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Table 2. List of chemicals reported to alter epigenetic statuses.

Action Chemical Characteristics Reference
DNA hypermethylation Butyrate Short-chain fatty acid (Boffa, Mariani and Parker,
1994)
4-(N-Nitrosomethylamino)- Tobacco-specific carcinogen (Pulling et al., 2004)
1-(3-pyridyl)-1-butanone
(NNK)
Phenobarbital Antiepileptic agent (Bachman, Phillips and
Goodman, 2006)
Vinclozolin Antiandrogenic compound (Anway et al., 2005)
Diethylstilbestrol Synthetic estrogen (Bromer et al., 2009)
DNA hypomethylation 5-Azacytidine, Cytidine analog (Egger et al.,2004)
5-Aza-2'-deoxycytidine
5-Fluoro-2'-deoxycytidine Cytidine analog (Jones and Taylor, 1980)
5,6-Dihydro-2’-azacytidine Cytidine analog (Curt et al., 1985)
Zebularine Cytidine analog (Cheng et al., 2003; Holleran

Alterations of
histone modifications

Ethionine

Arsenic compound

Valproic acid
Procainamide

Procaine
Hydralazine
6-Mercaptopurine
6-Thioguanine
Psammaplins A
(-)-Epigallocatechin-3-O-
gallate (EGCG)
RG108
SGI-1027
Bisphenol-A
Butyrate

Trichostatin A

Valproic acid

Suberoylanilide hydroxamic
acid (SAHA)

Depsipeptide

Nickel compound

Chromium compound

Arsenic compound

Cobalt compound

Cocaine

Methionine analog

Metal compound

Antiepileptic agent
Antiarrhythmic agent

Anesthetic agent
Antihypertensive agent
Anticancer agent
Anticancer agent
Antibiotic agent

Major polyphenol from green tea

DNMT inhibitor
DNMT1 inhibitor
Synthetic estrogen
short-chain fatty acid

Microbially derived compound
Antiepileptic agent
Hydroxamic acid

Microbially derived compound
Metal compound

Metal compound

Metal compound

Metal compound

Crystalline tropane alkaloid

et al., 2005)

(Shivapurkar, Wilson and
Poirier, 1984)

(Zhao et al., 1997;Reichard,
Schnekenburger and Puga,
2007)

(Detich, Bovenzi and Szyf,
2003)

(Lee et al., 2005;
Segura-Pacheco et al., 2003)

(Villar-Garea et al., 2003)

(Segura-Pacheco et al., 2003)

(Hogarth et al., 2008)

(Hogarth et al., 2008)

(Pina et al., 2003)

(Fang et al., 2003)

(Brueckner et al., 2005)
(Datta et al., 2009)

(Bromer et al., 2010)
(Stadtman and Barker, 1949)

(Yoshida et al., 1990)
(Kramer et al., 2003)
(Kelly et al.,2003)

(Furumai et al., 2002)
(Chen et al., 2006)
(Zhou et al., 2009)
(Zhou et al., 2009)
(Li et al., 2009)
(Maze et al. 2010

traps DNMT1, which is subsequently degraded by
proteasome (Ghoshal et al., 2005). This leads to

5 EPIGENOMIC ANALYSIS IN

TOXICOLOGY

depletion of DNMT1 in a cell, and passive DNA

demethylation is resultantly induced. There are
many other chemicals reported to induce changes in
epigenetic modifications (Table 2), but their direct
action or indirect action through gene expression
changes should be carefully evaluated.

Epigenomic alterations are deeply involved in car-
cinogenesis and possibly in other disorders. Ip
addition, there are a large number of non-mutagenic
carcinogens (Snyder and Green, 2001), some Of
which exert their carcinogenic action by inducing
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cell proliferation. It seems reasonable to con-
sider a possibility that some of the non-mutagenic
carcinogens exert their action by epigenetic mecha-
nisms. In this context, epigenomic analysis seems
essential in toxicology, which has just started.
Unfortunately, few reliable and sensitive methods
specifically designed for toxicological analysis have
been reported yet, and ordinary procedures for epi-
genetic and epigenomic analysis are used also for
toxicological analysis. Their brief principles and
efforts in development of convenient assay systems
are described.

5.1 Principles of DNA Methylation Analysis

Methods can be divided into those for analy-
sis of specific genomic regions and those for
genome-wide analyses. DNA methylation at spe-
cific genomic regions is analyzed mainly based
upon two principles of methylation detection;
methylation-sensitive restriction enzymes, and
bisulfite modification of DNA (Figure 8). Some
restriction enzymes, such as Hpall and Smal, have
recognition sequences with CpG sites, and can-
not cleave if the CpG site is methylated. Bisulfite

Sulphonation Deamination Desulfonation
NH, NH, o) o
N HSO O OH
4 3 HN+ HN ~ HN
3°5 3
){1 . I — J; kN — |
o~ N OH- o SOz o’ I "805 HSO o 7z N
dR dR dR dR
. Cytosine Uracil .
(a)  Cytosine (C) sulphonate sulphonate Uraail (U)
Top strand CG CG CG == CG === CC mmmeee——p>
Bottom strand ¢ GC GC GC—GC—CC
Bisulfite treatment Bisulfite treatment
(if methylated) (if unmethylated)
Top strand caG CG CG = CG e CG sttty
Bottom strand < GC GG GC=—GC—GC
Top strand uG uG UG == UG = UG )y
(b) Bottomstrand GU GU GU=—GU=—CGU

Figure 8. Principle of bisulfite modification: (a) chemical reactions for unmethylated cytosine; (b) sequence changes produced by
bisulfite modification of methylated and unmethylated DNA. Different sequences are produced from methylated and unmethylated
DNA, and the difference can be detected by various modalities.
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modification takes advantage of different efficiency
in converting cytosine to uracil, which is very effi-
cient for unmethylated cytosines but very slow for
methylated cytosines. After bisulfite conversion,
the top and bottom strands are no longer comple-
mentary. Methylated and unmethylated DNA will
produce different sequences after the conversion,
and the difference can be detected by various tech-
niques, such as sequencing, allele-specific PCR,
restriction digestion, and pyrosequencing. Depend-
ing upon the purpose of experiments, appropriate
techniques should be selected, considering the
required amount of DNA, flexibility in selection of
CpG sites to analyze, how quantitative the method
is, technical complexity, and the cost.

Genome-wide analyses are generally composed
of a step of detection of DNA methylation and
another step of genome-wide analysis (Ushijima,
2005; Laird, 2010). The methylation detection
can be performed using affinity-based methods,
such as use of anti 5-methylcytidine antibody
and affinity column with methylated DNA bind-
ing domains, but also using methylation-sensitive
restriction enzymes and bisulfite conversion. The
detection step can be performed using microarray
or next-generation sequencers.

5.2 Principles of Histone Modification
Analysis

Methods for histone modification analysis can be
divided into: (i) those for analysis of global con-
tents of histone modifications within a cell; (ii) those
for analysis of histone modifications for a defined
genomic region; (iii) those for histone modifica-
tions of defined genomic regions in a genome-wide
manner. Global contents of histone modifications
within a cell are mainly analyzed by immunohisto-
chemistry and Western blotting. In contrast, histone
modifications in defined genomic regions are ana-
lyzed by chromatin immunoprecipitation (ChIP).
All of these methods are based upon the recogni-
tion of histone modifications by antibodies, and their
specificity is critical for successful analysis.

The ChIP method can detect physical interactions
between histones containing a specific modifica-
tion and genomic DNA within a cell (Figure 9).
The ChIP method is composed of four steps includ-
ing: (i) preparation of fragmented chromatin from
cells; (i1) immunoprecipitation by using a specific

antibody; (iii) purification of immunoprecipitated
(IP) DNA; (iv) analysis of IP DNA (Lee et al.,
2006). Fragmented chromatin is usually prepared by
cross-linking DNA and histones by formaldehyde,
followed by a fragmentation step by sonication
or micrococcal nuclease. Immunoprecipitation is
performed using a specific antibody, and then the
immuno-complex of chromatin and antibody is col-
lected and purified. IP DNA is analyzed by PCR of
a specific genomic region, or by microarray or next-
generation sequencers for a genome-wide analysis
(Barski et al., 2007; Lee et al., 2006; Wang et al.,
2008).

5.3 Screening Methods for Epimutagens

A major reason why only a limited number of chem-
icals are reported to have epigenetic actions (see
Section 4.6) is the lack of easy-to-use assay sys-
tems for chemicals’ capacity to induce epigenetic
alterations. For mutagens, there are various in vifro
assays, using bacterial cultures or mammalian cells,
and also in vivo assays using genetically-engineered
animals (MacGregor, Casciano and Muller, 2000)
(Table 3). In contrast, very limited assay sys-
tems are available for epimutagens. To construct
an assay system for epimutagens, considerations
should be given to what target genomic region is
used as a marker for epigenetic effects, such as DNA
demethylation and methylation, and what reporter

Table 3. Characteristics of assay systems for mutations and
epigenetic alterations.

Assays for
epigenetic

Mutation assays alterations

Essentially
impossible

Bacterial Reversion in S.
system typhimurium (Ames
test)
Mammalian HPRT or TK mutations
cell Chromosome aberration
test
Mouse lymphoma assay
Measurement of UDS
In vivo Micronucleus test
Assay

Under development
(see text)

Not available yet

Mouse specific locus test

Tg mice for a marker
gene (Big Blue, gpt-A,
Muta-mouse etc.)
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Figure 9. Principle of chromatin immunoprecipitation (ChIP). Fragmented chromatin is prepared, and then immunoprecipitated (IP)
by using a specific antibody. DNA purified from the IP chromatin is used for analysis of histone modification levels for defined genomic

regions by several technologies such as PCR, microarray, and next generation sequencing.

system is used. For screening purposes, a convenient a precursor of toxicity (Carnell and Goodman,

and reliable assay system is essential. 2003).
So far, assay systems only for DNA demethy-
lating agents have been reported. Three systems
have been reported using a promoter of an exoge- 6 EPILOGUE
nous gene and a reporter gene (Biard et al., 1992;

Cervoni and Szyf, 2001; Fan et al., 2005). Among
these, Fan et al., 2005 successfully identified 5-
bromo-2'-deoxyuridine (BrdU) as an anti-silencing
agent without changing DNA methylation status.
These exogenous promoters have a concern that
they have epigenetic modifications different from
endogenous genes. From this aspect, two assay
systems are reported using a promoter of an endoge-
nous gene (Okochi-Takada et al., 2004; Oyer et al.,
2009). In addition to these efforts to use specific
exogenous and endogenous promoters, hypomethy-
lation of repeat sequences is also proposed as

Epigenomic alterations are important for cancer and
possibly for other disorders. Nevertheless, epige-
nomic toxicology has just started, and scientists are
not armed well yet. Application of findings in epi-
genetics and epigenomics to toxicology is now an
exciting task.
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CHAPTER

Analysis of Gene-specific
DNA Methylation

Naoko Hattori and Toshikazu Ushijima
National Cancer Center Research Institute, Tokyo 104-0045, Japan

INTRODUCTION

Gene- or region-specific DNA methylation analysis is necessary in various situations, and a
variety of methods are available. It is important to become familiar with the characteristics of
each technique, including the required amount of DNA, flexibility in selection of CpG sites
to analyze, how quantitative the technique is, technical complexity, and the cost (Table 8.1).
For example, if one wants to analyze DNA methylation as a cause of gene silencing, a specific
region that controls gene expression should be analyzed [1], and a method with flexibility

in selecting a region to analyze should be used. If one aims for diagnostic applications, a
method that is highly accurate should be adopted.

In this chapter, we first introduce principles of DNA methylation analysis, and then
summarize characteristics of individual methods. Finally, we will provide tips necessary to
perform bisulfite sequencing, methylation-specific PCR (MSP), and quantitative MSP.

PRINCIPLES OF DNA METHYLATION ANALYSIS

DNA methylation can be analyzed based on several principles that differentially recognize
5-methylcytosine (C™) from cytosine (C). The first principle depends upon methylation-
sensitive restriction enzymes whose activity is affected by the presence of a methyl group
on a cytosine at a CpG site(s) within restriction sites (Fig. 8.1A). The vast majority

of methylation-sensitive restriction enzymes, such as Hpall and Smal, are inactive on
methylated CpG sites, but a unique methylation-sensitive restriction enzyme, McrBC, is
inactive on unmethylated CpG sites. Differential cleavage can be detected by Southern-blot
hybridization.

The second principle depends on bisulfite-mediated DNA conversion. This treatment
converts unmethylated C into uracil (U) very rapidly, whereas it converts methylated C
extremely slowly [2]. Under optimized conditions, a difference in methylation status of a
CpG site can be converted into a difference of sequence, UpG or CpG. Once a difference

of methylation status is converted into a difference of DNA sequence, it can be detected by
various techniques, such as bisulfite sequencing, methylation-specific PCR (MSP), real-time
MSP, combined bisulfite restriction analysis (COBRA), pyrosequencing, and MassARRAY"
analysis (Table 8.1).

Third, methylated cytosines can be specifically recognized by an anti-methylcytidine
antibody or a methylated DNA binding (MBD) protein. After appropriate shearing of DNA,

Handbook of Epigenetics: The New Molecular and Medical Genetics. DOI: 10.1016/B978-0-12-375709-8.00008-3
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(A) Methods of DNA methylation detection. Detection by methylation-sensitive restriction enzymes. Genomic DNA is digested with a
methylation-sensitive restriction enzyme (Hpall in this figure) when its restriction site (CCGG) is unmethylated, but not digested when
the site is methylated. Whether genomic DNA is digested or not represents the methylation status in the original DNA. C™ stands for
methylated cytosine. (B) Detection by bisulfite-mediated DNA conversion. Unmethylated cytosines are converted very rapidly into
uracil by deamination whereas methylated cytosines are converted extremely slowly. Therefore, a difference in methylation status of
a CpG site can be converted into a difference of sequence, UpG or CpG. After bisulfite-mediated DNA conversion, the upper and lower

strands are no longer complementary.

12

methylated DNA can be collected using these affinity methods. This principle is mainly used
for genome-wide screening techniques [3].

Fourth, the fraction of methylcytosine in the entire genomic DNA can be measured by HPLC
or mass spectrometry [4]. Since this method does not contain sequence information, this can
be used solely to measure global methylation levels.

CHARACTERISTICS OF INDIVIDUAL TECHNIQUES

Southern-blot Hybridization

Southern-blot hybridization for DNA methylation analysis is based on DNA digestion by a
methylation-sensitive restriction enzyme and subsequent hybridization using a probe for a
specific genomic region [5]. The methylation status of a restriction recognition site can be
detected by monitoring the band positions of DNA fragments flanking the restriction sites,
The advantage of this technique is its quantitative results reflecting the amounts of digested
and undigested DNA molecules. Southern blot analysis is especially useful for analysis of
repetitive sequences because multiple similar sequences in the genome can be analyzed by a
single probe. On the other hand, this technique analyzes only a limited number of CpG sites
located within restriction recognition sites, and requires a large amount of high-quality DNA.
Although this technique was frequently used before bisulfite conversion-based techniques
became popular, it has recently been used only occasionally.

Bisulfite Sequencing

Bisulfite-converted DNA is amplified by PCR using primers located in genomic regions
lacking CpG sites. The PCR product is then sequenced, usually after cloning of the PCR
product, and CpG sites within the amplified region are interrogated (Fig. 8.2A) {6]. Cytosine



SECTION 11l
Epigenetic Technol

ogy

(A7 s T s (B) Unmethylated DNA  Methylated DNA

@0 66 €6 900 00600 — 0 O
—O—OW—.— CCGA
O e -0e Be O O BV
—O08 006 86 —OOCOOSesO—O—0— Bisulfite treatment &

R P

PCR TTGA TCGA
00— 00— 00000000 No Tagl site Remaining Taql site
. Cut with Tagl & :
—80—88—0-00-0-8800— electrophoresis
e 86 O U eee— — —

. level (%)
Cloning &
sequencing DNA methylation _ B+C
P (ege0)
(C) M primer U primer (D) M primer U primer
e e Ser e
iy g TEREI NNy RS Pt DRt e
' PCR Quantitative PCR
Number of Number of
00000 OO-8-000 methylated unmethylated
e 00-0-000- DNA moylocules: DNA molecules:

Electrophoresis

M U M u DNA X
methylation = 100X (W)
level (%)

M: Fully methylated DNA
U: Fully unmethylated DNA

& F
E) C"GCGAA (F) Unmethylated DNA Methylated DNA

Bisulfite treatment & B TR e e —CMG-CMG—CMG—

CGTGAA o Bisulfite conversion

GCACTT — UG—UG—UG— —C6—CG—C6—
Sequencing ‘ N\ ' N

/5 reaction T7 promotery peR
CG - SA —TG —TG ~T6 — “—CG—C6—C6—
DNAG CACTT —AC—AC —AC — —GC—GC—GC —

polymerase 4 . In vitro transcription
% —AC—AC—AC — —GC—GC—GC—

/] © U (T)-specific cleavage
Pyrogram U—AC — <16Da U—GC—

—AC —AC — <32Da -GC—GC—
08% 0% U—AC —AC U-GC—GC

LI

CTGCTGA
FIGURE 8.2
Principles of individual techniques for DNA methylation analysis. Methylated and unmethylated CpG sites are
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(C) and thymine (T) at a CpG site in the converted DNA show methylated and unmethylated
C, respectively, in the original DNA. This technique enables us to investigate the methylation
status of every single CpG site between the primers, and how multiple CpG sites in a single
DNA molecule are methylated. DNA methylation of almost any region can be analyzed
using this method. A possible disadvantage is that this technique is labor-intensive, requiring
that at least 10 clones per single sample be sequenced. There are also some technical pitfalls
that will be described later.

Combined Bisulfite Restriction Analysis (COBRA)

The COBRA technique is based on the appearance or disappearance of a restriction enzyme

recognition site after bisulfite conversion (Fig. 8.2B) [7]. By quantifying the ratio of digested

and undigested PCR products, the ratio of methylated and unmethylated DNA molecules ,
can be quantified. This technique is suitable for detecting the methylation level of a CpG site i
quantitatively, and has the advantage of ease of procedure. Since multiple CpG sites within a e
small genomic region are coordinately methylated or unmethylated [4,8], analysis of a single

CpG site can predict the methylation status of the surrounding region. A disadvantage is that

CpG sites that can be analyzed by COBRA are limited.

Recently, a modified protocol for COBRA, Bio-COBRA, was developed [9]. Bio-COBRA
incorporates an electrophoresis step of the digested PCR product in a microfluidics chip,
such as Bioanalyzer (Agilent), and provides rapid and quantitative assessment of DNA
methylation statuses in a large sample set.

Methylation-specific PCR (MSP)

This technique interrogates methylation statuses of several CpGs at primer sites by
performing PCR with primers specific to methylated or unmethylated sequences and
observing the presence or absence of a PCR product (Fig. 8.2C) [10]. If both forward and 12
reverse primer regions are methylated, intervening CpG sites are also likely to be methylated.

DNA molecules with mosaic methylation patterns at primer sites are not amplified. This

technique has high flexibility in selecting a genomic region to analyze because PCR primers

can be designed at arbitrary positions, even if the region to be analyzed is CpG-rich, and it is

technically simple. At the same time, MSP can easily produce false positive and false negative

results. Therefore, it is critically important to use the optimal number of PCR cycles and

annealing temperatures with appropriate negative controls, which will be described in the

third section of this chapter.

Real-time MSP and MethyLight

Real-time MSP is performed by real-time detection of MSP products. By comparing
amplification of test samples with standard samples that contain known numbers of DNA

provides a methylation pattern of individual DNA molecules at single CpG resolution. (B) COBRA. Bisulfite-converted DNA

is amplified by PCR with primers covering no CpG sites, and the PCR product is digested with a restriction enzyme (7agl in
this figure). In the COBRA assay shown here, if the cytosine in the CpG site is methylated, the restriction site will remain.

On the other hand, if the site is unmethylated, the restriction site will disappear. Quantitative analysis of methylation levels

is achieved by subsequent gel electrophoresis and measurement of cleaved and uncleaved bands. (C) MSP. Methylation
statuses at several CpGs within primer sequences are interrogated by performing PCR with primers specific to methylated
or unmethylated templates and monitoring the presence or absence of a PCR product. PCR conditions are optimized using
fully methylated DNA and fully unmethylated DNA. (D) Real-time MSP. The numbers of methylated and unmethylated DNA
molecules are quantified by real-time MSP. (E) Pyrosequencing. C/T polymorphisms in the PCR product are investigated by
measuring pyrophosphate released at individual sites. The amount of pyrophosphate is converted into a light signal, and then
shown as a pyrogram. (F) MassARRAY®. The PCR product amplified from bisulfite-converted DNA is transcribed in vitro, and
cleaved by RNase A. The difference in the mass of a product with C and that with T (16 Da) is detected by MALDI-TOF mass
spectrometry.
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molecules, numbers of methylated and unmethylated DNA molecules can be quantified (Fig.
8.2D). A methylation level can be calculated based on these numbers of DNA molecules.
PCR products can be detected by an intercalating dye like SYBR® Green I (real-time MSP),

or by a TagMan probe (MethyLight) [11]. Since a TagMan probe anneals only to a specific
sequence (methylated or unmethylated sequence), MethyLight has higher specificity than
quantitative MSP although a TagMan probe is costly. Intercalating dye can detect even non-
specifically amplified DNA and primer dimers, and confirmation of specific amplification

by melting analysis of the PCR product is essential. It is reported that the use of a new
fluorescent dye, such as SYTO-82, can produce more accurate melting results [12]. The real-
time MSP and MethyLight techniques have a lot of flexibility in selecting a genomic region to
analyze, as does MSP, and are accurate and sensitive in quantifying DNA methylation levels.
The high accuracy and sensitivity of these techniques make them suitable for analysis of a
large number of clinical samples.

Pyrosequencing

Pyrosequencing detects methylation levels of individual CpG sites in a PCR product
obtained by primers common to methylated and unmethylated sequences after bisulfite
conversion. The amounts of C and T at individual sites are converted into the amounts

of pyrophosphates released using the primer extension method, and their amounts are
accurately quantified bioluminometrically using the Pyrosequencer system (QIAGEN) (Fig.
8.2E). The advantages of pyrosequencing are its accurate quantitative results and ease of

daily procedure. However, design of suitable primers is difficult, depending upon the local
sequence, and an instrument specifically designed for this analysis is unavoidably necessary.

MassARRAY"®

MassARRAY" also detects methylation levels of individual CpG sites in a PCR product using
primers common to methylated and unmethylated sequences after bisulfite conversion.

In this technique, the PCR is performed with a reverse primer coupled with a T7 promoter
tag. The PCR product is transcribed in vitro using a single dNTP analog, which can be
substituted for its rNTP. The in vitro transcript is then cleaved by RNase A, which digests at
pyrimidine bases, in a base-specific manner (Fig. 8.2F). If dCTP was used during the in vitro
transcription, the RNase A will cleave at every uracil. A difference in the mass of product
with C and that with T (16 Da) is detected by matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry. MassARRAY" is a powerful technique to
quantitatively investigate DNA methylation statuses of multiple CpG sites in a large number
of samples, but has a disadvantage in the cost of the instrument.

TIPS FOR BISULFITE SEQUENCING

Bisulfite sequencing is capable of analyzing detailed DNA methylation patterns of individual
DNA molecules in given regions of the genome. It also provides quantitative information on
the ratio of methylated and unmethylated DNA molecules. At the same time, although this
technique is generally considered as technically simple, caution must be exercised to obtain
unbiased results.

PCR Conditions for Unbiased Amplification

It is well known that, depending upon PCR conditions, there can be a PCR bias that leads to
preferential amplification of either unmethylated or methylated DNA [13,14]. [n most cases,
unmethylated DNA is preferentially amplified, but methylated DNA can be preferentially
amplified with specific primers [13]. To avoid this PCR bias, a PCR condition that equally
amplifies fully methylated and fully unmethylated DNA controls should be established

by selecting an optimal primer set and an optimal annealing temperature (Fig. 8.3A) [14].
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FIGURE 8.3

Optimization of bisulfite sequencing. (A) Comparison of two primer sets for bisulfite sequencing. The influence of primers on
PCR efficiency was examined using fully methylated DNA (S) and fully unmethylated DNA (G). Primer A predominantly amplified
unmethylated DNA, whereas primer B equally amplified both methylated and unmethylated DNA. (B) Confirmation of unbiased
amplification. Methylated and unmethylated cytosines are shown by closed and open circles, respectively. The proportion of
methylated clones was 40%, indicating appropriate PCR conditions and unbiased amplification were achieved.

Fully methylated DNA can be prepared by treatment of DNA with SssI methylase (SssI), and
fully unmethylated DNA can be prepared by amplifying normal DNA with a GenomiPhi
DNA amplification kit (GenomiPhi). When accurate estimation of the ratio of methylated
and unmethylated DNA is necessary, control DNA containing an equal number of fully
methylated and unmethylated DNA molecules should be prepared by mixing such DNA, and
simultaneously analyzed to obtain a ratio of 40% to 60% (Fig. 8.3B).

PCR Cycles to Avoid Artifacts

Even if optimal PCR conditions are used, PCR cycles should be minimized as long as a
sufficient amount of a PCR product for cloning is obtained. Excessive PCR cycles cause
denaturation of the PCR product in the absence of Taq polymerase activity, and produce

the amplification of chimeric products and even PCR products that were not present in the
template DNA. Excessive PCR cycles also exaggerate the difference in PCR efficiency between
methylated and unmethylated DNA.

TIPS FOR MSP AND QUANTITATIVE MSP

MSP is flexible in selecting regions for analysis and can be performed with ease and at a
low cost. Real-time MSP provides accurate, sensitive, and quantitative assessment of DNA
methylation levels. Under good conditions, DNA methylation levels obtained by real-time
MSP have a variation =20% of the mean methylation level. To maximize these advantages,
there are some tips for conducting MSP and real-time MSP.

Primer Design

A genomic region should be carefully selected as in other analyses, and primers specific to
methylated or unmethylated DNA should be designed in the same region. The 3’ end of

a primer should be located at a polymorphic C/T site, and multiple CpG sites should be
located near the 3’ end (Fig. 8.4A). Difficulty in designing primers specific to unmethylated
DNA is frequently encountered, and use of the other DNA strand (bottom strand) is often
helpful.

PCR Conditions for Specific Amplification

The annealing temperature and magnesium concentration should be optimized using
the fully methylated and fully unmethylated DNA controls. A good condition for primers
specific to methylated DNA shows ample amplification of fully methylated DNA and no

Methylation
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Optimization of real-time PCR conditions. (A) Primer design for MSP and real-time MSP. Primers specific to methylated and
unmethylated DNA (M and U primers, respectively) should contain multiple CpG sites near and at their 3’ ends, and are desirably
located in the same region. (B) Optimization of the annealing temperature for MSP. For the M primer, annealing temperatures of 57
and 60°C did not amplify fully unmethylated DNA, but amplified fully methylated DNA with good efficiency. For the U primer, only
an annealing temperature of 57°C yielded specific and efficient amplification. (C) Optimization of the annealing temperature for
real-time MSP. The real-time PCR amplification curve showed high PCR efficiency under annealing temperatures of 54, 57, and
60°C. The melting curve showed a single peak, thus specific amplification, under annealing temperatures of 54, 57, and 60°C. If
multiple good annealing temperatures are available, a higher temperature is preferable for specificity. Optimal conditions in real-
time MSP are occasionally different from those in MSP even if the same primer set is used. (D) Real-time MSP using standard
DNA. Correlation using multiple standard DNA (R2) was >0.98, and PCR efficiency was >80%.
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amplification of fully unmethylated DNA (Fig. 8.4B). A good condition for primers specific
to unmethylated DNA amplifies fully unmethylated DNA, but not fully methylated DNA.

In the case of real-time MSP, the best conditions can be determined by the amplification
curve and the melting curve (Fig. 8.4C). The amplification curve under good conditions
shows a steep rise at an early PCR cycle, and a flat plateau. The melting curve under the best
PCR conditions shows a single sharp peak.

Preparation of Standard DNA

To quantify DNA methylation levels by real-time MSP, standard DNA with known numbers
of DNA molecules is necessary. This can be prepared in two ways. First, the PCR product can
be purified by a gel-filtration column to remove unused nucleotides and primers. Second, the
PCR product of MSP is cloned into a plasmid, and the plasmid is linearized by a restriction
enzyme. Since the molecular weight of the PCR product or the plasmid with the insert

can be calculated, the number of DNA molecules in a measured weight of solution can be
calculated. Preparation of standard DNA by cloning a PCR product has the advantage of
accuracy and availability of a large amount of standard DNA, but has the disadvantage of
being a complex procedure.

Quantity of Template DNA

Both MSP and real-time MSP can achieve high sensitivity, such as detecting one methylated
DNA molecule among 1000 molecules. However, substantial loss in the number of DNA
molecules that can serve as a PCR template takes place during bisulfite-mediated conversion.
Namely, although the weight of DNA decreases only slightly, the number of template DNA
molecules measured by quantitative PCR decreases down to 5 to 10% of DNA before the
treatment [15]. Therefore, caution must be exercised as to how many copies of template
DNA are present in a PCR solution. Supposing that one human haploid genome weighs
3.6 pg and that 10% of DNA molecules are recovered as a template for PCR after bisulfite-
mediated conversion, only 28 molecules are available for PCR of a single target sequence
in a DNA sample that originated from 1 ng of genomic DNA before bisulfite treatment. If
one wants to have a sensitivity of 1%, 1000 molecules (10 methylated molecules) in a PCR
solution will be necessary, and this corresponds to 36 ng DNA in a reaction.

EPILOGUE

Regional DNA methylation analysis is applied not only for basic research but also for
diagnostic purposes. Selecting an appropriate technique and conducting experiments under
good conditions are required to obtain reliable data. We hope that this chapter will help
investigators to select appropriate techniques.
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