proliferation and colony formation in NB cells. Bmil-
related inhibition of NB cell differentiation was confirmed
by neurite extension assay and analysis of differentiation
marker molecules. Intriguingly, the above-mentioned
Bmil-related regulation of the NB cell phenotype seems
not to be mediated only by pl4ARF/p16INK4a in NB
cells. Expression profiling analysis using a tumor-specific
c¢DNA microarray addressed the Bmil-dependent repres-
sion of KIF1Bp and TSLCI1, which have important roles in
predicting the prognoesis of NB. Chromatin immunoprecipi-
tation assay showed that KIFIBB and TSLCI are direct
targets of Bmil in NB cells. These findings suggest that
MYCN induces Bmil expression, resulting in the repression
of tumor suppressors through Polycomb group gene-
mediated epigenetic chromosome modification. NB cell
proliferation and differentiation seem to be partially
dependent on the MYCN/Bmil/tumor-suppressor pathways.
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published online 1 March 2010
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Introduction

In tumorigenesis, besides the well-known genetic
changes that occur in cancer, such as the deletion of
tumor-suppressor genes (TSGs), amplification/activa-
tion of oncogenes and loss of heterozygosity or gene
mutations in tumor-associated genes (Hanahan and
Weinberg, 2000), epigenetic alterations, such as altered
DNA methylation, misregulation of chromatin remo-
deling by histone modifications and aberrant expression
of Polycomb group genes (PcGs) proteins have
emerged as common hallmarks of many cancers (Jones
and Baylin, 2002; Sparmann and van Lohuizen, 2006;
Esteller, 2007; Rajasekhar and Begemann, 2007). PcGs
are usually considered to be transcriptional repressors
that are required for maintaining the correct spatial and
temporal expressions of homeotic genes during devel-
opment. (Schwartz and Pirrotta, 2008). Recent bio-
chemical approaches have established that PcG proteins
form multiprotein complexes, known as Polycomb-
Repressive Complexes (PRCs). PRC2 contain Ezh2,
EED, Suzl2 and RbAp48, whereas the PRC1 complex
consists of >10 subunits, including the oncoprotein
Bmil and the HPC proteins, namely HPH1-3, RING1-2
and SCML (Rajasekhar and Begemann, 2007). In
addition to being essential regulators of embryonic
development, PcGs have also emerged as key players
in the maintenance of adult stem cell populations
(Valk-Lingbeek et al., 2004; Pietersen and van Lohuizen,
2008). For example, Bmil is required for the self-
renewal of hematopoietic and neural stem cells (Lessard
and Sauvageau, 2003; Molofsky et al., 2003, Iwama
et al., 2004), whereas the overexpression of EZH?2
prevents hematopoietic stem cell exhaustion (Kamminga
et al., 2005). Consistent with their critical roles in
development, differentiation and stem cell renewal, several
PcGs are oncogenes, overexpressed in both solid and
hematopoietic cancers (Valk-Lingbeek et al., 2004; Raja-
sekhar and Begemann, 2007).
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Neuroblastoma (NB) is one of the most common
malignant solid tumors occurring in infancy and childhood
and accounts for 10% of all pediatric cancers (Westemann
and Schwab, 2002). NBs are derived from sympathetic
neuroblasts with various clinical outcomes from sponta-
neous regression, caused by neuronal differentiation and/or
apoptotic cell death, to malignant progression. Extensive
cytogenetic and molecular genetic studies identified that
genetic abnormalities, such as loss of the short arm
of chromosome 1 (1p), amplification of MYCN and 17q
gain, are frequently observed and often associated with
poor clinical outcome (Brodeur ez al., 1984; Caron, 1995).
Although numerous genetic abnormalities, including
MYCN amplification, are involved in the development
and/or progression of NB, the molecular mechanisms
responsible for the pathogenesis of aggressive NB remain
unclear. Epigenetic alterations, such as hypermethylation of
promoter sequences, with consequent silencing of TSGs,
such as CASP8, RASSFIA, CD44, TSP-1 and PTGER2,
can have significant roles in the tumorigenesis of NB (Teitz
et al., 2000; Yan et al., 2003; Yang et al., 2003, 2004; Sugino
et al., 2007). However, it was reported that the expression of
several tumor-suppressor candidate genes, such as KIF1Bp
and TSLC1, is suppressed in NB cells, but the percentage of
pathological mutations and promoter methylation in NB
tumors was not so high (Ando et al., 2008; Munirajan e al.,
2008). For the promoter DNA methylation-independent
gene repression, the PcG complex might have a role in NB
cell proliferation and differentiation, although the exact role
of PcG in NB tumorigenesis remains to be elucidated.
Regarding Bmil regulation in NB, the binding of E2F-1 to
Bmil promoter and its activation were reported, and a
strong expression of Bmil was observed in primary NBs
(Nowak et al., 2006). However, Bmil expression was not
evaluated according to patient prognosis, and there was
no correlation between MYCN amplification and Bmil
expression in the report. Another group reported that Bmil
suppression by knockdown induced several differentiation
marker proteins, and impaired colony formation and tumor
formation in immunodeficient mice, although Bmil over-
expression in NB cells could not function as an oncogene
(Cui et al., 2006, 2007).

In this paper, we found that MYCN directly bound to
Bmil promoter and induced its transcription. A
correlation between MYCN and Bmil expressions was
observed in both NB cell lines and primary tumors. The
expression of Bmil in NB cells resulted in the upregula-
tion of proliferation and colony formation; expression
profiling using a tumor-specific ¢cDNA microarray
(Ohira et al., 2005) addressed the Bmil-dependent
repression of TSGs, which has an important role in
predicting the prognosis of NB.

Results

Bmil expression correlates with MYCN expression in NB
cell lines and tumor samples

First, we studied Bmil expression by western blotting
and found that the PRC1 complex protein Bmil and
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Figure 1 Bmil expression correlates with MYCN in NB (A). Bmil
expression in NB cell lines. Western blotting analysis (a) and
semi-quantitative RT-PCR (b) of Bmil, Ringlb and MYCN were
performed as described in the ‘Materials and methods’ section.
(B) Immunohistochemical analysis of Bmil in NB tumor samples. In
all, 10 MYCN single-copy NBs and 6 amplified NBs were analyzed.
Statistical significance was determined by Fisher’s exact probability test.

Ringlb expressions correlated with MYCN protein
expression in NB cell lines, except for SK-N-AS cells
(Figure 1Aa). At the mRNA level, we observed Bmil
upregulation in MYCN-amplified SK-N-DZ to IMR32
cells (Figure 1Ab). Furthermore, the Bmil expression in
primary NB specimens was clearly detected in the
nucleus of MYCN-amplified NBs compared with those
of MYCN single-copy NBs (Supplementary Figure S1),
which was confirmed by statistical analysis (Figure 1B).

Bmil transcription is induced by MYCN

The above findings prompted us to study whether Bmil
transcription is induced by MYCN in NB cells. We used
Tet21/N cells expressing MYCN under the control of
tetracycline (Lutz er al, 1996). Four hours after
tetracycline withdrawal, Bmil and Ringlb expressions
were considerably increased along with MYCN induc-
tion both at mRNA and protein levels (Figure 2A a,b)
associated with MYCN induction.

Using in silico analysis by the TFSEARCH program
(http://www.cbrc.jp/research/db/TFSEARCHIJ.html),
we identified an MYCN binding site (E-box) at
positions —181 and —764, —319 and —122 E2F binding
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Figure 2 Bmil transcription is induced by MYCN. (A) Bmil
expression was studied in MYCN-inducible Tet21/N cells. After
withdrawal of tetracycline from culture medium, cells were
collected at the indicated time points and analyzed by western
blotting (Aa) and semi-quantitative RT-PCR (Ab). (B) Human
Bmil promoter showing the locations (E2F sites and putative
MYCN binding E-box) and sequence (putative MYCN binding
E-box). Position +1 means the 5’ end of the RefSeq cDNA
sequence (NM_005180). (C) MYCN activates Bmil through the
binding site in the promoter. SK-N-DZ (MYCN amplified) and
Tet21/N (MYCN-inducible) NB cells were transiently cotrans-
fected with the indicated Bmil promoter-controlled reporter
constructs. E2F site 1 and site 2 were deleted in the —196/ + 53
fragment; E2F sites 1-3 were deleted in the —196/—122 fragment.
The results are representative of at least three independent
experiments. Error bars represent the s.d. obtained with triplicate
samples. Statistical significance was determined by the Mann—
Whitney test.

sites in the human Bmil promoter (ENSG00000168283)
(Figure 2B). To study the transcriptional regulation of
Bmil expression in NB cells, initial transfection experi-
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ments were conducted with the Bmil luciferase/promo-
ter reporter construct (—1070/ + 53), which contains the
putative E-box element and E2F binding sites
(Figure 2Ca); the —1070/+ 53 fragment showed sig-
nificant promoter activity in an MYCN-amplified NB
cell line SK-N-DZ. Deletion of —1070/—197 and —121/
+ 53 still showed considerable activity (Figure 2Ca,
activity of —196/ + 53 fragment compared with —196/
—122), suggesting an important role of MYCN in Bmil
promoter activity. Furthermore, this finding was con-
firmed by mutation of the E-box in the —196/—122
fragment (activity of —196/—122/mut).

Next, we studied the effect of MYCN on Bmil
promoter activity using the MYCN-inducing NB cell
line Tet21/N. MYCN induction significantly increased
promoter activity in Tet21/N cells (Figure 2Cb).
Intriguingly, we observed promoter activity even in
MYCN (-) cells. We speculated that residual MYC (c-
MYC) may contribute to activity in these cells
(Supplementary Figure S2)

MYCN binds to the E-box region in Bmil promoter

To address whether MYCN could be recruited onto the
E-box in Bmil promoter in NB cells, we performed
chromatin immunoprecipitation (ChIP) assays by quan-
titative real-time PCR (qPCR). We found that MYCN
binding to the Bmil promoter region was clearly
detected in M YCN-amplified SK-N-DZ and NB-19 cells
but not in MYCN-single SH-SY5Y cells (Figure 3a).
Furthermore, this observation was confirmed in
MYCN-inducible Tet21/N cells (Figure 3b), indicating
that MYCN binds to the Bmil promoter region and has
a considerable role in Bmil transcription in MYCN-
amplified NB tumors.

Bmil regulates NB cell proliferation

Next, we examined the effect of Bmil on the cell growth
of NB cells by exogenous expression of Bmil. SH-SYSY
cells were infected with the mock virus and the FLAG-
tagged Bmil expression virus. Cell growth was studied
by the WST (water-soluble tetrazolium salt) assay and
showed that Bmil significantly accelerated cell prolif-
eration compared with mock cells (Figure 4a). In the
soft agar assay, Bmil-expressing SH-SYSY cells formed
anchorage-independent colonies effectively, although
colony formation was hardly detectable in parental
and mock cells (Figure 4b). Interestingly, Ringlb was
increased in Bmil-expressing SH-SY5Y cells (Figure 4c)
and Tet21/N cells (Figure 4e); the well-known Bmil
targets pl4ARF and pl6INK4a protein amounts were
not markedly changed by Bmil expression, although
mRNA expression was slightly suppressed in SH-SYSY
cells. These results suggest that increased PRCI-
mediated gene repression, except for pl4ARF and
pl6INK4a, might have an important role in NB cells.
In addition, we found an additive effect of MYCN
induction in Bmil-expressing Tet21/N cells, suggesting
the significance of MYCN targets, except for Bmil, in
NB cell proliferation. Bmil knockdown by lentivirus-
mediated shRNA transduction strongly inhibited cell
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Figure 3 MYCN binds to human Bmil promoter in vivo. Cross-
linked chromatin was isolated from SH-SY5Y (M YCN single copy,
a), SK-N-DZ and NB-19 (M YCN amplified, panel a) and Tet21/N
(MYCN-inducible, b) NB cells. Immunoprecipitation was per-
formed with an anti-MYCN antibody (clone NCM 1I 100) or
control IgG. The precipitated chromatin was used as templates for
qPCR analysis as described in the ‘Materials and methods’ section.
In panel b experiments, Tet21/N were cultured in the condition of
either tet-off (MYCN (+)) or tet-on (MYCN (—)). The results are
representative of at least three independent experiments. Error bars
represent the s.d. obtained with triplicate samples. Statistical
significance was determined by the Mann—Whitney test.

>

Figure4 Bmil effects on NB cell proliferation. WST assay (a) and
soft agar colony formation assay (b) of Bmil-expressing NB cells
(SH-SY5Y). The results are representative of at least three
independent experiments. Error bars represent the s.d. obtained
with triplicate samples. (c) Western blotting (left panel) and semi-
quantitative RT-PCR assay (right panel) of Bmil-expressing SH-
SYSY cells. Analyzed molecules are shown in the left margin of the
panels. (d) Soft agar colony formation assay of Bmil-expressing
NB cells (Tet21/N). Tet21/N cells were infected with either mock
lentivirus (Bmil (—)) or Bmil-expressing lentivirus (Bmil (+)),
and cultured with either Tet(—) (MYCN + ) or Tet(+) (MYCN-)
complete soft agar media. The results are representative of at least
three independent experiments. Error bars represent the s.d.
obtained with triplicate samples. Statistical significance was
determined by the Mann—Whitney test. (¢) Western blotting (left
panel) and semi-quantitative RT-PCR assay (right panel) of Tet21/
N cells treated as described above. Analyzed molecules are shown
in the left margin of the panels.

Oncogene

proliferation in several NB cell lines, such as SK-N-AS,
IMR32, TGW, etc. (Supplementary Figure S3 and data
not shown), consistent with previous reports (Cui et al.,
2006).

Bmil controls NB cell differentiation
Treatment with TPA (12-O-tetradecanoylphorbol 13-
acetate) or ATRA (all-trans-retinoic acid) effectively
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induced NB cell differentiation, for example, neurite
extension (Figure 5Aa), and the expression of differ-
entiation markers (Figure 5Ab and c). Interestingly,
Bmil was downregulated at the protein level along with
NB cell differentiation by TPA or ATRA treatment. To
address the role of Bmil in NB cell differentiation, we
knocked down Bmil using shRNA-expressing lenti-
virus. Intriguingly, only Bmil knockdown induced
significant neurite extension (Figure 5Ba) and the
expression of differentiation markers GAP43 and
NF68 (Figure 5Bc), suggesting the existence of Bmil-
related regulation of NB cell differentiation.

Bmil binds to the promoter region of TSGs TSLCI and
KIFIBf and suppresses transcription in NB cells

To understand how Bmil controls NB cell proliferation
and tumorigenesis, we chose to identify their target
genes, except for pl4ARF/p16INK4a, as we could not
observe significant changes in these well-known tumor
suppressors (Figures 4 and 5). To identify the Bmil
target genes, except for pl4ARF and pl6INK4a, we
studied expression gene profiling using an appropriate
NB cDNA microarray (named the CCC-NHR13000
chip) carrying 13440 cDNA spots. The top 10 genes
decreased by Bmil expression in SK-N-BE cells are
listed in Table 1. Surprisingly, the well-known tumor
suppressors (TSGs) in NB TSLC1 (NM_014333.3) and
KIF1Bp (AB017133) are ranked as the first and second
targets, respectively. The previously reported Bmil
target HOXA4 expression (Cao et al., 2005) was also
considerably repressed by Bmil. Consistent with our
results (Figures 4 and 5), the ranking of pl4ARF/
pl6INK4a was 5258. We determined the Bmil-mediated
regulation of TSLCI and KIFIBp transcription by semi-
quantitative real-time (RT)-PCR experiments using
Bmil-expressing and knocked-down NB cells and found
that Bmil expression considerably repressed TSLCI and
KIFI1Bp transcription in NB cells (Figure 6a). Next, we
studied Bmil binding to the promoter regions of 7SLC!
and KIF1Bp and found that Bmil specifically bound to
the KIFIBB (ENSGO00000054523) and TSLCI1
(ENSG00000105767) promoter region in NB cells.
qPCR ChIP expressions confirmed Bmil binding
to these promoters, suggesting the existence of
MYCN/Bmil-mediated TSLCI and KIF1Bf suppres-
sion in NB. Furthermore, this Bmil-mediated regulation
of TSLCI and KIFIBf expression was not only in NB
cells but also in squamous lung cancer QG56 cells
(Supplementary Figure S4).

Discussion

Bmil regulates the expression of TSGs in NB

Among the PcG target genes in cancer cells, PcG-
mediated repression of TSGs has an indispensable role
in tumorigenesis (Sparmann and van Lohuizen, 2006;
Rajasekhar and Begemann, 2007). As a result of PcG
overexpression, the increased PRC1/PRC2 complexes
bind to PcG target gene promoter lesions. Next, putative
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Figure 5 Bmil regulates NB cell differentiation. (A) TGW cells
were treated with 0.1% DMSO, 100nm of 12-O-tetradecanoyi-
phorbol-13-acetate (TPA) and 5 uwm all-trans-retinoic acid (RA) for
72h. Neurite extension (a) was analyzed as described in the
‘Materials and methods’ section, and the indicated molecule
expression was studied by western blotting analysis (b) and semi-
quantitative RT-PCR assay (c). (B) TGW cells were infected with
either mock- or Bmil-knockdown lentivirus, as described in the
‘Materials and methods’ section. Neurite extension was assayed
using mock-infected (left), mock-infected 10 ng/ml GDNF (middie)
and Bmil-knocked down (right) TGW cells. The results are
representative of at least three independent experiments. Error
bars represent the s.d. obtained with triplicate samples. Statistical
significance was determined by the Mann—Whitney test. We could
not detect NF68 expression at the protein level.
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Table 1 Top 10 genes suppressed by Bmil in NB cells
Rank Gene name Symbol Accession Fold induction
(log(Bmil )|log(GFP))

1 KIF1B KIF1B ABO011163 —2.961

2 TSLCI1 TSLCI NM_014333 —1.469

3 CHGA CHGA NM_001275 —1.296

4 DBH DBH NM_000787 —1.263

5 WKID22370 ARCNI1 NM_001655 —1.206

6 WKID02790 KIAA0970 NM_014949 —1.184

7 FHL1 FHLI NM_001449 —1.167

8 WKID21762 TMP21 NM_006827 —1.121

9 Nbla20566 RISC NM_021626 —1.105

10 WKIDO00168 ENO1 NM_001428 —1.097
757 HOXA4 HOXA4 NM_002141 —0.439
1528 P15_CDKN2B CDKN2B NM_004936 -0.314
5258 P16_P14CDKN2A CDKN2A NM_000077 —0.009

Abbreviation: NB, neuroblastoma.

Bmil was overexpressed by lentivirus-mediated transduction in SK-N-BE cells. Total RNA was extracted and subjected to expression profiling
analysis by an appropriate NB cDNA microarray as described in the ‘Materials and methods’ section. The results are the averages of at least three
experiments and the top 10 genes suppressed are presented. Overall, 11293 genes were analyzed. We will inform the microarray data if there is a

request.

PRC/DNA methyltransferase cross talk seems to induce
aberrant DNA methylation as PRC2 member EZH2
was shown to recruit DNA methyltransferase to select
target genes (Viré et al., 2006). In fact, PcG protein
target genes have been found to display a greater
likelihood of acquiring specific promoter DNA hyper-
methylation during cancer progression than nontarget
genes (Iwama er al., 2004; Kamminga and de Haan,
2006). It is interesting that the p/6INK4a-pI14ARF locus
represents one of the above-identified candidates with
PRCs binding and hyper DNA methylation in the
promoters in cancer cells. This locus encodes two
alternatively spliced gene products, the tumor-suppres-
sor protein pl6INK4a (an inhibitor of -cell-cycle
progression) and pl4ARF (a regulator of p53) (Sherr,
2004). Bmil is a well-known repressor of pl6INK4a
and, in some cases, such as in mammalian cells, pl4ARF
genes (Jacobs et al., 1999; Molofsky et al., 2006).
However, several previous reports have indicated that
there could be another important Bmil target gene,
especially in the nervous system, in addition to
pl6INK4a/pl4ARF (Jacobs et al., 1999; Bruggeman
et al., 2007).

In our study, Bmil overexpression accelerated the
proliferation of several NB cell lines, although p14ARF/
pl6INK4a repression was not so obvious (Figure 4).
Furthermore, it was previously reported that the
probability of pl6INK4a inactivation in NB was not
high (Easton et al., 1998). These results prompted us to
screen Bmil-dependent gene repression using a tumor-
specific ¢cDNA microarray, and we identified the
repression of TSGs, KIFIBf and TSLCI (Table 1).
This repression was confirmed by semi-quantitative
RT-PCR experiments, and the in vivo binding of Bmil
to these promoters was addressed by ChIP assay with
gPCR using Bmil-overexpressing NB cells (Figure 6).
Accumulating lines of evidence strongly suggest that
downregulation of TSLC] in various cancers, including
lung cancer, hepatocellular carcinoma, gastric cancer,
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pancreatic adenocarcinoma, prostate cancer, breast
cancer, nasopharyngeal carcinoma and cervical cancer,
might be due to the hypermethylation of its promoter
region (Murakami, 2005). In sharp contrast to these
cancers, we did not detect hypermethylation of the
promoter region of the TSLCI gene in primary NBs or
NB-derived cell lines, and TSLCI expression levels
significantly correlated with the stage, Shimada’s patho-
logical classification and MYCN amplification status
(Ando et al., 2008). We also found that KIFIBf, located
at chromosome 1p36.2, was significantly suppressed in
MYCN-amplified NB samples, although its mutation
rate was not high and promoter hypermethylation was
not observed (Munirajan et al., 2008). Furthermore, a
previous report mentioned that a cluster of genes
located in 1p36, including KIFIBp, is downregulated
in NBs with poor prognosis, but was not due to CpG
island methylation (Carén et al., 2005). Taken together,
it suggests that MYCN-induced Bmil suppresses several
TSGs by their promoter silencing and contributes to NB
tumorigenesis. Systematic analysis of PcG binding to
gene promoter lesions will be required for the study of
epigenetic regulation of tumorigenesis-related gene
expression in NB.

Regulation of Bmil gene transcription

Despite these important functions in development and
tumorigenesis, little is known about transcriptional
regulation of the Bmil gene. The transcription factors
known to regulate Bmil expression are sonic hedgehog-
activated Glil protein (Leung et al., 2004), E2F family
members (Nowak et al., 2006), zinc-finger transcription
factor SALL4 (Yang J et al., 2007) and c-Myc (Guney
et al., 2006). As E2F1 regulates NB tumorigenesis
through direct binding to MYCN promoter and its
activation, E2F may regulate NB cells using complicated
MYCN, MYCN/Bmil and Bmil regulation mechan-
isms (Strieder and Lutz, 2003; Kramps et al., 2004).
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Figure 6 Bmil directly binds to TSLCI and KIF1BB promoters and represses transcription in NB cells. (A) The indicated NB cell
lines were infected with Bmil-expressing lentivirus (a) and Bmil-shRNA lentivirus (b), as described in the ‘Materials and methods’
section. Bmil expression modulated by lentivirus infection was examined (top lane of panels). TSLC1 and KIF1Bp expressions were
studied by semi-quantitative RT-PCR assay. The primer sequences are shown in Supplementary Table S1. The results are
representative of at least three independent experiments. Arrows indicate alternative splicing products of KIFIBf (Munirajan e? al.,
2008). (B: KIF1Bp and C: TSLC1) SK-N-BE cells were infected with FLAG-Bmil-expressing lentivirus and subjected to quantitative
ChIP assay as described in the ‘Materials and methods’ section. Immunoprecipitation was performed by anti-FLAG (M2) antibody
and control mouse IgG. The primers for gPCR analysis were designed using the Primer3 program (Applied Biosystems, Foster City,
CA, USA) and locations are indicated in the diagrams. The primer sequences are shown in Supplementary Table S2. The results are
presented as fold enrichment and are representative of at least three independent experiments. Error bars represent the s.d. obtained
with triplicate samples. Statistical significance was determined by the Mann-Whitney test.

In this paper, we found that MYCN directly binds to  activity. Furthermore, base-deleted mutation to the E-
the Bmil promoter in vivo and that binding is enhanced ~ box almost completely suppressed the activity of the
by MYCN amplification in NB cell lines and MYCN  deltaE2F fragment (Figure 2c, —196/—122/mut), sug-
induction using tetracycline-withdrawal-based gene in-  gesting the role of MYCN in Bmil transcription.
duction plasmid (Figure 3). MYCN expression corre- MYCN-dependent Bmil induction was observed not
lates with Bmil levels both at mRNA and protein levels  only in NB cell experiments but also in in vivo
in NB cell lines (Figures 1A, 2a) and NB tumor samples  experiments. The Bmil mRNA level was higher in
(Figure 1b). Next, we studied the role of the MYCN  NBs occurring in tyrosine hydroxylase promoter-in-
binding site and several E2F binding sites in Bmil  duced MYCN transgenic mice than in ganglions with
transcriptional regulation using a luciferase expression  hyperplasia and normal ganglion (S Kishida and
system (Figure 2). Intriguingly, we found that signifi- K Kadomatsu, personal communication). Accordingly,
cantly high luciferase activities of E-box+E2F site  these results suggest the important role of MYCN in
promoter (Figure 2c, —196/ + 53 fragment) and E2F site Bmil transcription in NB and further studies will be
deletion from this fragment (Figure 2c, —196/—122  required to address the exact mechanism of Bmil
fragment) resulted in only a modest reduction of  transcriptional regulation by E2F and/or MYCN.
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Furthermore, the epigenetic regulation of Bmil tran-
scription will be an interesting subject of NB research as
we observed considerable effects of Bmil on other PRC
complex proteins.

Taken together, we found an intriguing MYCN/
Bmil/tumor-suppressor pathway in NB cells. This
pathway might have a remarkable impact on NB
tumorigenesis and is considered a target for the
development of molecular targeted therapy for therapy-
resistant NBs.

Materials and methods

Cell culture

Human NB cell lines and QG56 human lung squamous
carcinoma cells were obtained from official cell banks and were
cultured in RPMI1640 or Dulbecco’s modied Eagle’s medium
(Wako, Osaka, Japan) supplemented with 10% heat-inacti-
vated fetal bovine serum (Invitrogen, Carlsbad, CA, USA)
and 50 pg/ml penicillin/streptomycin (Sigma-Aldrich, St Louis,
MO, USA) in an incubator with humidified air at 37 °C with
5% CO,. Tet21/N cells, which are derived from the SH-EP NB
cell line, express MYCN under the control of tetracycline (tet-
off system) (kindly provided by Dr M Schwab; Lutz et al.,
1996). MYCN expression in Tet21/N cells was repressed by
100ng/ml tetracycline (Sigma-Aldrich) for 48 h before each
experiment.

Treatment of cell lines with glial cell line-derived neurotrophic
factor, ATRA or TPA

TGW cells were seeded at a density of 1 x 10° cells per 6-cm
diameter tissue culture dish in the presence of glial cell line-
derived neurotrophic factor (Invitrogen), ATRA (Sigma-
Aldrich) or TPA (Nacalai Tesque, Kyoto, Japan) at the
concentrations indicated in figure legends, and then the cells
were grown for 3 days.

Cell proliferation assay

NB cells were seeded in 96-well plates at a density of 10° cells
per well in a final volume of 100 pl. The culture was maintained
under 5% CO, and 10pul WST-8 labeling solution (Cell
counting Kit-8; DOJINDO, Kumamoto, Japan) was added,
and the cells were returned to the incubator for 2h. The
absorbance of the formazan product formed was detected at
450 nm in a 96-well spectrophotometric plate reader, according
to the manufacturer’s protocol.

Western blot analysis

The cells were lysed in a buffer containing 5mm EDTA, 2mm
Tris-HCI (pH 7.5), 10mmMm B-glycerophosphate, 5 pg/ml apro-
tinin, 2mMm phenylmethylsulfonyl fluoride, 1mm Na3;VO,,
protease inhibitor cocktail (Nacalai Tesque) and 1% SDS.
Western blot analysis was performed as previously reported
(Kurata et al., 2008). After transferring to an Immobilon-P
membrane (Millipore, Bedford, MA, USA), proteins were
reacted with either anti-Bmil mouse monoclonal (229F6;
Upstate, Charlottesville, VA, USA), anti-MYCN rabbit
polyclonal (C-19; Santa Cruz, Santa Cruz, CA, USA) pl4
(14P02; Oncogene) mouse, pl6 (16P04; Neomarkers/Labvi-
sion, Fremont, CA, USA) mouse, anti-B-actin (Sigma-Aldrich)
or a monoclonal anti-tubulin (Neomarkers Labvision) anti-
body. Anti-Ringlb mouse monoclonal antibodies were as
described in a previous report (Atsuta et al., 2001).
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Immunohistochemistry

A 4-pym thick section of formalin-fixed, paraffin-embedded
tissues was stained with hematoxylin and eosin and the
adjacent sections were immunostained for Bmil using a
polyclonal anti-Bmil antibody (AP2513c; ABGENT, San
Diego, CA, USA). The Bench-Mark XT immunostainer
(Ventana Medical Systems, Tucson, AZ, USA) and 3-3'
diaminobenzidine detection kit (Ventana Medical Systems)
were used for visualization. Appropriate positive and negative
control staining was also performed in parallel for each
immunostaining. The tumor samples used in this study were
kindly provided from various institutions and hospitals in
Japan. Informed consent was obtained at each institution and
hospital. All tumors were diagnosed clinically and pathologi-
cally as NBs and MYCN copy number was determined as
previously described (Kurata et al., 2008).

Semi-quantitative RT-PCR

The methods of semi-quantitative RT-PCR analysis were
previously described (Kurata et al., 2008). Total cellular RNA
to prepare RT-PCR templates was extracted from NB cell
lines using Isogen (Nippon Gene K K, Tokyo, Japan), and
cDNA was synthesized from 1pg total RNA templates
according to the manufacturer’s protocol (RiverTra-Ace-o
RT-PCR kit; TOYOBO, Osaka, Japan). Primer sequences are
described in Supplementary Table S1.

qPCR analysis for ChIP assay

qPCR analysis was performed using the ABI PRISM 7500
Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA), according to the manufacturer’s instructions using
SYBR Premix Dimer Eraser (Takara Bio, Ohtsu, Shiga,
Japan). The primers for gPCR were designed and synthesized .
to produce 50-150bp products. The primer sequence is
listed in Supplementary Table S2. Each sample was amplified
in triplicate. In Figure 3, the primer set was designed in E-box
upstream of Bmil (Bmil promoter 1). In Figures 3, 6b, primer
sets were designed in KIF1BB (KIF1B promoter 1, 2, 3) and
TSLC1 (TSLC1 promoters 1, 2, 3).

Lentiviral infection

The packaging cell line HEK 293T (4 x 10°) was plated and
transfected the next day, when 1.5pg of the transducing
vectors containing the gene or shRNA, and 2.0pug of the
packaging vectors (Sigma-Aldrich) were cotransfected by the
Fugene6 transfection reagent (Roche Applied Science, India-
napolis, IN, USA) according to the manufacturer’s protocol.
The medium was changed the next day and cells were cultured
for another 24 h. Conditioned medium was then collected and
cleared of debris by filtering through a 0.45-pm filter
(Millipore). Thereafter, 1 x 10° NB cells were seeded in each
well of a 6-well plate, and transduced by lentiviral-conditioned
media. Transduced cells were analyzed by western blotting and
RT-PCR.

Overexpression and knockdown of Bmil

For the overexpression of Bmil, FLAG-tagged mBmil
plasmid was subcloned into lentivirus vector pHR-SIN-DLI1.
Cells were cultured in RPMI11640 and pooled. The pLKO.1-
puromycin-based lentiviral vectors containing five seq-
uence-verified shRNAs targeting human Bmil (RefSeq
NM_005180) were obtained from the MISSION TRC-Hs 1.0
(Human) shRNA library (Sigma-Aldrich). Virus production,
infection and selection were performed according to the
manufacturer’s protocol. At 1 week post infection, cells



were harvested and knockdown efficiency was assessed
by western blotting. We checked Bmil knockdown by
the five lentivirus-produced shRNAs and used two for
experiments.

Luciferase reporter assay

The —1070/+53, —196/+ 53, —196/—122, —196/—122/mut
(E-box sequence CACGTG changed to CA-G-G), —1070/
+53 5-upstream fragments were subcloned into luciferase
reporter plasmid pGL4.17 (luc2/Neo) Luciferase Reporter
Vector (Promega, Madison, WI, USA).

Tet21/N and SK-N-DZ cells were seeded in a 12-well
plate 24 h before transfection at a concentration of 5 x 10* cells
per well. Cells were cotransfected with Renilla luciferase
reporter plasmid (pRL-TK, 10ng) and luciferase reporter
plasmid with the 5'-upstream region of the Bmil gene. The
total amount of plasmid DNA per transfection was kept
constant (510 ng) with pBlueScript KS+ by Lipofectamine
2000 (Invitrogen). At 48h after transfection, cells were
lysed and their luciferase activities were measured by the
Dual-Luciferase reporter system (Promega). The rey lumines-
cence signal was normalized on the basis of the Renilla
luminescence signal.

ChIP assay

ChIP assay was performed as described previously (Orlando
et al., 1997, Fujimura et al., 2006). Cross-linked chromatin
prepared from the indicated cells was precipitated with normal
mouse IgG (eBioscience, San Diego, CA, USA), monoclonal
anti-MYCN antibody (NCMII100; Calbiochem, San Diego,
CA, USA) or anti-Flag antibody (M2; Sigma-Aldrich). ‘Input’
DNA was isolated from the initial lysates of genomic DNA.
Species-matched immunoglobulin-immunoprecipitated DNA
(IgG), derived from the same volume of the chromatin fraction
used for specific antibody immunoprecipitation, was subjected
to PCR. Primers used in this study are listed in Supplementary
Table S2. Each series of experiments was conducted at least
three times.
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Supplemental Figure S1

a

Bmi1 immunohistochemical analysis Bmi1 expression was analyzed by immunohistochemical analysis

using purified rabbit polyclonal anti-Bmi1 antibody (AP2513c, ABGENT, CA, USA), as described

in Materials and Methods. a. MYCN single-copy, favorable histology sample; b. MYCN amplified, unfavorable
histology sample; c. MYCN amplified NB cell line-derived xenograft.

S

fold increase

upplemental Figure S2

Tet21/N
MYCN(-) MYCN(+)

C-MYC expression in MYCN-inducible Tet21/N celis

Expressions of C-MYC, MYCN, Bmi1 and GAPDH were analyzed
by semi-quantitative RT-PCR in MYCN-suppressed [(-)]

and -induced [{+)] Tet21/N celis.

--+- SK-N-AS parental
4~ SK-N-AS mock
—s— SK-N-AS KD

1 2 3 4 5 days

Cell proliferation assay of Bmi1-knocked down NB cells

In SK-N-AS cells, Bmi1 was knocked down by the Bmi1-shRNA expressing lentivirus, as described

in Materials and Methods, and the celis were subjected to WST-8 assay. The results are averages of

at least triplicate wells and standard deviation is indicated by error bars. The resuits are representative of
three independent experiments.
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Supplement Figure S4

a b
il QG56
shRNA mock Bmi1 Infection ___mock Bmit
TSLC1 inp Ig FLAG Inp Ig FLAG

a: Bmi1-expressing virus production, and infection of Lung cancer QGS56 cells were performed as described

in Materials and Methods. One-week post-infection, cells were harvested, and TSLC1, KIF1Bf and GAPDH
expression was determined by RT-PCR. For KIF1Bp expression, primers for this experiment were

F: cacceacttctiggacecta, R: tigtagctgecactgtectg.

b. Bmi1-shRNA-expressing virus production, and infection were performed as described in Materials and Methods.
One-week post-infection, cells were harvested, and ChiP assay was performed as described.

KIF18pB
KIF1BB

GAPDH
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Table S1 Primers used for semi-quantitative RT-PCR

Primer Sequence Accession number
for cDNA

Bmil (RT-PCR) F: 5-CCAGGGCTTTTCAAAAATGA-3' NM_005180
R: 5-CGTAGTGTCAGTAACGACGA-3

MYCN F: 5-GCTTTTGCGGCCAGTATTAG-3’ NM_005378

(RT-PCR) R: 5-CAGGAAGAAACAGGCTAGGA-3

GAPDH F: 5'-"ACCACAGTCCATGCCATCAC-3' NM_002046

(RT-PCR) R: 5'"TCCACCACCCTGTTGCTGTA-3'

GAP43 F: 5-GGAGAAGGCACCACTACTGC-3' NM_001130064

(RT-PCR) R: 5"GGCGAGTTATCAGTGGAAGC-3'

Neurofillament F: 5"ACCAAGACCTCCTCAACGTG-3' NM_006158

(NF)68 (RT-PCR) R: 5"TCAGCCTTAGACGCCTCAAT-3'

Vimentin F: 5'-CCCTCACCTGTGAAGTGGAT 3' NM_003380

(RT-PCR) R: 5"TCCAGCAGCTTCCTGTAGGT3'

pI4ARF F:5-ACCCCTTCTCAGGTCCAGTT-3 D00617

(RT-PCR) R: 5-GGCTATGGCTAGGGTTCTGA-3

p16INK4A F: 5-GAATAGTTACGGTCGGAGGC-3' NM_003380

(RT-PCR) R:5-CCACCAGCGTGTCCAGGAAG-3'

KIF1BB F:5-AAGGACCTTCGTGCTCA-3 AB017133

(RT-PCR) R: 5-"GGAAGATGGGGATGAAGTGA-3

TSLC1 F: 5'-CATTTTGGAATTTGCCTGCT-3 NM_014333.3

(RT-PCR) R:5-GGCAGCAGCAAAGAGTTTTC-3
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Table S2 Primers used for ChIP assay by RQ-PCR

Primer Sequence

Bmil promoter F: 5-CTACACCGACACTAATTCCCAGG-3
(ChIP assay) R: 5-ACGTGCTCCCCTCATTCCT-3
TSLC1 promoterl F: 5"TGGTCCCCAGCTTCCTTAG-3
(ChIP assay) R: 5-GGAGAGGGAGTGTGGTGAAG-3
TSLCI1 promoter 2 | F: 5"TCGGTCTGATATCAGCGATTG-3'
(ChIP assay) R: 5"GGCGGGTCTAGCTTCTTGTA-3'
TSLCI1 promoter 3 | F: 5-GCAAGGTGAGTGACGGAAAT-3’
(ChIP assay) R: 5-TGTATCAGACCGACGACTGG-3’
KIF1bp promoter 1 | F:5"TTGCACGTGGAAAGTTATCTG-3’
(ChIP assay) R: 5-TCTGTGTGTGTTTCTGGATCG-3
KIF1bB promoter 2 | F:5-CACAGTGGTGTGTGCCTGTA-3'
(ChIP assay) R: 5"TGATCCTCCTGCCTCAGTCT-3'
KIF1bB promoter 3 | F: 5-"TAAAATGTCGGGAGCCTCAG-3’

(CRIP assay)

R: 5-CATTTGGATTCCTTGCTGGT-3’
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Abstract

Purpose MYCN amplification (MYCN-A) is a strong
prognostic factor in neuroblastoma (NB). MYCN gain
which is a low level of MYCN-A as determined by FISH. It
is unclear whether the MYCN gain is the pre-status of
MYCN-A. This study assessed the status of MYCN gene
and chromosome 2p of MYCN-A, MYCN gain and no
MYCN amplification using a single nucleotide polymor-
phism (SNP) array, and the clinical implication of MYCN
gain in NB.

Methods The status of the MYCN gene was determined
by FISH in 47 primary NB samples and the status of
chromosome 2p in all cases was analyzed using an SNP
array.

Results 8 of the 47 cases analyzed using FISH showed
MYCN-A, 7 cases showed MYCN gain and 32 cases showed
no MYCN amplification. An SNP array analysis showed
that only 2 of 8 cases with MYCN-A by FISH had both
amplification of MYCN region and distal 2p gain and other
6 cases had amplification of the MYCN region without
distal 2p gain. All 7 cases with MYCN gain by FISH had
distal 2p gain without amplification of the MYCN region,
and all 32 cases with no MYCN amplification by FISH
demonstrated neither the amplification of the MYCN region
nor the 2p gain. 5-year overall survival rate of patients with
MYCN gain (n = 7, 71.4%) was not significant different
from that of patients with no MYCN amplification (n = 32,
90.6%) by FISH (p = 0.11).
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Conclusions These results suggested that the MYCN gain
detected by FISH represents the 2p gain, and the MYCN
gain is not considered to represent the pre-status of MYCN
amplification.

Keywords Neuroblastoma - MYCN gain - 2p gain

Introduction

Neuroblastoma (NB) is the most common solid malignant
tumor in children. It arises from the sympathetic nervous
system and usually occurs in the adrenal medulla. MYCN
gene amplification occurs in approximately 25% of pri-
mary NB, and this is an unfavorable prognostic factor in
NB [1-3].

It is important to accurately estimate the status of MYCN
gene amplification for the treatment of NB. The recom-
mended assay for the amplification of the MYCN gene in an
NB sample is quantitative polymerase chain reaction
(Q-PCR) and fluorescence in situ hybridization methods
(FISH) rather than Southern blotting (SB) [4-6]. A previ-
ously study reported that an FISH analysis shows that 6%
of NB samples have cells MYCN gain [7] which indicates
that the additional MYCN gene signals increase equal to or
less than fourfold in relation to the chromosome 2 signals
[8]. It is unclear whether the MYCN gain represents the pre-
status of MYCN amplification. Furthermore, the clinical
significance of MYCN gain is unclear.

On the other hand, NB without MYCN gene amplifi-
cation has a variety of clinical courses because it has
significant genetic instability at the chromosomal level as
allelic loss and gain or rearrangement, such as a 1p loss,
3p loss, 11q loss and 17q gain [9, 10]. A distal unbal-
anced 2p gain is also seen in primary NBs [11-13] and is
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associated with unbalanced translocation or distal 2p
duplication [14, 15]. This distal 2p gain region usually
includes a MYCN gene region which is located at 2p24,
but the prognosis associated with a low level of the
MYCN gene increase with a 2p distal gain remains to be
elucidated.

This study analyzed the status of the MYCN gene using
FISH and the status of chromosome 2p using single
nucleotide polymorphism (SNP) array to assess the genetic
status of MYCN gain.

Materials and methods

Clinical data of patients and biologic data
of neuroblastoma samples

Patients with NB, evaluated at the Department of Pediatric
Surgery Kyushu University, Fukuoka, Japan, were diag-
nosed between April 1988 and March 2008. The tumor was
staged according to the International Neuroblastoma
Staging System (INSS). All of the parents of the patients
provided their informed consent for tumor preservation and
the biological analysis before surgery. This study was
performed according to ethics guidelines for the clinical
studies by Ministry of Health, Labour and Welfare. Forty-
seven NB samples were obtained from untreated patients
with neuroblastoma. The patients included 24 males and 23
females, and 12 were stage 1 as INSS, 4 were stage 2, 7
were stage 3, 20 were stage 4, and 4 were stage 4S.
Twenty-five had been diagnosed when they were younger
than 12 months of age (median 12 months, 0-96 months).
Eight patients were identified by a mass screening system
in Japan at 6 months. The MYCN gene amplification was
quantified using FISH, Q-PCR and SB [16] in all 47 cases.
An SNP array analysis was performed on a total of all 47
samples. DNA ploidy was determined by flow cytometry in
46 specimens [17].

FISH method

The gene dosage of the MYCN gene was determined by an
FISH analysis as described previously [18]. The MYCN
gene probe (LSI N-MYC SO, Vysis) or MYCN gene and
the alpha satellite region of human chromosome 2 probes
(LSI N-MYC SG/CEP 2 SO DNA probe, Vysis) were
used. The signals representing the MYCN gene and the
centromeric region of chromosome 2 were counted in 100
cells on each slide. The MYCN amplification was defined
as an increase in over fourfold of MYCN signals in rela-
tion to the number of chromosome 2 signals in a dual
color probe, or over 8 MYCN signals in single color
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probe. Additional copies equal to or less than fourfold in
the dual color probe were defined as MYCN gain cells. In
addition, no MYCN amplification was defined that MYCN
signals equal to chromosome 2 signals such as disomy
and trisomy.

SNP array

DNA was extracted from tumor samples and purified using
the standard method. The DNA was subjected to SNP array
analysis using Human CMV370-Duo (Illumina, San Diego,
CA) according to the manufacturer’s protocol. Genomic
profiles were created using the Illumina Genome Viewer
(IGV) and Chromosome Browser (ICV) of Illumina’s
BeadStudio3.0 software.

“Quantitative PCR (TagMan)

The gene dosage of the MYCN gene was determined by a
Q-PCR analysis as described previously [4, 18, 19]. The
N-acetylglucosamine kinase gene (NAGK) was used as an
internal control gene to determine the MYCN gene dosage
[18, 19]. The primers and the TagMan probe for MYCN
gene were MYCN forward, 5-GTGCTCTCAATTCT
CGCCT-3'; MYCN reverse, 5'-GATGGCCTAGAGGAGG
GCT-3'; MYCN Probe, 5'-FAM-CACTAAAGTTCCTTCC
ACCCTCTCCT-TAMRA-3'. The primers and TagMan
probe for NAGK gene were NAGK forward, 5-TGGG
CAGACACATCGTAGCA-3'; NAGK reverse, 5'-CACCT
TCACTCCCACCTCAAC-3'; and NAGK probe, 5'-VIC-
TGTTGCCCGAGATTGACCCGGT-TAMRA-3'. Q-PCR
was performed in a final volume of 30 1L, and each sample
was evaluated in duplicate. Each reaction mixture con-
tained 0.1 pmol/IL TagMan probe, 0.2 pmol/IL each pri-
mer, 1x TagMan PCR master mix and extracted DNA.
PCR amplification was started with 2 min incubation at
50°C, followed by a denaturation step of 10 min at 95°C,
and then 40 cycles at 95°C for 15 s and 60°C for 1 min.
The genes quantified using the ABI Prism 7700 Sequence
Detection System (Applied Biosystems). Genomic DNA
from normal lymphocyte cells from healthy donors was
serially diluted to establish the calibration curve.

Statistics

The survival curve was estimated using the Kaplan-Meier
procedure and then it was statistically evaluated by the log-
rank test. The x> test and Fisher’s exact test was used to
compare the incidence of typical unbalanced gain and loss
of NB in the patients with MYCN gain and no MYCN
amplification. The results were considered to be signifi-
cantly different when p < 0.05.
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