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Figure 5 Mean DVH (focused on high dose area (50 to 70 Gy)) of small bowel PRV in each summed plan.
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Figure 6 Mean DVH of small bowel PRV of summed plan 3 in patients with lateral pelvic lymph node metastasis or perineum
recurrence and that in patients with presacral or anastomostic recurrence. In patients with latecal pelvic lymph node metastasis or
perineum recurrence, the mean DVH of small bowel PRV of summed plan 3 was significantly lower than that in patients with presacral of
anastomostic recusrence.
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FDG. There have been many reports on contouring tar-
get volume according to 40~50% of maximal SUV value,
source-background ratio, and arbitrary SUV value in
some malignant tumors [21-25]; however, it remains
inconclusive. Bayne et al. pointed out that SUV value
had problems with accuracy and reproducibility [26]. In
the present study, although we used an arbitrary SUV of

2.0, we consider that it is not a clear border between
malignancy and non-malignancy but a region with rela-
tively high malignant potency and with resistance to
radiation at 40 Gy including a subclinical margin like
CTV margin. Although SUV of 2.5~3.0 was used as a
threshold value between malignancy and non-malig-
nancy in many previous studies, we used SUV of 2.0 as
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the threshold value for BTV based on the fact that
patients in the present study had already been irradiated
with 40 Gy and based on the fact that Haberkorn et al.
reported the mean SUV of recurrent rectal cancer after
radiotherapy with 40 Gy to be 1.8 [27].

Furthermore, in the present study, since normal tis-
sues around the GTV were also irradiated with 40 Gy,
the possibility that radiation-induced inflammation
masked a residual malignant tumor must also be consid-
ered. For other tumors such as head and neck cancer
and lymphoma [28,29], chemoradiation-induced inflam-
matory response causes sufficient numbers of false-posi-
tive results limiting PET being performed less than 2
months after chemoradiation. It may be inappropriate to
use FDG-PET for radiation planning during radiation
therapy. Recently, chemotherapy consisting of 5-FU or
Capecitabine with or without the addition of Oxaliplati-
num has commonly been performed for recurrent rectal
cancer. Also, in the present study, all patients under-
went concomitant and/or previous chemotherapy with
radiation therapy. Findlay et al. mentioned the so-called
flare phenomenon that occurs at 1~2 weeks after the
initiation of chemotherapy and that can be observed as
a marked increase in FDG metabolism in lesions that
show response later [30]. We may also have to investi-
gate the appropriate thresholds of FDG accumulation
for BTV for each type of chemotherapy. However, in
rectal cancer, many investigators revealed that the posi-
tive predictive value of FDG-PET assessment of therapy
response during or soon after chemoradiation was very
high and was not significantly limited by post-chemora-
diation changes [31). The timing of FDG-PET after che-
moradiation for the most accurate assessment of tumor
response in rectal cancer is controversial. Further larger
prospective surveys of the time courses of tumor FDG
uptake during and after chemoradiation in rectal cancer
are required.

There are other major problems regarding the use of
PET/CT for radiation therapy planning: misalignment of
the fusion of PET and CT images due to body move-
ment, bowel peristalsis and difference in volume of
urine between the transmission scan and emission scan
as well as artifacts due to FDG in urine, so-called “hot
urine”. These problems can be resolved to a large extent
by overnight fasting before PET/CT and by starting the
emission scan from the position of the pelvis. Moreover,
in the present study, a 5-mm circular margin was
attached to each target volume and OAR; however, it
might not be sufficient to cover such misalignment. It is
necessary to investigate such misalignment using on-line
imaging (e.g., cone-beam CT) before clinical application.

In the present study, since Vsg Vaor Veor Dmean and
NTCP of small bowel PRV were not increased and Vgg
of small bowel PRV could be reduced due to the
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differences between GTV2 and BTV, focal dose escala-
tion by 6 Gy to regions with SUV above 2.0 using
IMRT with dose-painting boost for postoperative local
recurrent rectal cancer is considered to be safe. FDG-
PET-guided IMRT has the possibility of improving local
control of postoperative local recurrent rectal cancer
without increasing the risk of radiation injury of small
bowel PRV. However, although NTCP which reflects
account all the DVH data was not increased, Dy, of
small bowel PRV in the summed plan using focal dose
escalation was significantly higher than that in other
summed plans. While the differences in mean D, of
small bowel PRV between sumnted plan 3 and the other
plans were only about 2.5 Gy in the present study, Dyx
of small bowel PRV in summed plan 3 was more than
65.0 Gy in 4 of the 8 patients with anastomotic or pre-
sacral recurrence, and NTCP in summed plan 3 in 2 of
the 4 patients was more than 10%. Since it is known
that the small bowel is a “serial organ” and that the
dose at which probability of obstruction or perforation
is 50% within 5 years after treatment (TD50/5) of the
small bowel is 55 Gy (32], although NTCP shows that
focal dose escalation is acceptable, dose escalation by
only 6 Gy from 60 Gy even using PET-guided IMRT is
relatively risky. Therefore, if the region of high FDG
accumulation is near the OARs, it might be necessary to
reduce the degree of dose escalation and/or reduce the
volume to increase irradiation dose (e.g., lesion with
SUV > 2.5). Alternatively, using IMRT from the begin-
ning of radiotherapy, using a belly board, and inserting
a spacer between the recurrent tumor and OARs may
further facilitate dose escalation without increasing the
risk of radiation injury, When PTV-PET overlaps PRV,
we may have to further modify the irradiation dose set-
ting of the overlapping part.

Rectal cancer is known to have many hypoxic frac-
tions [11]. Some studies have provided evidence that
hypoxia has a negative impact on tumor response to
radiation and other methods of therapy [33-36].
Although we used FDG for radiotherapy planning in
this study to determine the region with high tumor
cell density, it may be more important for improving
the effect of radiotherapy for rectal cancer to deter-
mine the hypoxic regions. There are some tracers for
detecting a hypoxic region (e.g., [**F|Fluoromisonida-
zole-3-fluoro-1-(2'-nitro-1'-imidazolyl)-2-propanol
(["*FIFMISO), Cu-diacetyl-bis(N4-methylthiosemicar-
bazone (Cu-ATSM) and 1-(2-fluoro-1-[hydroxymethyl]
ethoxy)methyl-2-nitroimidazole ([**F|FRP170)) {37-39].
Although Lin et al. have already reported the effective-
ness in head and neck cancer [40], increasing the irra-
diation dose with IMRT to the hypoxic region may
also be effective for treating postoperative recurrent
rectal cancer,
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Conclusions

Our findings suggest that FDG-PET/CT-guided IMRT
can facilitate focal dose escalation to regions with SUV
above 2.0 while providing normal tissue protection in
patients with postoperative local recurrent rectal cancer.
However, we do not recommend routine clinical use of
focal dose escalation using FDG-PET/CT-guided IMRT.
In cases in which the region of high FDG accumulation
is near the OARs, careful radiotherapy planning is
necessary. Based on the resuits of this planning study,
we will start a clinical phase I/II study of focal dose
escalation using PET-guided IMRT for patients with
postoperative local recurrent rectal cancer in our
institution,
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Abstract

Objectives  The objectives of this study were to reveal the
utility of '“F-fluorodeoxyglucose positron emission
tomography (FDG-PET) within 7 days after chemoradio-
therapy to predict prognosis in patients with postoperative
recurrent esophageal cancer.

Materials and methods Patients scheduled to undergo
concurrent chemoradiotherapy for postoperative locore-
gional recurrence of esophageal cancer were recruited.
Selection criteria were: (1) locoregional recurrence, (2) no
previous radiation therapy, (3) planning treatment with
concurrent chemoradiotherapy, (4) FDG-PET performed
<2 weeks before chemoradiotherapy, and (3) no serious
diabetes. FDG-PET was performed <7 days after chemo-
radiotherapy. No more treatment after chemoradiotherapy
was given until disease progression was diagnosed
according to the Response Evaluation Criteria in Solid
Tumors (RECIST). Correlations of FDG-PET findings with
cause-specific survival and local control rates were inves-
tigated prospectively.

Results  Twenty patients were enrolled. Median observa-
tion period of patients who survived was 45.0 months.
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Median maximum standardized uptake value (SUV,,,,) after
chemoradiotherapy was 2.4, and median SUV,,.. before
chemoradiotherapy was 8.4. Cause-specific survival and
local control rates were significantly better for patients with
SUVax < 24 after chemoradiotherapy (log-rank  test,
P = 0.033 and 0.010, respectively). SUV . before che-
moradiotherapy tended to be correlated only with cause-
specific survival rate (log-rank test, P = 0.076). Change in
metabolic activity of FDG was significantly correlated with
local control rate (log-rank test, P = 0.042).

Conclusions  FDG-PET performed even <7 days after
chemoradiotherapy . predicts prognosis in patients with
postoperative recurrent esophageal cancer.

Keywords FDG-PET - Recurrent esophageal cancer -
Prognosis - Radiotherapy - SUV

Introduction

The usefulness of positron emission tomography using '*F-
fluorodeoxyglucose (FDG-PET) in patients with esophageal
cancer, particularly for staging and detecting recurrence, has
been reported [ 1-3]. There are also reports of the usefulness
of pre- or posttreatment FDG-PET for predicting prognosis
of primary esophageal cancer [3-9]. However, there is no
report on the usefulness of FDG-PET for predicting prog-
nosis of postoperative recurrent esophageal cancer.
Recently, chemoradiotherapy (CRT) has been shown to
improve the prognosis of patients with postoperative recur-
rent esophageal cancer [10-16]. At our institution, CRT
including prospective study is actively performed for post-
operative locoregional recurrent esophageal cancer.

CRT generally causes local inflammatory reactions in
normal tissue. FDG uptake in inflammatory lesions is a
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well-known phenomenon [17]. Increased FDG uptake
caused by radiation-induced inflammation may limit the
use of FDG-PET for metabolic measurement in esophageal
cancer soon after CRT. Therefore, it has been recom-
mended that FDG-PET be performed several weeks or even
months after completion of radiotherapy to assess tumor
response [18, 19]. However, we often experienced signifi-
cant reduction or loss of FDG accumulation even
<1 month after irradiation in patients with squamous cell
carcinoma. In this study, we prospectively investigated the
potential of FDG-PET performed <7 days after CRT
completion to predict prognosis and local control of post-
operative recurrent esophageal cancer.

Materials and methods

We recruited patients scheduled for CRT in our institution
for locoregional recurrence (including para-aortic lymph
node metastasis) of esophageal cancer without distant
metastasis after no residual tumor (RO) resection that
involved extended radical esophagectomy with two- or
three-field lymph-node dissection, Although squamous cell
carcinoma was histologically proven in all patients before
the operation, recurrences were diagnosed comprehen-
sively by upper gastrointestinal endoscopy, ultrasonogra-
phy, computed tomography (CT), FDG-PET, physical
findings, and/or cytology.

Study design

Patient selection criteria were: (1) locoregional recurrence
(including para-aortic lymph node metastasis) without dis-
tant metastasis after no residual wmeor (R0O) resection and
extended radical esophagectomy with two- or three-field
lymph node dissection, (2) no previous radiation therapy, (3)
planning for concurrent CRT, (4) FDG-PET performed
<2 weeks before CRT, and (5) no serious diabetes. Patients
underwent FDG-PET <7 days after CRT completion. They
had no more treatment after CRT until progressive disease
(PD) was diagnosed according to the Response Evaluation
Criteriain Solid Tumors (RECIST). There were no particular
rules for treating patients with recurring relapse.

Follow-up

Follow-up evaluations were performed every 1-3 months
for the first 2 years and every 6 or 12 months thereafter by
endoscopy and enhanced CT. Cause-specific survival and
focal control rates were calculated from the first day of
radiotherapy. We defined PD according to RECIST as
failure (recurring relapse) and PD in the irradiated area as
local failure.

Endpoints

The primary endpoint of the study was to reveal correla-
tions between maximum standardized uptake value
(SUVax) in FDG-PET after CRT and cause-specific sur-
vival rate or local control rate. The secondary endpoints
were to reveal correlations between SUV,,,, before CRT or
changes in metabolic activity of FDG and cause-specific
survival rate or local control rate,

Analysis

When patients were divided into two groups, each median
value was used as a threshold value. Survival estimates
were calculated using the Kaplan-Meier method, and dif-
ferences were evaluated by the log-rank test. A paired
sample ¢ test or Kruskal-Wallis test was then performed to
calculate significance of differences. Statistical significance
was defined as P < 0.05. SPSS sofiware for Windows
version 11.0 was used for all calculations.

Ethics

Written informed consent was obtained from all patients,
and the study was performed according to the principles of
the Declaration of Helsinki and approved by the local
ethics committee.

FDG-PET

PET scans were performed 1 h after FDG administration at
3.1 MBg/kg with either a Biograph PET/CT scanner or an
ECAT EXACT HR* PET scanner (Siemens, Hoffman
Estates, IL, USA) after >4 h of fasting. PET was per-
formed in each patient using the same scanner. A trans-
mission scan was performed for attenuation correction
before emission scans (using a CT scan with the Biograph
PET/CT scanner or **Ge rod sources with the ECAT
EXACT HR* PET scanner). Seven bed positions were
used for emission scans, with an acquisition time of 2 min
per position. All scans were reconstructed using an atten-
uation-weighted, ordered subset expectation maximization
algorithm (OZEM). For semiquantitative analysis of
increased FDG uptake lesions, SUV,,,, based on body
weight (g) was calculated and converted into a value based
on lean body mass;

SUV = tissue activity concentration {Bq/ml)/
fadministered activity (Bq)/weight (g)].
In cases with multiple recumence sites, the highest SUV .

of all lesions was used for analysis. The percentage chan-
ges in FDG metabolic activity (SUV14) between SUV,,,,

4@ springer
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before CRT (pre-SUV) and SUV pq, afier CRT (post-SUV)
were calculated using the following formula: SUV,g =
[(pre-SUV —~ post-SUV)/pre-SUV] x 100 (%).

Treatment

All patients underwent the following concurrent CRT
without interruption.

Rodiotherapy

A linear accelerator (4 or 10 MV) was used as the X-ray
source. The target volume was localized for radiotherapy in
all patients in CT planning. The daily fractional radio-
therapy dose was 2.0 Gy, administered § days a week, and
the total dose was 60.0 Gy. For patients who had lymph
node metastasis in some regions or metastasis of many
lymph nodes in one region, a T-shaped field (including the
bilateral supraclavicular, mediastinal, and abdominal
regions) was used. For the other patients, local fields with a
margin of 1-2 cm from the macroscopic tumor were used,
Afier a total dose of 40.0 Gy, the field was changed for all
patients to avoid the spinal cord, and only macroscopic
lesions were irradiated, with a margin of 1-1.5 cm,

Chemotherapy

A platinum-based combination regimen, at the very least,
was used concurrently with radiotherapy for all patients.
Most patients underwent chemotherapy consisting of two
cycles of nedaplatin (70 mg/m?/2 h) and S-fluorouracil (5-
FU) (500 mg/m?/24 h for § days) according to our insti-
tutional protocol.

Results

From January 2002 to December 2007, we enrolled 20
patients, Patient characteristics are shown in Table ). The
last observation date was 30 September 2009. At that date,
14 of the 20 patients had relapsed: 9 had recurrence inside
the irradiation field, 2 had lymph node metastasis out of the
irradiation field, and 5 had distant organ metastasis (2
patients with both Iymph node and distant organ metasta-
sis). Fourteen of the 20 patients died: 11 patients died due
to progression of disease, 2 due to intercument diseases,
and one due to an iatrogenic cause. No patient was lost to
follow-up. The median observation period was 23.8 (range
4.0-75.0) months for all patients and 450 (range 24.0-
75.0) months for patients who survived, CRT was com-
pleted in all patients, and FDG-PET was performed
<7 days after CRT. Blood glucose levels were <150 mg/di
in all patients before FDG administration.

Q) Springer

‘Table 1 Patient characteristics

Characteristics

Number

Gender
Male
Female

Age (years)
Median (range)

ECOG PS
Median (range)

Site of recurrence (awmnber of patients)
Anastomosis site
Supraclavicolar lymph node
Mediastinal lymph node
Abdominal lymph node

Baseline sum longest diameter (cm)
Median (range)

SUVgu before CRT
Median (range)

SUV max after CRT
Median (range)

Chemotherapy (number of patients)
CDGP + 5-FU
CDGP + DOC

16
4

63 (54-17)

1{0-1)

45 (2.0-11.5)
84 (3.0-200)
24 (1.2-52)

i6
3

CDDP + 5-FU + DOC 1
Tumor response (RECIST) (number of patients)

Complete regression (CR) 7

Partial regression {PR) 10

Stable disease (SD) 3

Progressive disease (PD) 0
ECOG PS Eastern Cooperative Oncology Group Performance Status,
CRT chemomdiotherapy, CDGP nedaplatin, 5-FU S-flnoroumacil,

DOC docetaxel, CDDP cisplatin, RECIST Response Evaluation Cri-
teria in Solid Tumors

Median SUV,,, in the 20 patients after CRT was 2.4
(range 1.2-5.2), and median SUV,,,, before CRT was 8.4
(range 3.0-20.0). CRT significantly decreased SUV,,,, of
in all 20 patients (paired sample / test, P < 0.001), The best
overall response rate, including complete responses (CR) in
7 patients and partial responses (PR) in 10 was 85,0%. The
1-year and 3-year cause-specific survival rates in the 20
patients were 80.0% [95% confidence interval (CI), 62.5-
97.5%) and 48.0% (95%CI 25.6-70.4%), respectively, with
a median cause-specific survival period of 24.0 months
(95% CI 3.0-45.0). The 1-year and 3-year local control
rates in the 20 patients were 69.1% (95% CI 48.4~89.7%)
and 51.8% (95% CI 28.9-74.7%), respectively. The med-
ian local control period could not be calculated. There was
a significant difference between cause-specific survival
rates in patients with SUV,,,, >2.4 (n = 10) and patients
with SUV ey <2.4 (7 = 10) after CRT (3 years, 20% vs.
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77.8%; P = 0,033, Fig. 1), and there was also a significant
difference between local control rates in patients with
SUViax >24 (n = 10) and patients with SUV,,,, <24
(n = 10) after CRT (3 years, 23.3% vs. 78.8%; P = 0.01,
Fig. 2). Furthermore, there tended 10 be a significant dif-
ference between cause-specific survival rates in patients
with SUV,, <84 (n = 10) and patients with SUV,,,
>8.4 (n = 10) before CRT (3 years, 67.5% vs. 30.0%;
P = 0.076, Fig. 3), but there was no significant difference
between local control rates in patients with SUV,, <84
{(n = 10) and patients with SUV ., 8.4 (n = 10) before
CRT (3 years, 46.7% vs. 58.3%; P = 0.98).

The median SUV,q was 68.5% (range 40.2-92.9%).
The local control rate in patients with decreases of >68.5%

101
e SUV max € 24 (n=10)

£
_— 1
E N LI —=f== SUV max > 24 (n=10)
I
@ 1
U 5 “1
€ t
# ]
» 4 -y
L4 |
g 1
83 =2 -

0 12 24 36 4 60 712 84
months

Fig. 1 Cause-specific survival curve for patients with low SUV,,,
after chemoradiotherapy and that for patieats with high SUV,,,,, after
chemorzdiotherapy
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Fig. 2 Local control survival curve for patients with low SUV,
after chemoradiotherapy and that for patients with high SUV,,,, after
chemoradiotherapy

{(n = 10) was significantly higher than in patients with
decreases <68.5% (n = 10) (3 years, 77.1% vs. 30.0%;
P = 0.042, Fig. 4). However, there was no significant
difference in cause-specific survival rate (3 years, 57.1%
vs, 40.0%; P = 0.89),

Table 2 shows median (range) SUV,, before and after
CRT and SUV,4 in patients who showed tumor response.
There were no differences among patients who showed
RUNOT response.

Other clinical prognostic factors [Eastern Cooperative
Oncology Gropup Performance Status (ECOG PS) and
age], as reported previously [16], and baseline sum longest
diameter were not correlated with cause-specific survival,
focal control, or overall survival. Results of univariate
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Fig. 3 Cause-specific survival curve for patients with low SUVy,,
before chemoradiotherapy and that for patients with high SUVy,,
before chemoradiotherapy
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Fig. 4 Local control survival curve for responder patients and that
for non-responder patients

4 Springer

—304—



188

Int J Clin Oncol (2010) 15:184-190

Table 2 Median (range) maximum standardized vptake value (SUVy,) before and after chemoradiotherapy (CRT) and SUV 5, of cach tumor

response
‘Tumor response (RECIST) Kruskal-Wallis test
CRin=T) PR (n = 10} SD (== 3} P vulue

SUV,,, before CRT 95 (3.0-200) 8.25 (3.8-16.1) 8.7 8.3-10.0) 0.62

SUV e afiee CRT 1.2 (1.2-3.5) 2.6 (1.5-4.0) 32¢4.9-52 013

SUVae 84.8 (42.5-92.9) 65.75 (42.1-82.0) 68.0 (40.2-36.9) 0.34

RECIST Response Evaluation Criteria in Solid Tumors, CR complete regression, PR partial regression, SUV o percentage changes in '*F-
fiuorodeoxyglucose positron emission tomography (FDG) metabalic activity

Table 3 Univariate analysis of predictive factors for cause-specific survival and local control

Cause-specific survival (months) Local control (months)
Predictive factor Median 95% C) Log-rank test Median 95% C} Log-rank test
FDG-PET afier CRT
SUVi €24 450 34.6-554 0.033 NA NA 0010
SUViae >24 145 3.7-283 100 0.9-19.1
FDG-PET before CRT
SUVipar <84 NA NA 0.076 140 NA 098
SUVes 284 22.5 124-326 NA NA
SUVsa
<68.5% 210 169-31.1 0.89 00 1.5-18.5 0.042
>68.5% 40 87-71.3 NA NA
Age
<53 400 0-82.7 0.76 NA NA 0.97
>63 24.0 19.5-285 NA NA
ECOG PS
0 450 0.9-89.1 040 NA NA 022
1 240 125-35.5 140 8.2-198
Baseline sum longest diameter
<4.5 cm 400 8317 0.66 NA NA 0.60
>4.5em 235 13.9-33.t 135 NA

ECOG PS$ Eastern Cooperative Oncology Group Performance Status, CRT chemoradiotherpy, SUV 4o percentage changes in '*F-fivorode.
oxyghicose positron emission somography (FDG) metobolic activity, Cf confidence interval, NA not available

analysis of the above predictive factors for cause-specific
survival and Jocal control are summarized in Table 3.

The 1- and 3-year overall survival rates in the 20
patients were 75.0% (95% Cl 56.0-94.0%) and 40.0%
(95% Cl1 18.5-61.5%), respectively, with 2 median overall
survival period of 23.5 months (95% Cl 21.3-25.7).
SUV s before and after CRT and SUV g had no signif-
icant correlation with overall survival (P = 0.236, 0.11,
and 0.858, respectively).

Discussion

Although there have been some reports on the possibility of
FDG-PET predicting prognosis in patients with primary

Q) Springer

esophageal cancer [3-9], to our knowledge, this is the first
report on FDG-PET in patients with postoperative recurrent
esophageal cancer. The reason we used cause-specific rather
than overall survival as the endpoint was that some patients
were expected to die due to intercurrent diseases or treatment
complications [16]. In fact, three patients died from causes
other than esophageal cancer. We found that SUV . even
< days afier CRT was correlated with local control and
cause-specific survival. This may mean that low FDG uptake
after CRT indicates not only loss of activity at the lesion but
also metastatic ability of malignant cells. This result
also agrees with results obtained by Swisher et al. {7],
showing that post-CRT SUV,,, of primary esophageal
cancer was correlated with perceniage of viable cells in
pathologic specimens at the time of esophagectomy,
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In patiems with primary esophageal cancer or other
malignant tumors, a high false-positive rate due to radia-
tion-induced inflammatory changes has been reported.
Therefore, so far, there has been no consensus concerning
the timing of FDG-PET after CRT for the most accurate
assessmemt of tumor response.. Early determination of
residual disease would enable the next salvage therapy
(e.g.. adjuvant chemotherapy, molecular-targeted therapy,
additional irradiation) to be started earlier, but many
investigators have reported that FDG-PET should be per-
formed 4-6 wecks after CRT. The best timing for FDG-
PET after CRT for primary esophageal cancer is unknown;
however, there was, at least, a low false-positive rate for
postoperative recurrent esophageal cancer in this study,
despite the fact that FDG-PET was performed <7 days
after CRT. There were no patients with SUV >3.0 during
the first 7 days after CRT among 11 patients who were
controlled in the irradiated field at the last observation date.
Most patients had recurrences in lymph nodes, not in the
anastomotic region. The reason findings of FDG-PET
performed even <7 days after CRT might be accurate
could be because performing FDG-PET so early avoids
radiation-induced mucositis, which is known to result in a
relatively high and prolonged FDG accumulation. How-
ever, SUV,,, after CRT in two anastomotic recurrent
lesions were 2.2 and 2.0, respectively (SUV,,.. before
CRT: 5.4 and 7.7, respectively). FDG accumulation in
squamous cell carcinoma is known to be decreased by CRT
more than that in adenocarcinoma [20]. All patients in our
study had squamous cell carcinoma, which might also have
had some effect on the results.

According w0 RECIST, accurate confirmation of
response requires a waiting period of at least 4 weeks after
response criteria are first met. In fact, although 7 patiemts in
our study showed CR as the best response record, the
recurrent tumor vanished on CT immediately after CRT in
only one patienty. From our results, it appears that the
FDG-PET modality might provide the earliest possible
assessment of treatment. response and survival prognosis
after CRT in patients with locoregional postoperative
recurrent esophageal cancer. Furthermore, the resulis could
be used commonly in squamous cell carcinoma lymph
node metastasis from other primary sites (e.g.. head and
neck, lung, uterus).

Although some studies have shown that a comparison
of FDG uptake in the early phase and that in the delayed
phase is useful for distinguishing malignancy from
inflammation {18, 21-26), from results of our study, a
one-phase scan might be sufficient to predict cause-spe-
cific survival and local control rates in patients who
receive CRT for postoperative locoregional recurrent
esophageal cancer. Furthermore, we showed that SUV,,,
in FDG-PET before CRT tended to be comelated with

cause-specific survival but not with local control rate.
This might mean that FDG uptake before therapy closely
reflects the overall malignancy of recurrent tumors,
including metastatic ability. However, it might not reflect
winor radiation sensitivity, Thus, high SUV levels before
treatment may be indicative of the need for more
aggressive systematic therapy., We found no significant
correlations between SUV,,,, before CRT and other pre-
treatment  prognostic factors (performance status, age,
recurrent pattern), as reported previously [16]. FDG-PET
has the possibility of being used as an independent
prognostic survival estimation tool before CRT in patients
with Jlocoregional postoperative recurrent esophapeal
cancer,

Several studies have shown that changes in metabolic
activity were correlated with tumor response and patient
survival [27-29]. In our study, there was a significant
correlation between SUV,ae and local control rate, but
greater SUV 4 did not prolong survival, Similar observa-
tions have been reported previously {7, 20, 27-30). The
observed metabolic change in our study is similar to the
time course of tumor FDG uptake during CRT shown by
Wieder et al. {30]. However, they showed that the meta-
bolic change was correlated significantly not only with
tomor response but also with survival, In our swdy, we
could not determine why SUV g was not correlated with
survival. In most similar studies, patients underwent
esophagectomy with lymph node dissection after CRT, and
FDG-PET was performed >4 weeks after CRT. These
differences in the procedure may have caused the different
results. As described above, FDG accumulation before
CRT is considered to reflect overall umor malignancy, not
radiation sensitivity, It is therefore reasonable that SUV 4
is not correlated with survival,

Our study results suggest that a single FDG-PET within
7 days of CRT may be sufficient to predict tumor response
and survival prognosis. This issue is contraversial. It is thus
necessary to perform a multicenter study with multivariate
analysis and a much larger number of patients to determine
which factor, including SUV . before and after CRT and/
or changes in metabolic activity, is the most important for
patients with locoregional postoperative recurrent esopha-
geal cancer.

Conclusions

This prospective study showed that FDG-PET afier CRT
predicts survival proghosis in patients with locoregional
postoperative recurrent esophageal cancer. We particularly
emphasize that FDG-PET performed even <7 days after
CRT enables prognosis prediction. FDG-PET could be the
earliest diagnostic modality for local control and survival

@ Springer
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prognosis in patients with locoregional postoperative
recurrent esophageal cancer.
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2664 Three-dimensionat Non-coplanar Conformal Radiotherapy for the Treatment of Stage I Non-small Cell
Lung Cancer: Is it Equally Safe and Effective for So-called Central Tumors?

K. Karasawa, N. Okano, N. Kubo, M. Fukayama, Y. Tagawa, N. Mitsui, G. Kuga, T. Chang, N. Hanyu
Tokye Metro Komagome Hospital, Tokyo, Japan

Purpose/Objective(s): Three-dimensional non-coplanar conformal radiotherapy (3-DNCCRT) has recently been considered
promising for the treatment of stage I non-small cell lung cancer (NSCLC). Usually, it is performed in the form of SBRT using
10 - 20Gy fraction dose. However, this method is considered 1o be contraindicated for so-called central tumors because of the
toxicity of serial organs, such as bronchus, great vessels, etc. We have been treating these tumors with relatively small fraction
dose (usually 3Gy) keeping BED10 at the similar level 10 that of SBRT. In this study, we compared the results of central tumors
and peripheral tumors to see if the results of the central tumors are comparable with those of peripheral tumors.

Materials/Methods: Eligibility criteria were as follows: masimum tumor diameter not greater than S, PS between 0 and 2, and no
limitation regarding age and pulmonary function. Radiotherapy was given with 6MV photon beam by fixed 10 non-coplanar confor-
mal beams to atotal dose of 735Gy in 25 fractions in § weeks. Irradiation was aiming at the internal target volume with proper margins,
No-elective nodal irradiation was given. Between January 2002 and Novemiber 2008, 80 eligible cases were treated. Age ranged from
531091 (median 77). The male/female ratio was 59/21. There were 48 T1 tumors and 32 T2. Fifieen tumors were SQCCA, 56 adenoca,
2large celi caand 7 NSCLCNOS. There were 66 inoperable cases (83%), among them poor pulmonary function was in 48 (60%3, and
14 operable cases, who refused operation. The average tumor size was 3.0 cm (range: 1.010 5.0 cm), There were 75 PS 1 and 5PS 2
cases. Among the entire cases, 37 cases were central tumors and the other 43 were peripheral tumors. There were no differences in the
patient characteristics between central and peripheral tumors. Median follow-up period was 37 months.

Results: Three-year Jocal control rate, overall survival rate, cause-specific survival rate, and relapse-free survival rate for overall
cases were, 86%, 66%, 78%, and 59%, respectively. For eentral tumors, they were, 85%, 68%, 79%, and 55%, respectively, and for
peripheral tumors, they were, 86%, 64%, 77%, and 61%, respectively. There were no differences between the two groups. There
were 7 Grade 3 pulmonary toxicities (9%, 3 in central, 4 in peripheral, n.s.), but there were nio severe adverse effects concerning
serial organs in either group.

Conclusions: The 3-DNCCRT for stage I non-small cell lung cancer has been safe and effective both for central and peripherat
tumors, and might become an altemative treatment for central wmors, which SBRT might cause serious toxicities. Further
follow-up with a larger number of cases were necessary.

Author Disclosyre: K. Karasawa, None; N. Okano, None; N. Kubo, None; M. Fukayama, None; Y, Tagaws, None; N. Mitsui,
None; G. Kuga, None; T. Chang, None; N. Hanyu, None. .

2665 Concurrent Chemoradiotherapy Increases the Risk of Radiation-Induced Pericardial Effusion in Patients
with Locaily Advanced Non-small Cell Eung Cancer

J. Liv*% L. Xu'?, R. Ten Haken', J. Hayman', N. Ramnat’, D. Tatro’, K. Cease®, G. Kalemkerian®, F. Kong'

! Department of Radiation Oncology, Universiry of Michigan, Ann Arbor, M1, *Department of Radiation Oncology, Chest
Hospital Shanghai, Jiaotong University, Shanghai, China, *Department of Radiation Oncology, Fuzhou Cancer Hospital,
Fuzhou, China, *Department of Internal Medicine, University of Michigan, Ann Arbor, MI

Purpaose/Objective(s): To evaluate radiation-induced pericardial effusion in non-small celi lung cancer (NSCLC) patients treated
with 3-dimension conformal radiotherapy (3DCRT) with or without concurrent chemotherapy. The influence of treatment param-
eters on the incidence of pericardial effusion was also analyzed. The hypothesis of this study was that the addition of chemotherapy
increases the risk of radiation-induced pericardial effusion and that pericardial dosimetric-factors are associated with subsequent
pericardial effusion.

Materials/Methods: From March 2004 to February 2008, 41 patients with stage 1-I inoperablefunresectable NSCLC were en-
rolled in prospective studies at the University of Michigan and Ann Arbor Veterans Hospitals. Patients were treated with radiation
alone (n = 12) or concurrent chemoradiation {n = 29). Pericardium was contoured on axial CT scans, The primary endpoint was
pericardial effusion, which was assessed on follow-up CT scans. Student’s t-test was used to determine the effect of pericardial dose
and chemotherapy on the development of pericardial effusion,

Results: Minimum follow-up was 2 years. Pericardial effusion was seen in 19 of 41 (46%) patients. Chemotherapy and dosimetric
factors were significantly associated with radiation-induced pericardial effusion. Nineteen of 29 (60%) patients treated with con-
current chemoradiotherapy versus 0/12 (0%) patients with radiotherapy alone developed pericardial effusion (p<0.01). Dosimetric
analysis showed that V10, V20, V50, V60 of heart dose were associated with a greater risk of pericardia} effusion (p<0.03).

Conclusions: Treatment with concurrent chemoradiotherapy may increase the risk of radiation-induced pericardial effusion over
that of radiation alone. Heart dosimetric parameters are also significant factors for development of radiation-induced pericardial
effusion. Every effort should be made to minimize incidemta) irradiation of the heart while maintaining adequate coverage of target
volumes. :

Author Disclosure: J. Liu, None; L. Xu, None; R. Ten Haken, None; I, Hayman, None; N. Ramnath, None; D. Tatro, None: K.
Cease, None: G. Kalemkerian, None; F. Kong, None.

2666 pemetrexed (PEM) and Cisplatin (CIS) in Concurrent Combination with High Dose of Thoracic Radiation
(RT), after Induction Chemotherapy (CT), in Patients (pts) with Locally Advanced Non-small Cell Lung
Cancer (NSCLC): A Phase I Study

F. Momex', B. Couden®, V. Wautot!, N. Chouaki®, N. Bourayou®, J. Tourani®

‘Centre Hospiralier Lyon Sud, Pierre Bénite, France, *Centre Georges Fi rangois Leclerc, Dijon, France, *Eli Lilly, Suresnes,
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