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Abstract B cell-activating factor belonging to the tumor
necrosis factor superfamily (BAFF) is a crucial factor for
B cell development and is involved in the survival of
malignant B cells, but its effect on B cell precursors
(BCPs) remains unclear. We investigated BCP acute lym-
phoblastic leukemia (-ALL) cells for BAFF receptor (-R)
expression and compared the effect of BAFF on BCP-ALL
cells and Burkitt lymphoma (BL) cells. Expression of
BAFF-R was detected in some cell lines and some clinical
specimens of both BL and BCP-ALL. BAFF acted on both
BL and BCP-ALL cells and promoted proliferation by
both. BAFF also inhibited apoptosis by BL cells induced
by cross-linking of cell surface molecules and anticancer
drugs, but failed to inhibit apoptosis by BCP-ALL cells.
BAFF induced prompt and obvious activation of the
NF-«B signaling pathway in BL cells, but only weak and
delayed activation of the pathway in BCP-ALL cells. The
results of this study indicate that some BCP-ALL cells and
some BL cells express BAFF-R, but that the effects of
BAFF on BCP-ALL cells are different from its effects on
mature B cell malignancies.
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1 Introduction

B cell-activating factor belonging to the tumor necrosis
factor (TNF) superfamily (BAFF), also called B-lympho-
cyte stimulator (BlyS), is a cytokine that is produced
by monocytes, dendritic cells, and some T cells [1-6].
Transgenic mice overexpressing BAFF exhibit hyperplasia
of the mature B cell compartment [7-9], whereas mice
deficient in BAFF have a reduced number of peripheral B
cells and exhibit an almost complete loss of follicular and
marginal zone B cells in their secondary lymphoid organs
[9-11]. This suggests that BAFF is a survival and matu-
ration factor for B cells and crucial for B cell development
[1, 12]. To date, three distinct BAFF receptors have been
identified, namely, BAFF receptor (BAFF-R, also called
BR3), B cell maturation antigen (BCMA), and transmem-
brane activator and CAML-interactor (TACI). While
BAFF binds to all three with similarly high affinity, only
BAFF-R is thought to be responsible for the survival and
differentiation of B cells [6, 13-20].

It has been well documented that some of the malignant as
well as normal B cells express BAFF-R, and thus BAFF-
mediated signaling is involved in the survival and prolifer-
ation of malignant B cells [1]. Indeed, BAFF is thought to be
produced in excess in patients with various B cell malig-
nancies, including B cell chronic lymphocytic leukemia,
multiple myeloma, Hodgkin lymphoma, and various types of
non-Hodgkin lymphomas (NHLs), such as follicular lym-
phoma, diffuse large cell lymphoma, mantle cell lymphoma,
and marginal zone lymphoma, either by the tumor cells
themselves or by cells in their microenvironment, or by both,
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and to behave as an autocrine and paracrine survival and
proliferation factor in these B cell malignancies [21-27).

The capacity of B cells to bind BAFF has been found to
be correlated with their maturation stage, and the effect of
BAFF on B cells is dependent on their degree of matura-
tion. However, the precise role of BAFF in B cell devel-
opment is still a matter of controversy [1, 28], and the role
of BAFF in the development of B cell precursors (BCPs),
in particular, remains largely unknown. In addition, the
effect of BAFF on the neoplastic counterpart of BCPs,
namely BCP acute lymphoblastic leukemia (-ALL)/ym-
phoma, is also still unclear. Since BCP-ALL is the most
common malignancy in childhood, whether BAFF has any
effect on BCP-ALL cells should be investigated.

In this study, we investigated the effect of BAFF on
BCP-ALL cells in comparison with its effect on the cells of
Burkitt leukemia/lymphoma (BL), which is a subtype of
NHL and another common B-lineage malignancy in
children. In this study, we report the findings that some
BCP-ALL cells as well as some BL cells expressed BAFF-R,
and that BAFF promoted proliferation by both. Interestingly,
although BAFF inhibited apoptosis by BL cells, it failed to
inhibit apoptosis by BCP-ALL cells, suggesting that BAFF
acts on B-lineage malignant cells differentially in a matu-
ration stage-related fashion. The molecular basis of the
differential effects of BAFF on BCP-ALL and BL cells is
also analyzed and discussed.

2 Methods
2.1 Reagents

Recombinant human BAFF was obtained from R&D Sys-
tems, Inc. (Minneapolis, MN). Dexamethasone (DEX) and
etoposide (VP-16) were obtained from Sigma-Aldrich Co.
(St. Louis, MO). The monoclonal Abs (mAbs) used were
phycoerythrin (PE)-conjugated anti-BAFF-R from Santa
Cruz Biotechnology (Santa Cruz, CA), fluorescein isothi-
ocyanate (FITC) anti-CD10, FITC anti-CD21, FITC anti-
HLA-DR, PE anti-CD40, PE-Texas Red (ECD) anti-CD45,
PE-cyanin 5.1 (PC5) anti-CD33, and PE-cyanine 7 (PC7)
anti-CD19 from Beckman/Coulter, Inc. (Westbrook, MA).
The mouse mAbs used for the immunochemical analysis
were anti-I-«B, anti-NF-«xB p65, and anti-Bcl-2 from Santa
Cruz and anti-f-actin (AC-15) from Sigma. The rabbit Abs
used were anti-TRAF-3, anti-NF-xkB1, anti-NF-xB2,
anti-phospho-specific NF-kB p65 (Ser536), anti-phospho-
specific NF-xB p105 (Ser933), and anti-phospho-specific
I-kB-o¢ (Ser32) from Cell Signaling Technology, Inc.
(Danvers, MA). Purified anti-u chain rabbit polyclonal Ab
from Jackson ImmunoResearch Laboratories, Inc. (West
Grove, PA) was used to cross-link B cell receptors (BCRs).

Mouse anti-CD24 [29], anti-CD10, and anti-CD20 mAbs
(Beckman) were used to cross-link each molecule. Sec-
ondary Abs, including enzyme-conjugated Abs, were
purchased from Jackson and Dako (Denmark A/S).

2.2 Cells and cultures

The human BL-derived cell lines Daudi, Ramos, P32/ISH
(Japanese Cancer Research Resource Bank, JCRB, Tokyo,
Japan), EB-3, NAMALWA (Institution of Fermentation,
Osaka, Japan), and BALM-18 (Dr. Y. Matsuo, Fujisaki Cell
Center, Hayashibara Biochemical Labs, Inc.) and the human
hairy cell leukemia cell line MLMA (JCRB) were used. The
human BCP-ALL cell lines Reh (American Type Culture
Collection),RS4;11, P30/0OHK (JCRB), NALM-17,NALM-
27 (Hayashibara), and NALM-6 (Tohoku University Cell
Bank, Sendai, Japan) were also used. Cells were cultured at
37°C in RPMI 1640 medium (Sigma) supplemented with
10% FCS (Sigma) under a humidified 5% CO, atmosphere.
Cells were cultured in the presence or absence of BAFF, and
viable cell counts were made after staining with Trypan blue
at the times indicated in the figures. In parallel, cells were
plated on a 96-well culture plate (Corning, Inc., Corning,
NY) and cell proliferation was also assessed by water-solu-
ble tetrazolium salt (WST) assays (Cell Counting Kit-8,
DojinDo, Kumamoto, Japan), a cell proliferation assay that
colorimetrically determine dehydrogenase activity of the
cells. Based on our preliminary experiments, we chose a
concentration of 200 ng/ml as a sufficient dose of BAFF to
achieve a maximum effect on cell proliferation.

Clinical specimens from pediatric patients, consisting of
20 patients with BCP-ALL, 10 with BL, and 2 with reac-
tive lymphadenitis, were selected from the files of speci-
mens collected in our laboratory between 1985 and 2001.
The specimens are now kept under anonymous conditions,
and all of the experiments included in this study adhered to
the tenets of the Declaration of Helsinki and were per-
formed with the approval of the local ethics committee.

The human bone marrow (BM) CD34+ cells used were
purchased from Cambrex Bio Science Walkersville, Inc.
(Walkersville, MD). A cloned murine BM stromal cell line,
MS-5, was kindly provided by Dr. K. J. Mori (Niigata
University, Niigata, Japan). BCP cells were induced from
BM CD34+ cells by co-culture with MS-5 cells as
described previously [30].

2.3 Immunofluorescence analysis and detection
of apoptosis

To detect BAFF-R, cells were stained with fluorescein-
labeled mAbs and analyzed by flow cytometry (FCM,
FC500, Beckman) as described previously [31]. The fre-
quency of apoptosis was quantified by MEBCYTO-
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Apoptosis kit (Medical & Biological Laboratories, Co.,
Ltd., MBL, Nagoya, Japan) as described previously [29].
The caspase activation was quantified by APOPCYTOTM
Intracellular Caspases Activity Detection Kit (MBL) and
then analyzed according to the manufacturer’s protocol.

2.4 Reverse-transcriptase (RT)-PCR

Total RNA was extracted from cultured cells with an
RNeasy plus Mini Kit (QIAGEN, Valencia, CA), and
cDNA was generated with a FirstStrand ¢cDNA Synthesis
Kit (Pharmacia Biotech, Uppsala, Sweden). A set of
primers (5'-caaattcagctcttcacte-3’, and 5'-tttgaaggcacagga
acag-3') was used to amplify the 193-bp fragment of
BAFF-R transcripts by PCR as described previously [32],
and the products were separated on a 2.0% agarose gel. The
transcripts of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were amplified as an internal control [32].

2.5 Statistical analysis

The statistical analysis was performed by means of a
nonparametric Mann—-Whitney test, and correlations were
determined by using nonparametric statistics. A p value
less than 0.05 was considered to be statistically significant.

2.6 Immunoblotting

Immunoblotting was performed as described previously
[33]. Briefly, a 50 pg sample of each cell lysate was
electrophoretically separated on an SDS-poly acrylamide
gel and transferred to a nitrocellulose membrane. The
membrane was incubated with the appropriate combination
of primary and secondary Abs, washed, and examined with
an enhanced chemiluminescence reagent system.

3 Results
3.1 Expression of BAFF-R in BL and BCP-ALL cells

First, we investigated whether the BL and BCP-ALL cell
lines expressed BAFF-R. As shown in Fig. la, flow cyto-
metric analysis revealed that most of the BL cell lines
expressed BAFF-R. Of the 6 BL cell lines tested, 4, BALM-18,
BALM-24, P32/ISH, and Ramos, exhibited a relatively high
level of expression, but EB-3 cells did not express BAFF-R at
all and the expression of BAFF-R by Daudi cells was very
limited. On the other hand, testing the BCP-ALL cell lines
for BAFF-R expression by FCM showed that most of the
lines used in this study were positive, but expression by
RS4;11 cells was very limited (Fig. 1b). AsshowninFig. Ic,
hairy leukemia-derived MLMA cells exhibited high level
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expression of BAFF-R. We confirmed BAFF-R expression
by these cell lines at the mRNA level by RT-PCR (Fig. Ic).
Similar examination for expression of the other types of
BAFF receptors by FCM showed no significant expression of
BCMA or TACI protein by any of the BL or BCP-ALL cell
lines (data not shown).

Next, we examined BL and BCP-ALL cells in the clinical
material for BAFF-R expression. As shown in Fig. 2a, flow
cytometric analysis revealed that the lymphoma cells in
some of the BL cases expressed BAFF-R. Of the 10 cases
tested, 3 were clearly positive for BAFF-R. We also con-
firmed that the leukemic cells in some of the BCP-ALL cases
expressed BAFF-R, and 7 of the 20 cases were positive for
BAFF-R (Fig. 2b). These findings indicate that some BL and
BCP-ALL cells express BAFF-R proteins on their surface.

We also investigated whether non-leukemic B cells
express BAFF-R. FCM of BCP cells induced from bone
marrow CD34+ cells in vitro by co-culture with MS-5
cells revealed that some BCP cells expressed BAFF-R
(Fig. 2c), indicating that the expression of BAFF-R is a
characteristic of particular BCP cells. Similarly, some non-
leukemic mature B cells in peripheral lymph nodes also
expressed BAFF-R (Fig. 2d).

3.2 BAFF accelerates proliferation by both BL
and BCP-ALL cells

Next, we investigated whether BAFF affects proliferation
by BL and BCP-ALL cells. The Trypan blue dye exclusion
assay showed that proliferation of BAFF-R-positive BL
cell lines (BALM-18, P32/ISH, Ramos, and NAMALWA)
increased slightly after BAFF was added to the culture, and
the increase was statistically significant (Fig. 3a). A cell
proliferation assay with WST revealed a similar tendency
(Fig. 3a). In contrast, BAFF failed to induce a significant
increase in cell proliferation by Daudi cells and EB-3 cells,
which exhibited no significant BAFF-R expression
(Fig. 3a), indicating that the proliferation-inducing effect
of BAFF is specific to BAFF-R-positive cells. We inves-
tigated whether BAFF affects proliferation by BCP-ALL
cell lines in a similar manner and observed a similar effect
(Fig. 3b), suggesting that BAFF promotes the growth of
both BAFF-R-positive BL cells and BCP-ALL cells.

3.3 BAFF inhibits apoptosis by BL cells, but not by
BCP-ALL cells

It has been well documented that stimulation of cultured BL
cells via particular surface molecules, including BCR and
CD20, induces apoptosis [34-36]. It has also been reported
that BAFF is responsible for B cell survival and prevents
apoptosis by cultured B cells [37, 38]. We therefore inves-
tigated whether BAFF is able to inhibit BL cell apoptosis that
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Fig. 1 Expression of BAFF
receptor (BAFF-R) in Burkitt
lymphoma (BL) cell lines and
B cell precursor acute
lymphoblastic leukemia (BCP-
ALL) cell lines. a Six BL cell
lines were stained with PE-
labeled anti-BAFF-R antibody
and analyzed by flow cytometry.
The histograms obtained (dark
lines) are shown superimposed
on those of the negative control
(cells stained with isotype-
matched control mouse Ig, light
lines). Positivity (%) and mean
fluorescence (X-mean) values
are shown. X-axis, fluorescence
intensity; Y-axis, relative cell
number. b Six BCP-ALL cell
lines were examined for BAFF-
R expression as described in a.
¢ Hairy cell leukemia-derived
cell line MLMA was tested as a
positive control and presented
as in a. d The expression of
BAFF-R mRNA in both groups
of cell lines and MLMLA cells
was investigated by the reverse-
transcriptase polymerase chain
reaction (RT-PCR)
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is mediated by cross-linking of CD20 and BCR. As shown in
Fig. 4a, assessment by annexin-V binding showed that the
incidence of P32/ISH cell and BALM-18 cell apoptosis
induced by both BCR- and CD20-mediated stimuli was
reduced to a statistically significant extent by the addition of
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BAFF to the culture. We also investigated the inhibitory
effect of BAFF on apoptosis by BL cells mediated by DEX
and observed a similar inhibitory effect, but this effect on the
apoptosis mediated by VP-16 was very limited (Fig. 4a).
Although a higher dose of BAFF tended to inhibit induction

@ Springer



812

K. Onda et al.

a .

BAFF-R / BL patients
L\ Case-1 «. | Case2 & Case-3 & | Case4 8/ A Case-5
Y - 11 i 4
f 19.04% 'f‘fﬂ 81.02% 2.58% - »'3 0.45% - | "‘ 0.75%
, \I X-mean. - ¥ J X-mean: X-mean: - { \ X-mean: || 4 X-mean:
] \, 2.06 I 5.05 176 - | 203, |! 27
' LYY o\ 7o
"30""'3"""'6 EAT *""60""3‘ B o EANET TS o L (o L [ RIS (1 @ M (T L I 1o BT, AT, L ) e, B
g (‘\Case-s T Case-7 g /, Case-8 &' Case-9 8 | Case-10
- - ' |
o98.72% . ! 2.90% i 82.75% 0.04% 7.20%
“ { i X-mean: . X-mean: X-mean: X-mean: X-mean:
. ' 991 _ 2.41 3.17 1.02 245
'f ‘ - R ‘ .
106 10" 37T IO Th o T B it T2 T8 T TTed ThY TThE "Tos 108 107 {02 10®

b BAFF-R/BCP-ALL patients

o . & ' ’

b TV; Case-1 2 j Case2 g Cased g . Cased - | Case-5
I 1 93 73% i 381% 1 || 63.56% ' 75.09% 597%
4 i "v' X-mean: X-mean: d l \ X-mean: o1 X-mean: X-mean:
IR 1.35 1 081 . /! 0.99 , 0.92 1 1.16

i EE "
i \ \ ‘( : vy e S ——— - R — e e AN e A S P = W Y aven.
00 10" 102 102 100 107 107 103 100 10" 107 1d¢  10° 10" 10Z 0%  10° 10' 102 10°
g & Caseb 2. Case-7 € / Case8 o Case-9 2 ! Case-10
} ] ; | i

1 ¥ “ 80.75% - \ 1561% 1 . 244% || 237% 1.85%

3 " \ X-mean: )‘ \ X-mean: i X-mean: ‘ X-mean: ) X-mean:
1 \ 1.53 \ 33t ! 076 |, | 0.81 0.90
{ ¢ 1 1, " [ | 7

1 10" 102 103 1 102 102 10° 10" 102 10°% 10° 10" 102 10:"“ 109 10" 102 103

g | Case-11 g ! Case-12 & ¢ Case-13 oy  Case-14 e A Case-15

f 3.45% 6.06% a 0.91% d 66.83% 17.76%
1 .' X-mean: X-mean: X-mean: i X-mean: X-mean:
: 074 . 068 0.84 P 156 .. 1.02
100 10" 107 103 "“1"60 10 107 103 10° 10' 102 10® 10° 10' 107 10° ""1‘60“'1'61 102 10°
g ;. Case-16 3 Case-17 & 4 Case-18 o '{‘i Case-19/ j ] Case-20
AL 42.29% | 102% 1.70% / 86.95% 1/ 2.59%
X-mean: g X-mean: { X : !
. 263 ! 145 T ';
4 v j
p , 'f y
100 10' 102 10°  10° 10" 102 10%  10° 10' 10% 102

Fig. 2 Analysis of BAFF receptor (BAFF-R) expression in clinical
material and non-leukemic samples. The histograms for BAFF-R in
ten Burkitt lymphoma (BL) cases (a) and twenty B cell precursor
acute lymphoblastic leukemia (BCP-ALL) cases (b) are shown as in
Fig. la. ¢ BCP cells induced from bone marrow CD34+ cells in vitro
were examined for expression of BAFF-R and other leukocyte

of apoptosis more effectively (Fig. 4b), the inhibitory effect
of BAFF on induction of apoptosis was always partial (data
not shown). As shown in Fig. 4c, when BAFF was added to

@ Springer

antigens by flow cytometry, and the cytograms are shown. Positivity
(%) of each fraction and mean fluorescence (X-mean) values of
BAFF-R-positive fractions are shown. d Mononuclear cells obtained
from lymph nodes of two non-leukemic reactive lymphadenitis
patients were examined for the expression of BAFF-R as in ¢

the culture prior to the induction of apoptosis, its inhibitory
effect on induction of apoptosis was greater than when added
at the start of apoptosis induction. We also confirmed that
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Fig. 2 continued

BAFF inhibits activation of caspase in BL cells during the
course of its inhibition of apoptosis (Fig. 4d). As shown in
Fig. 4e, BAFF failed to inhibit apoptosis in BAFF-R-nega-
tive EB-3 cells, indicating that the inhibitory effect of BAFF
oninduction of apoptosis is specific for BAFF-R-positive BL
cells.

We then investigated whether BAFF would inhibit
apoptosis by BCP-ALL cells. Since BCP-ALL cell lines do
not express BCR and most of them are CD20-negative,
BCP-ALL cell apoptosis is not induced by cross-linking
these molecules. However, in a previous study we dis-
covered that cross-linking of other molecules expressed on
BCP-ALL cells, including CD24, can induce apoptosis by
BCP-ALL cells [39]. When we investigated the effect
of BAFF on CD24- and CDI10-mediated apoptosis by
NALM-6 cells, however, no inhibitory effect of BAFF was
observed on apoptosis mediated by either of them (Fig. 5).
We also discovered that BAFF was unable to inhibit
NALM-6 cell apoptosis mediated by DEX or VP-16
(Fig. 5). We tested other BCP-ALL cell lines, including
Reh and NALM-17, in a similar manner, but no inhibitory
effect of BAFF on induction of apoptosis was observed in

any of the BCP-ALL cells (Fig. 5 and data not shown).
BAFF also failed to inhibit activation of caspase in
BCP-ALL cells (data not shown). We therefore concluded
that although BAFF is capable of inhibiting induction of
apoptosis by BL cells, it does not have an inhibitory effect
on induction of apoptosis by BCP-ALL cells.

3.4 Molecular basis of the differential effects of BAFF
on BL and BCP-ALL cells

It has been reported that activation of the alternative
NF-xB pathway (processing of NF-xB2 and nuclear
translocation of p52/RelB heterodimers) is a major out-
come of BAFF-R-stimulation, but that BAFF-R also
weakly activates the classical NF-kB pathway (processing
of NF-«B1 and nuclear translocation of p50/RelA) [1, 20].
When expression of signaling molecules related to the NF-
kB pathways, including NIK, I-xB, NF-xB1, NF-xkB2, and
p65 NF-kB (RelA), was investigated by immunoblot
analysis, no clear differences were found between the BL
cell lines (Ramos, BALM-18, P32/ISH) and BCP-ALL cell
lines (NALM-6, Reh, LC4-1) (data not shown). In contrast,
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Fig. 3 Effect of BAFF on proliferation by Burkitt lymphoma (BL)
cells and B cell precursor acute lymphoblastic leukemia (BCP-ALL)
cells. The effect of BAFF (200 ng/ml) on proliferation by BL cell
lines (a) and BCP-ALL cell lines (b), each at a starting cell

protein expression of TRAF-3 was detected in all three BL
cell lines and in NALM-6 cells, but not in other BCP-ALL
cell lines (data not shown).

Next, we investigated the activation of signaling mole-
cules induced by BAFF stimulation. As shown in Fig. 6a,
investigation of the phosphorylation state of [-«B-a, p65
NF-xB, and pl105 NF-«B, the regulatory molecules of the
NF-xB1 signaling cascade revealed a temporary increase in
their phosphorylation state following BAFF stimulation in
P32/ISH cells (peaking in 5-10 min), but not in NALM-6
cells. However, as shown in Fig. 6a, a slight increase in
phosphorylation of p105 NF-xB was detected in NALM-6
cells at 60 min after BAFF stimulation. We also observed a
clear increase in the active forms of both NF-xB1 (p50)
and NF-xB2 (p52) in P32/ISH cells after stimulation with
BAFF (Fig. 6b). In contrast, the increase in active forms of
NF-xBs mediated by BAFF in NALM-6 cells was smaller
than that in P32/ISH cells (Fig. 6b). Immunoblot analysis
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revealed a more marked increase in the active form of NF-
kB1 than in the active form of NF-«kB2 (Fig. 6b).

We also investigated the activation of signaling mole-
cules induced by BAFF stimulation in hairy leukemia-
derived MLMA cells in the same manner as a positive
control for mature B cell malignancy. As shown in Fig. 6,
BAFF induced prompt and sustained phosphorylation of
I-kB-a, p65 NF-xB, and pl05 NF-«B (Fig. 6a), whereas
the active form of NF-«xB1 (p50) was already present prior
to stimulation with BAFF, and whether its level increased
after the addition of BAFF was unclear (Fig. 6b). In con-
trast, BAFF significantly increased the level of active form
of NF-xB2 (p52) in MLMA cells (Fig. 6b).

We previously reported finding that BAFF induces Bcl-2
expression in MLMA cells [40]. When we investigated the
effect of BAFF on Bcl-2 expression in P32/ISH and
NALM-6 cells by immunoblot analysis, we found that
BAFF induced a small amount of Bcl-2 protein expression
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Fig. 4 Effect of BAFF on
apoptosis by Burkitt lymphoma
(BL) cells. a BL cell lines
BALM-18 and P32/ISH were
treated with either rabbit anti-u
heavy-chain («yu) antibody (Ab),
a combination of anti-CD20 Ab
(aCD20) and secondary rabbit
anti-mouse Ig Ab,
dexamethasone (DEX, 2 and
100 pM for BALM-18 and P32/
ISH, respectively), or VP-16
(0.5 and 12.5 pM for BALM-18
and P32/ISH, respectively) for
24 h. BAFF (200 ng/ml) was
added to the culture at the same
time, and apoptotic cells were
identified by binding with
FITC-conjugated annexin V.
Each experiment was performed
in triplicate, and the

means £ SD of the data are
shown. b BALM-18 cells were
treated with rabbit anti-u heavy-
chain antibody (ay) and BAFF
was added to the culture at the
same time as oy was added at
different concentrations.
Apoptotic cells were examined
as described in a. ¢ BAFF was
added to the culture either at the
same time as (0), 2 h before
(—=2), or 2 h after (42) the
addition of au. d P32/ISH cells
were treated as in a, and caspase
activation was assessed with
FITC-conjugated z-VAD-fmk.
The results are shown in the
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Fig. 5 BAFF does not inihibit apoptosis by B cell precursor acute
lymphoblastic leukemia (BCP-ALL) cells. BCP-ALL cell lines
NALM-6 cells and Reh cells were treated with DEX (20 and
200 pM for NALM-6 and Reh, respectively) or VP-16 (50 and
12.5 pM for NALM-6 and Reh, respectively) for 24 h, and the effect
of BAFF on induction of apoptosis was assessed in the same manner
as in Fig. 4. The effect of BAFF on induction of NALM-6 cell
apoptosis induced by either anti-CD10 Ab («CD10) or anti-CD24 Ab
(«CD24) in the presence of secondary rabbit anti-mouse Ig Ab was
also tested. Since CD24 and CD10 failed to induce apoptosis in Reh
cells, the assay was not performed with Reh cells

in P32/ISH cells, whereas Bcl-2 was already expressed in
NALM-6 cells, and that BAFF did not affect its expression
(Fig. 6c).

3.5 Effects of BAFF on CD40 expression in BL
and BCP-ALL cells

We also previously reported discovering that expression of
CD40, a TNF-receptor family molecule critical for B cell
survival, was up-regulated in hairy leukemia-derived
MLMA cells after BAFF stimulation [40]. As shown in
Fig. 7, flow cytometric analysis revealed that BAFF also
induced up-regulation of CD40 in P32/ISH cells, but no
clear change in CD40 expression was observed in NALM-6
cells.

@ Springer

4 Discussion

As stated above, expression of BAFF-R has been reported
in some of B cell malignancies [21, 26, 27], whereas
BAFF-R expression in BL and BCP-ALL/lymphoma has
not been well characterized. The results of the present
study clearly showed expression of BAFF-R by tumor cells
of BL and BCP-ALL, both of which are major B-lineage
hematologic malignancies in children, but that BAFF-R
expression was limited in some cases for each of these
diseases.

The results of this study have also shown that BAFF acts
on both BL and BCP-ALL cells and promotes their pro-
liferation. Furthermore, BAFF was found to inhibit the BL
cell apoptosis mediated by the cross-linking of cell surface
molecules, including BCR and CD20, and induced by
anticancer drugs, including DEX. Interestingly, however,
BAFF failed to inhibit apoptosis by BCP-ALL cells, indi-
cating that BAFF has a differential effect on B-lineage
malignancies that have originated at different stages of
B cell development. As mentioned above, BAFF has been
reported to act as a survival and proliferation factor in
B cell malignancies and a significant correlation between
clinical outcome and BAFF-R expression in tumor cells or
serum BAFF levels has been demonstrated in a certain
subtype of NHLs [21, 27, 41]. Studies to clarify the rela-
tions between BAFF-R expression and the clinical features
of BL and BCP-ALL are now being prepared.

Expression of BAFF-R has been reported to increase
with the stage of B cell maturation. Rodig et al. [26]
reported that up-regulation of BAFF-R occurs during the
transition from BCPs to mature B cells and that BAFF-R is
present in most B cells circulating in peripheral blood.
They also reported that BAFF-R expression appears to be
highest on the naive B cells in the mantle zones, whereas
BAFF-R is only detectable in a subset of B cells in the
germinal centers (GCs) [26]. Since BL cells are thought to
be a malignant counterpart of centroblasts present in ger-
minal centers, our finding that some BL cells express
BAFF-R seems to be consistent with the report by Rodig
et al. In contrast, we found that BAFF-R is expressed in
some BCP cells, indicating that BAFF may also affect the
proliferation and development of some BCP cells. All of
the above data indicate that distinct subsets, namely, a
BAFF-R-positive subset and a BAFF-R-negative subset,
are present in both BCP and GC B cells. Further analysis of
the effect of BAFF on BCP and GC B cells should provide
useful information with regard to the biological differences
between BAFF-R-positive and BAFF-R-negative cases of
both BL and BCP-ALL.

As reported in this study, although both BL and BCP-
ALL cells express BAFF-R, BAFF was found to have an
anti-apoptotic effect on BL cells, but not on BCP-ALL
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cells. The precise mechanism responsible for the differ-
ential effect of BAFF on BL and BCP-ALL cells is
unknown. As reported above, major signaling molecules
located downstream of BAFF-R were detected in both BL
and BCP-ALL cells. However, whereas clear activation of
the NF-kxB cascade was observed in P32/ISH BL cells, only
limited activation was observed in NALM-6 BCP-ALL
cells. Up-regulation of CD40 expression following BAFF
stimulation was observed in P32/ISH cells, but not in
NALM-6 cells. In our preliminary experiments, microarray
analysis further suggested that BAFF mediates gene
expression in BCP-ALL cells, which is distinct from the
gene expression that it mediates in BL cells. Since BCP
cells are reported to have a related but different signaling
system from mature B cells, it can be speculated that the

024 48 0 24 48
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BCP cells transduce the BAFF-mediated stimuli in a
manner that differs from mature B cells and that BAFF-
mediated signaling does not mediate the expression of anti-
apoptotic molecules in BCP-ALL cells. Further studies of
the genes selected above will help to elucidate how BAFF
affects BCP-ALL cells and how it is involved in the inhi-
bition of apoptosis in BL cells.

In conclusion, we observed BAFF-R expression in both
BL and BCP-ALL cells, which are derived from B cells at
different stages of development, and found that BAFF
affects tumor cells of these two B-lineage malignancies in a
different manner. Since BAFF seems to be involved in
survival and/or proliferation of tumor cells of these two
B-lineage malignancies, it might be possible to develop a
novel approach for the treatment of BL and BCP-ALL by
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Fig. 7 Effect of BAFF on
CD40 expression in P32/ISH
and NALM-6 cells. Cells were
cultured for 24 h with (+BAFF,

P32/ISH

CD40 expression detected by flow cytometry

dark lines) or without
(untreated, light lines) BAFF
200 ng/ml and examined for the
level of CD40 expression by
flow cytometry. The histograms
of the negative controls are
superimposed and shown in
each panel (on the left side)

Relative cell number

PE-CNT / PE-CD40

targeting BAFF signaling. Although more detailed exper-
iments are clearly needed, our findings in this study should
provide a model for investigating the molecular basis of the
developmental stage-dependent effect of BAFF on B cells
in vitro and help elucidate how BAFF affects early B cell
development.
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