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Abstract

Background: DICER is an RNase lll family endoribonuclease that processes precursor microRNAs (pre-miRNAs) and
long double-stranded RNAs, generating microRNA (miRNA) duplexes and short interfering RNA duplexes with
20~23 nucleotides (nts) in length. The typical form of pre-miRNA processed by the Drosha protein is a hairpin RNA
with 2-nt 3’ overhangs. On the other hand, production of mature miRNA from an endogenous hairpin RNA with 5’
overhangs has also been reported, although the mechanism for this process is unknown.

Results: In this study, we show that human recombinant DICER protein (rDICER) processes a hairpin RNA with 5'
overhangs in vitro and generates an intermediate duplex with a 29 nt-5' strand and a 23 nt-3' strand, which was
eventually cleaved into a canonical miRNA duplex via a two-step cleavage. The previously identified endogenous
pre-miRNA with 5" overhangs, pre-mmu-mir-1982 RNA, is also determined to be a substrate of rDICER through the

same two-step cleavage.

Conclusions: The two-step cleavage of a hairpin RNA with 5" overhangs shows that DICER releases double-
stranded RNAs after the first cleavage and binds them again in the inverse direction for a second cleavage. These
findings have implications for how DICER may be able to interact with or process differing precursor structures.

Background

DICER plays a key role in RNA interference pathways
through the biogenesis of microRNA (miRNA) and
small interfering RNA (siRNA) [1-3]. Most miRNA
genes are transcribed as long primary transcripts (pri-
miRNAs) where stem-loop structures with mature
miRNA sequences embedded in the arm of a stem are
cleaved by the Drosha nuclear microprocessor complex
releasing a precursor miRNA (pre-miRNA) hairpin
[4,5]. The cleavage site is determined mainly by the dis-
tance (~11 bp) from the stem-single stranded RNA
junction of pri-miRNA and most pre-miRNAs have 2
nt-3’ overhangs [6]. Pre-miRNAs, exported into the
cytoplasm by Exportin-5 and Ran-GTP (7], are pro-
cessed by the RISC loading complex (RLC) into
20~23 nt duplexes where the RNase III enzyme DICER
plays a central role together with the double stranded
(ds) RNA-binding proteins TRBP and PACT and the
* Coespondence: yoshide@gscrikenjp
'RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama

230-0045, Japan
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miRNA-associated RNA-induced silencing complex
(miRISC) core component Argonaute-2 (AGO2) [8-10].
miRNA duplexes processed by RLC are finally loaded to
miRISC as a double stranded-structure [11] and sepa-
rated into the functional guide strand, which is comple-
mentary to the target, and the passenger strand, which
is subsequently degraded [12,13]. Strand selection of the
functional guide strand by AGO2 depends on the ther-
modynamic stabilities of the base pairs at the 5" ends of
the two strands [12,14,15]. Duplexes of siRNA or
miRNA produced by DICER can be loaded in either
direction to Argonaute [16-18]. Indeed, the mature
miRNA either in the 5" or 3’ strands can be harboured
from pre-miRNA [19-21]. On the other hand, endogen-
ous human AGO2 can bind directly to pre-miRNAs in
DICER-knockout cells [22]. Recently, it was reported
that human DICER is not essential for loading dsRNAs
to AGO2 but functions in pre-selection of effective siR-
NAs for handoff to AGO2 [23].

Human DICER is a ~220 kDa protein consisting of
several domains; an N-terminal DExH-box RNA heli-
case-like domain, a DUF283 domain, a PAZ domain,

© 2011 Ando et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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two RNase III domains (RIIla and RIIIb), and a dsRNA
binding motif domain (DARM) [24]. The two RNase IIL
domains of DICER form a single dsRNA processing cen-
ter via intramolecular dimerization which together
cleave the opposite strands of the dsSRNA, generating
dinucleotide-long 3’ overhangs on both ends [25]. The
crystal structure of Dicer from Giardia intestinalis
showed that the hydrophobic pocket of the PAZ domain
was responsible for the binding of the 3’ dinucleotide
overhangs of the substrate and the connector helix
between the PAZ domain and RNase III domain func-
tioned as a molecular ruler measuring the distance from
the 3’ end of pre-miRNA to the cleavage site [26,27].
However, 3’-dinucleotide dsRNA overhangs are not
essential for binding with DICER [28]. When the 3’
overhang is removed, DICER can still cleave dsRNA
through interaction with the remaining 5’ overhang [28].
This is consistent with MacRae et al. who found that
the recombinant Dicer protein of Giardia intestinalis
could cleave the dsRNA with 5’ overhangs [27]. How-
ever, they used perfectly matched dsRNAs with no gap,
which might resemble an endogenous siRNA precursor.
An additional study by Flores-Jasso et al. showed that
human recombinant DICER protein could nick either
strand of a mononucleotide-5" overhanged pre-miRNA
with some strand preferences [29]. Despite this, the
detailed step mechanism for pre-miRNA cleavage, espe-
cially for the pre-miRNA with 5’ overhangs, is not yet
elucidated.

An alternative nuclear pathway of pre-miRNA biogen-
esis was described where a short intron with a hairpin
can be spliced and debranched into pre-miRNA hairpin
mimics (mirtrons) [30-32]. This processing pathway
uses intron splicing machinery instead of the Drosha
endonuclease; miRNA precursors generated from intro-
nic sequences (debranched mirtrons) are believed to be
incorporated into the canonical miRNA pathway as a
substrate of DICER. Interestingly, mouse pre-mir-1982
is a mirtron with an 11 nt tail at the 5’ end [33],
although most mammalian mirtron are hairpin struc-
tures with single nucleotide overhangs at both ends
[32-34]. Mature mouse miR-1982* miRNA emerges
without 11 nt-5’' overhangs from deep sequencing data
of murine cells (33,35] while the elimination mechanism
of this 11 nt-5’ tail is still unknown.

In this paper, we investigated the detailed processing
pattern of hairpin RNAs containing 5’ overhangs by
human recombinant DICER. We show here that human
recombinant DICER is able to process hairpin RNA
with 5’ overhangs and two-step cleavage by DICER
forms the mature miRNA duplex from the hairpin
RNAs. Additionally, pre-mmu-mir-1982 RNA, which is
a natural hairpin RNA with 5’ overhangs, is also
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processed by a two-step cleavage mediated by human
recombinant DICER protein in vitro.

Results and Discussion

Processing of the pre-miRNA by recombinant DICER
protein

We prepared purified recombinant DICER1 (rDICER)
protein containing a FLAG-tag at the N-terminus (see
Figures 1A and 1B). This rDICER does not contain
known DICER-binding partners, AGO2 and TRBP (see
Figure 1C). In order to confirm activity, we attempted
to cleave pre-miRNA hairpin RNA using the rDICER.
Forty-five pmol of pre-mir-21 RNA (see Figure 2A) was
incubated with 2 pmol of the purified rDICER at the
indicated times followed by purification. The reacted
RNA substrates were subjected to Northern blotting
using probe-1, corresponding to the antisense sequence
of bases 2-22 of pre-mir-21 (see Figure 2A). A single
band, 23 nucleotides in length, appeared after 20 min
incubation and gradually increased. Thus, the purified
rDICER possessed reasonable pre-miRNA processing
activity to produce ~23 nt mature miRNA in vitro (see
Figure 2B).

Processing of the hairpin RNA with 5’ overhangs, RNA-I,
by recombinant DICER protein

Using this rDICER, we performed a cleavage assay on a
designed pre-miRNA mimic of hairpin RNA with tri-
nucleotide-5" overhangs (RNA-I, see Figure 3A) to ana-
lyze whether DICER could process a hairpin RNA with
5" overhangs. The cleavage products were detected by
Northern blotting using three different probes, probe-
1, probe-2 and probe-3, corresponding to antisense

A 1 c

M rDICER M rDICER 1 2
Ol e e [ < Anti-DICER | . 4N
150 | sy T
100 —

Anti-FLAG

D
Figure 1 Characterization of recombinant DICER protein.
Purified rDICER (3 ug) was loaded onto a NUPAGE 4-12% Bis-Tris
gel. Proteins were analyzed by Coomassie Brilliant Blue (CBB)
staining (A) and Western blotting with anti-DICER antibody (B).

(C) Western blotting with anti-DICER, anti-FLAG, anti-AGO2 and
anti-TRBP antibodies. 30 pg of 293T cell lysate (lane 1) and 3 ug of
rDICER (lane 2) were loaded.
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Figure 2 Processing of the precursor miRNA by recombinant
DICER protein. (A) Precursor miRNA (pre-mir-21 RNA) and probe
used in this study. The 5’ end nucleotide of pre-mir-21 RNA was
modified (U to G) from human pre-hsa-mir-21 RNA sequence
registered in miRBase 14.0 [46-48] in order to facilitate the in vitro
transcription reaction. The secondary structure was predicted using
the CentroidFold program (49). The solid line shows the position of
probe-1. (B) Detection of the rDICER-processed products by
Northern blotting. Pre-mir-21 RNAs were incubated with rDICER

in vitro for the indicated time points (0, 10, 20, 30, 40, 50, 60, 75, 90,
105 and 120 min). The RNAs processed by rDICER were detected
using probe-1 by Northern blotting. The gray arrow shows the band
of pre-mir-21 RNA and the black arrow shows the band of miRNA
processed from the 5' strand of pre-mir-21 RNA. The asterisk shows
the nicked product (~37 nt) similar to a previous report [29]

sequences of bases 11-32, bases 49-69 and bases 33-48
of RNA-I, respectively (see Figure 3A). Using probe-1,
band 1 (~30nt) appeared after 20 min incubation and
gradually increased through a 50 min-incubation. This
processing pattern was similar to that of the around
23-nt product generated from native pre-miRNA by
rDICER (see Figures 2B and 3B). After 40 min incuba-
tion, band 2 (~23nt) was detected and the abundance
of band 2 increased in a time-dependent manner (see
Figure 3B). Additionally, using probe-2, band 3 (~23nt)
was detected from the 30-min incubation sample (see
Figure 3C). Using probe-3, band 4 (~22nt) was
detected from the 20-min incubation sample (see
Figure 3D). The processing activity on the hairpin
RNA with 5" overhangs is comparable to that for nat-
ural pre-miRNA. This means that hairpin RNA with 5’
overhangs could also be a substrate for rDICER
processing.
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To analyze band 1 at a longer incubation time, the
RNA-I was incubated with the purified rDICER and the
cleavage reactions were performed for 30 min and
16 hours. Surprisingly, band 1 was detected at 30 min
incubation but disappeared after 16-hours incubation.
On the other hand, band 2 continued to accumulate (see
Figure 3E). These results showed that band 1, which
seems to be a product of first processing by rDICER, dis-
appeared following an extended incubation time.

Next, to verify the size of the cleavage products of
RNA-I, we cloned the 23-nt products after 16-hour rDI-
CER incubation and sequenced them (see Table 1). Sev-
eral clones were obtained from 5'-strand, 3’ strand and
loop region of RNA-I corresponding to bands 2-4 in
Figure 3, respectively. The miRNA length heterogeneity
generated by rDICER is consistent with the finding in
the previous report [36]. Clones from the 5’ strand lack-
ing 6 or 7 nt the initial of the 5’ end of RNA-I and
clones from 3’ strand lack the terminal 1 or 2 nt of the
3’ end of RNA-L

To analyze how band 1 is further processed, we
labelled the 5’ end of the RNA-I and incubated the sam-
ples with rDICER (see Figure 4A). Time course experi-
ments and cloning results indicated that rDICER could
process the 5-labelled RNA-I at the 29-nt position from
its 5" end (band 1) after 20 min incubation and subse-
quently cleave the 29-nt short RNA at the 6-nt position
from its 5’ end to 23-nt RNA (band 2) after 40 min
incubation (see Figure 4A, 4B, and Table 1). This sug-
gests dsRNAs with a 29 nt-5’ strand and a 23 nt-3’
strand are processed by rDICER from RNA-I at the first
cleavage and released once from the enzyme. After this,
rDICER binds the dsRNA again and, measuring from
the 3’ end of the 29-nt strand, generates 23-22 nt RNA
duplexes via a second cleavage reaction (see Figure 5).

In this research, we found that hairpin RNA with tri-
nucleotide-5’ overhangs was cleaved into a 23-22 nt
RNA duplex through two-step processing by rDICER.
This could not be detected if we used only end-labelled
RNA or label-incorporated RNA as a substrate for rDI-
CER as reported previously [27,29]. In the first step,
rDICER processes the hairpin RNA with 5’ overhangs to
dsRNA with 29 nt and 23 nt. Our results indicate the
first processed dsRNA binds again in the inverse direc-
tion with the same or a different rDICER molecule and
is again effective cleaved. The results are consistent with
the previous report that human DICER protein binds
either 3’ ends of dsRNA strand on the PAZ domain and
cleaves dsRNA at the ~23 nt position from the binding
end [25]. In the sequential process described here,
dsRNAs with 29 nt and 23 nt gradually increased and
then stabilized at a steady level, followed by rapid
increase of 23-22 nt duplexes (see Figure 3B and 3C).
This indicates that dsRNAs with 29 nt and 23 nt are



Ando et al. BMC Molecular Biology 2011, 12:6 Page 4 of 12
http://www.biomedcentral.com/1471-2199/12/6

A hairpin RNA with 5’ overhangs (RNA-I)
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Figure 3 Processing of the hairpin RNA with 5’ overhangs by recombinant DICER protein. (A) Hairpin RNA with 5’ overhangs (RNA-l) and
probes used in this study. RNA-l was a hairpin RNA with 5’ overhangs based on the “pre-mir-21 RNA” sequence. The secondary structure was
predicted using the CentroidFold program [49]. The solid line shows the position of probe-1, the dashed line shows the position of probe-2 and
the dotted line shows the position of probe-3. (B-D) Time-course analysis of the processing of RNA-I by the rDICER protein. RNA-I RNAs were
incubated with DICER in vitro for the indicated time points (0, 10, 20, 30, 40, 50, 60, 75, 90, 105 and 120 min). The RNAs processed by rDICER
were detected using probe-1, probe-2 and probe-3 (B-D, respectively) by Northern blotting. The gray arrow shows the band of unprocessed
RNA- and the black arrow shows the bands of small RNA processed from the 5' strand, 3’ strand and loop region of RNA-| respectively. M:
decade marker. (E) The processing of RNA-I by the rDICER protein at a longer incubation time. RNA-I RNAs were incubated with rDICER for

30 min and 16 hours. The RNAs processed from the 5' strand of RNA-I were detected using probe-1 by Northern blotting.
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Table 1 Cloning of products from RNA-I processed by rec
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..... UCGGGUAGCUUAUCAGACUGAUGU. . . ittt it ieee i inensanenansneuanasnsnsans 1
..... UCGGGUAGCUUAUCAGACUGAUG . « 4+ttt et e e tnane st iasasneaanananensnneannns 1
. .GGGUAGCUUAUCAGACUGAUGUU. 1
. CGGGUAGCUUAUCAGACUGA. . . .\ vvveeeseiiinnnens 1
....................... UGACUGUUGAARUCUCAUGGCAA 4
............................. UGACUGUUGAAUCUCAUGGCAACA 2
............................ UUGACUGUUGAAUCUCAUGGCAAC 1
.................................................... 2
..................................................... 2
.................................................... 1
GGGUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA
A S N R O O A O S P 100000100 )) (-34.60)

processed at a constant rate and 23-22 nt duplexes are
belatedly processed at a similar rate. This suggests that
the binding and processing of miRNA duplexes and
releasing of the duplex from rDICER occur at the same
rate. The bidirectional binding of processed dsRNA by
DICER could result in directional presentation of
dsRNA to Argonaute [16-18].

The effect of 5’ overhangs in substrate cleavage by
recombinant DICER protein

We generated three different hairpin RNAs based on
pre-hsa-mir-21 RNA: pre-mir-21 RNA, RNA-I and
RNA-II (see Figure 2A, 3A and Additional file 1: Figure
S1A, respectively). RNA-II is the same as pre-mir-21
RNA except for 5" addition. Using probe-1 to detect the
cleavage product from the 5’ strand for Northern blot-
ting, both bands of mature miRNA in Figure 2B and
band 1 (first cleavage product) in Figure 3B emerged
after 20-min incubation and increased gradually. On the
other hand, band 8 (probable first cleavage product) in
Figure S1B was detected faintly after 30-min incubation
but increased quite slowly (see Additional file 1:
Figures S1B and S1D). Band 9 in Figure S1C was also
detected in a similar manner as band 8 (see Additional
file 1: Figure S1C). Our results indicated that longer 5
overhangs with stable stem structures could reduce the
efficiency or rate of substrate cleavage.

Processing of an endogenous hairpin RNA with 5’
overhangs, pre-mmu-mir-1982 RNA, by recombinant
DICER protein

To demonstrate the processing ability of DICER protein
with not only designed pre-miRNA with 5" overhangs
but natural pre-miRNA with 5’ overhangs, we performed
the processing experiment using pre-mmu-mir-1982
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RNA with rDICER. The cleavage products were detected
by Northern blotting using two different probes, probe-4
and probe-5, corresponding to antisense sequences of
bases 12-31 and bases 52-74 of pre-mmu-mir-1982
RNA, respectively (see Figure 6A). Using probe-4, band
5 (~35 nt) appeared after 10 min incubation and gradu-
ally increased. After 40 min incubation, band 6 (~23 nt)
was detected and the abundance of band 6 increased in
a time-dependent manner (see Figure 6B). Additionally,
using probe-5, band 7 (~23 nt) was detected from the
10-min incubation sample (see Figure 6C). Pre-mmu-
mir-1982 RNA can also be processed by in vitro rDICER
activity.

To analyze that band 5 could be further processed to
band 6, we labelled the 5’ end of the pre-mmu-mir-1982
RNA and incubated the samples with rDICER for 0, 2
and 16 hours (see Figure 7A). The signal intensity of
35-nt band decreased in a time-dependent manner,
while on the other hand, the 12-nt band increased (see
Figures 7B and 7C). These results showed that band
5 was a 35-nt product of initial rDICER processing and
12 nt from the 5’end were eliminated by a second, rDI-
CER-catalyzed cleavage reaction generating a 23-nt
product. Our results indicated that mature miR-1982
and miR-1982* RNA could be generated in vitro from
pre-mmu-mir-1982 RNA by the two-step DICER pro-
cessing reaction described above.

In addition to miRNA maturation, mammalian
DICER also processes other kinds of small RNAs
including endo-siRNAs [33,37-39]. It has been reported
that mammalian endo-siRNAs are processed from var-
ious precursors including long hairpin RNAs and natu-
rally formed dsRNAs resulting from bidirectional
transcripts or antisense transcripts from pseudogenes.
Although the complete structure of these precursor
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Figure 4 Two-step processing of the 5'-end labelled RNA-I by recombinant DICER protein. (A) In vitro processing of the 5-end labelled
RNA-I by rDICER protein. 5-end labelled RNA-I RNAs were incubated without rDICER for 120 min (lane 1) and with rDICER for the following time
points (0, 10, 20, 30, 40, 50, 60 and 120 min; lane 2-9 respectively). The processing reaction was faster than the results of Figure 3B because the
amount of RNA substrate in this reaction mixture was less. The RNA products less than 10 nt look stacked at the end of the gel because of the
difficulty in separating efficiently, even at 7.5 M urea denaturing 20% polyacrylamide sequence gel. This experiment was repeated and replicated

gray are 29-nt (band 1) and 23-nt RNA (band 2) from the 5’ strand, respectively.
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3B identified from Figure 4A and Table 1. Sequences highlighted in

dsRNAs remains unclear, it seems likely that they have
diverse 5’ and 3’ structures. Our results indicate
DICER tolerance for 5’ substrate overhang, potentially
increasing the range of small RNA substrates that
DICER can process. Recently, it was reported that
the AGO2 protein could bind not only siRNAs and
miRNAs but longer RNAs and pre-miRNAs [22,40].
However, most endogenous AGO?2 proteins bind
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miRNAs [41] and the RISC requires 3’ overhangs for
the dsRNA incorporation [3,42]. As this research
shows, DICER could process pre-miRNAs, longer
dsRNAs and hairpin RNAs with 5" overhangs into
dsRNA with 3’ overhangs, which might be subse-
quently loaded with canonical length to the RISC.
Further experimentation is required to connect our
findings with the AGO loading mechanism.
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Figure 5 Model of the two-step processing of hairpin RNA with 5’ overhangs (RNA-I) by DICER protein. rDICER processes hairpin RNA
with 5’ overhangs (RNA-)) to dsRNA with 29 nt-5 strand and 23 nt-3' strand after the first cleavage reaction and releases once from the binding
site. Then, the dsRNA is bound in the inverse direction with the same or different rDICER molecule and is measured after the anchoring 3" end
of the 29-nt strand to generate dsRNA with 23 nt cleaved from the 29-nt strand and 22 nt cleaved from the 23-nt strand. “PAZ" domain of
rDICER colored purple; “Rilla” and "Rlllb” domain of rDICER colored blue. Lightning marks indicate the cleavage sites in the RNA.
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Figure 6 Processing of pre-mmu-mir-1982 RNA by recombinant DICER protein. (A) Pre-mmu-mir-1982 RNA and probes used in this study.
The secondary structure was predicted using the CentroidFold program [49]. The solid line shows the position of probe-4 and the dashed line
shows the position of probe-5. (B-C) Time-course analysis of the processing of pre-mmu-mir-1982 RNA by the rDICER protein. pre-mmu-mir-1982
RNAs were incubated with rDICER in vitro for the indicated time points (0, 10, 20, 30, 40, 50, 60, 75, 90, 105 and 120 min). The RNAs processed
by rDICER were detected using probe-4 (B), probe-5 (C) by Northern blotting. The gray arrow shows the band of unprocessed RNA and the
black arrow shows the bands of small RNA processed from the 5’ strand and 3' strand of pre-mmu-mir-1982 RNA respectively. M: decade marker.
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Figure 7 Two-step processing of the 5'-end labelled pi ir-1982 RNA by k DICER protein. (A) In vitro processing of

the pre-mmu-mir-1982 RNA by the rDICER protein at a longer incubation time. 5' labelled pre-mmu-mir-1982 RNAs were incubated with rDICER
for 0, 2 and 16 hours. The gray arrow shows the band of unprocessed RNA and the black arrow shows the bands of small RNA processed from
pre-mmu-mir-1982 RNA. AH: the alkaline hydrolysis ladder of pre-mmu-mir-1982 RNA. The size of each band was determined by the AH ladder.
(B-C) The signal intensities were quantified from the 12 nt (B) and 35 nt (C) bands in Figure 7A. These plots show average values bracketed by s.
em. error bars; calculated from two independent experiments. Background refers to the signal intensity of the same sized band in the AH lane.
The p-value was calculated using a simple t-test for each time point (2 hrs and 16 hrs) relative to the background. Significant differences (p <
0.05) in signal intensities are denoted with an asterisk. The significant calculated p-values are as follows: the 12-nt band at 16 hours, p = 0.017;
the 35-nt band at 2 hours, p = 0.0073; and the 35-nt band at 16 hours, p = 0.024.
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Conclusions

We show human rDICER recognizes and processes a
hairpin RNA bearing a trinucleotide-5" overhang, and
the two-step cleavage by rDICER forms canonical
miRNA duplexes from the hairpin RNAs. It indicates
that human rDICER functions as a molecular ruler by
anchoring the 3’ end of both the hairpin RNA with 5’
overhangs and the 5" strand in the intermediate duplex.
Moreover, an endogenously-expressed pre-miRNA with
5’ overhangs, pre-mmu-mir-1982, also can be utilized as
a substrate of rDICER and processed into a canonical
miRNA duplex by the two-step cleavage reaction. While
pre-mmu-mir-1982 RNA is a naturally expressed pre-
miRNA [33,35], this 5'-overhanged structure is not a
suitable substrate for nuclear export by Exportin-5 [43]
and, assuming the absence of possible alternative export
pathways, may not be presented to cytoplasmic DICER
in the cells. However, it is worth noting a recent report,
that mammalian DICER might be located in the nucleus
and associate with ribosomal DNA chromatin [44]. We
have also observed human DICER localized in both
cytoplasm and nucleus (unpublished data, Ando et al.).
These findings raise the intriguing possibility that
nuclear DICER could process hairpin RNA with 5'-over-
hangs, like pre-mmu-mir-1982 RNA.

The two-step cleavage of a hairpin RNA with 5’ over-
hangs shows that rDICER can release dsRNAs after the
first cleavage and binds them again in the inverse direc-
tion for a second cleavage. The DICER protein’s ability
to release and bind dsRNA again indicates DICER could
be capable of binding and processing dsRNA multiple
times during short RNA maturation. DICER has recently
been linked to the processing of diverse non-coding
RNA precursors with as-yet undetermined structures.
The experiments performed above suggest DICER has
considerable flexibility in processing precursors, contri-
buting to an ability to generate various short RNA pro-
ducts for incorporation into functional RISCs.

Methods

Preparation of hairpin RNA substrates

Pre-hsa-mir-21 RNA (pre-mir-21), pre-miRNA mimic
hairpin RNA (RNA-I) and pre-mmu-mir-1982 RNA
used in this study were generated by in vitro transcrip-
tion using the Ampliscribe T7 High Yield Transcription
kits (Epicentre) according to manufacturer’s instructions.
We made double-stranded DNA templates with T7
RNA polymerase promoter sequence by overlap-PCR
using the following oligonucleotide pair; pre-mir-21-
sense 5’-taatacgactcactatagAGCTTATCAGACTGAT
GTTGACTG-3' and pre-mir-21-antisense 5'-ACAGCC-
CATCGACTGGTGTTGCCATGAGATTCAACAGT-
CAACATC-3', RNAI-sense 5'-taatacgactcactataggg
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TGTCGGGTAGCTTATCAGACTGATGTTGA-3’ and
RNAI-antisense 5-TGTCAGACAGCCCATCGACTG
GTGTTGCCATGAGATTCAACAGTCAACA-3', pre-
mmu-mir-1982-sense 5’-taatacgactcactataGTTGG-
TATTGCTTGGGAGGGTCCTGGGGAGGGGAGTT-3'
and pre-mmu-mir-1982-antisense 5-CTGTGGGAGAA-
CATAGGGTGAGAGGTTGGGGTGCCAGAACTCC
CCTCCCCA-3'". The overlapped sequences are under-
lined and the lower-case characters show the sequence
of the T7 RNA polymerase promoter. In vitro transcrip-
tion reactions were performed at 37°C overnight. Tran-
scripts were run on 10% denaturing polyacrylamide gels
in 0.5x TBE (45 mM Tris-borate, 1 mM EDTA), gel-
excised, eluted from the gel in 1 M NaCl at 4°C over-
night, and precipitated with ethanol. The pellet was
resuspended in an appropriate volume of water and
stored into the freezer at -30°C. Before use, RNA sub-
strates were heated to 70°C for 5 min and then slowly
cooled to room temperature.

Affinity purification of recombinant FLAG-DICER

fusion proteins

We assembled a full-length ¢cDNA of human DICER1
protein from HeLa total RNA. This cDNA sequence was
identical to the coding sequence cited in the Swiss-Prot
Protein Database (Swiss-Prot) [Swiss-Prot: QQUPY3]. N-
terminally FLAG-tagged human DICER1 protein was
purified from 293T cells transfected with the plasmid
pCA-FLAG-DICERL. This vector contained the full-
length human DICER1 protein FLAG-tagged at the
amino terminus in a pCA-FLAG-DEST vector [45]. We
purified the recombinant FLAG-DICER1 fusion protein
(rDICER) using ANTI-FLAG M2-Agarose Affinity Gel
(Sigma) and eluted by 0.1 M Glycine-HCI (pH3.5).
Then, the eluate was neutralized by Tris-HCl (pH8.0).
The average yield was 50-100 pg of the active form of
rDICER protein from 1 x 10° culture cell. Purified rDI-
CER protein was detected by Coomassie Brilliant Blue
(CBB) staining and Western blotting using anti-DICER
(H212, Santa Cruz) antibody to check for successful
homogenous purification (see Figures 1A and 1B). The
contamination of known DICER-binding proteins in
rDICER samples was checked by Western blotting using
anti-FLAG (M2, Sigma), anti-AGO2 (07-590, Upstate)
and anti-TRBP (ab42018, Abcam) antibody, respectively
(see Figure 1C).

bi DICER

Processing of RNA
enzyme

The affinity-purified rDICER protein (2 pmol) was incu-
bated with 45 pmol of RNA substrates (pre-mir-21
RNA, RNA-I or pre-mmu-mir-1982 RNA) in 1x reaction
buffer (300 mM NaCl, 50 mM Tris-HCI, 20 mM

using rec
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HEPES, 5 mM MgCl,, pH 9.0) and 40 units of RNase-
OUT (Invitrogen). These mixtures were incubated at
37°C for the indicated times. The reactions were purified
by phenol-chloroform extraction followed by sodium
acetate-ethanol precipitation at -20°C. The RNA pellet
was resuspended in water at a final concentration of
approximately 1 pmol/pl.

Northern blotting

rDICER-processed RNAs (1 pmol) were separated on 7
M urea-denaturing 20% polyacrylamide gels, then
blotted onto Hybond-N+ membranes (GE Healthcare)
using a Trans-Blot SD Semi-Dry Transfer Cell (Bio-
Rad). Hybridization was performed in Church buffer
(0.5 M NaHPO,, pH 7.2, 1 mM EDTA and 7% SDS)
containing 10° c.p.m./ml of each **P-labelled probe for
14 h. The membranes were washed in 2x SSC, and the
signals were detected by autoradiography. All experi-
ments were repeated and replicated consistently.

The probe sequences in this study were as follows:
probe-1 (5-TCAACATCAGTCTGATAAGCTA-3'),
probe-2  (5-ACAGCCCATCGACTGGTGTTG-3"),
probe-3 (5-CCATGAGATTCAACAG-3’), probe-4
(5'-CCTCCCCAGGACCCTCCCAA-3) and probe-5 (5'-
CTGTGGGAGAACATAGGGTGAGA-3'). The probes
were 5’-end labelled using T4 polynucleotide kinase
(TaKaRa Bio) with [y-**P] ATP (6000Ci/mmol) at 37°C
for 4 h.

Cloning of cleavage products

rDICER-processed RNAs (1 pmol) were separated on 7
M urea-denaturing 15% polyacrylamide gels, then the
gel was stained by SYBR Gold (Invitrogen). The band
around 23 nt was excised from the gel and purified as
described above. The purified RNA was cloned by the
Small RNA cloning kit (TaKaRa Bio) and sequenced by
capillary sequencing.

5’-end labelling of the transcript

For the 5'-end labelling, RNA (45 pmol) was depho-
sphorylated with CIP at 37°C for 60 min. The reaction
was inactivated by phenol-chloroform extraction and
precipitated by sodium acetate-ethanol at -20°C. The
pellet was resuspended in an appropriate volume of
water. The dephosphorylated transcript was 5’ end-
labelled using T4 polynucleotide kinase (TaKaRa Bio)
with [y->?P] ATP (3000Ci/mmol) at 37°C for 4 h. The
5’-end labeled transcript was PAGE-purified as
described above and the RNA pellet was resuspended
in water at a final concentration of approximately
0.5 pmol/pl. One microliter of this was used for the
processing reaction by rDICER. These processed sam-
ples were run on 7.5 M urea-denaturing 20% polyacry-
lamide gels in 1x TBE buffer with RNA molecular
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marker or the products of alkaline hydrolysis of the
same RNA molecule. The alkaline hydrolysis ladder
was generated by incubating the labelled RNA in alka-
line hydrolysis buffer (Ambion) at 100°C for 10 min.
The signals were detected by autoradiography and
quantified using Image] software (National Institutes of
Health; http://rsb.info.nih.gov/ij/). The signal intensi-
ties were calculated as the mean of pixel value of
selected area.

Additional material
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Abstract

Purpose To reveal the rate of complete therapeutic effect
of radiofrequency ablation (RFA) and its correlation with
tumor size by the histopathological examination of surgi-
cally resected early breast cancers.

Methods For 28 patients who received RFA and sub-
sequent surgical therapies for early breast cancer treatment,
the effect of RFA was evaluated by both histopathological
examination and nicotinamide adenine dinucleotide
(NADH)-diaphorase staining of resected tumor specimens
according to the criteria described by Seki et al. (this issue).
The correlation of 100% RFA effect with tumor parameters
including tumor size and the presence of extensive intra-
ductal component (EIC) was examined.

H. Tsuda (5<) - T. Hasebe - Y. Sasajima - T. Shibata
Pathology and Clinical Laboratory Division, National Cancer
Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
e-mail: hstsuda@ncc.go.jp

K. Seki
Clinical Laboratory Division, JR Tokyo General Hospital,
2-1-3 Yoyogi, Shibuya-ku, Tokyo 151-8528, Japan

T. Hasebe

Pathology Consultation Service, Clinical Trials and Practice
Support Division, Center for Cancer Control and Information
Services, National Cancer Center, 5-1-1 Tsukiji,

Chuo-ku, Tokyo 104-0045, Japan

T. Shibata

Cancer Genomics Project, Center for Medical Genomics,
National Cancer Center Research Institute, 5-1-1 Tsukiji,
Chuo-ku, Tokyo 104-0045, Japan

E. Iwamoto - T. Kinoshita

Surgical Oncology Division, National Cancer Center Hospital,
5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

@ Springer

Results The mean size and invasive size of the primary
tumors were 2.21 cm (ranging from 0.6 to 5.0 cm) and
1.44 cm (ranging from 0 to 5.0 cm), respectively. By
examining hematoxylin-eosin (HE) sections, the effec-
tiveness of RFA was found to be 100% in 16 tumors (57%).
However, the effectiveness of RFA was found to be 100%
in 22 cases (79%) examined by NADH-diaphorase staining
of frozen sections containing part of tumorous and nontu-
morous tissues. The accuracy of diagnosis of complete
RFA effect using NADH-diaphorase staining with refer-
ence to HE was 79% (22 of 28) with 100% (16 of 16)
sensitivity and 50% (6 of 12) specificity. The rate of 100%
RFA effect by HE examination was higher in EIC(—)
tumors (13 of 17, 76%) than in EIC(+) tumors (1 of 9,
11%) (P = 0.0022), and was higher in tumors of <1.5 cm
(10 of 11, 91%) than in tumors of >1.5 cm (6 of 17, 35%;
P = 0.0034). All five tumors of <1.0 cm showed 100%
RFA effect, but 3 (27%) of 11 tumors of >1.0 and <2.0 cm
and 9 (75%) of 12 tumors of >2.0 cm showed suboptimal
RFA effect by HE.

Conclusions Tumor size of <1.5 cm, strictly <1.0 cm,
could be an indication for RFA if a complete histological
therapeutic effect is mandatory.

Keywords Radiofrequency ablation - Breast cancer -
Therapeutic effect - NADH diaphorase

Introduction

Histopathological evaluation of radiotherapeutic effects in
patients’ cancerous tissues, including esophageal or cervi-
cal cancers, was established in Japan in the 1960s [1]. This
system evaluates the percentage of area with markedly
altered, presumably nonviable cancer cells, and the area
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