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Effects of Gabapentin on Brain
Hyperactivity Related to Pain and Sleep
Disturbance Under a Neuropathic
Pain-Like State Using fMRI and Brain
Wave Analysis
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KEY WORDS

ABSTRACT Neuropathic pain is the most difficult pain to manage in the pain
clinic, and sleep problems are cornmon among patients with chronic pain including
neuropathic pain. In the present study, we tried to visualize the intensity of pain by
assessing neuronal activity and investigated sleep disturbance under a neuropathic
pain-like state in mice using functional magnetic resonance imaging (fMRI) and elec-
troencephalogram (EEG)/electromyogram (EMG), respectively. Furthermore, we inves-
tigated the effect of gabapentin (GBP) on these phenomena. In a model of neuropathic
pain, sciatic nerve ligation caused a marked decrease in the latency of paw withdrawal
in response to a thermal stimulus only on the ipsilateral side. Under this condition,
fMRI showed that sciatic nerve ligation produced a significant increase in the blood
oxygenation level-dependent (BOLD) signal intensity in the pain matrix, which was
significantly decreased 2 h after the i.p. injection of GBP. Based on the results of an
EEG/EMG analysis, sciatic nerve-ligated animals showed a statistically significant
increase in wakefulness and a decrease in nonrapid eye movement (NREM) sleep dur-
ing the light phase, and the sleep disturbance was almost completely alleviated by a
higher dose of GBP in nerve-ligated mice. These findings suggest that neuropathic
pain associated with sleep disturbance can be objectively assessed by fMRI and EEG/
EMG analysis in animal models. Furthermore, GBP may improve the quality of sleep
as well as control pain in patients with neuropathic pain. Synapse 65:668-676,
2011. o2010 Wiley-Liss, Inc.

neuropathic pain; fMRI; EEG; gabapentin; chronic pain

INTRODUCTION

Neuropathic pain can be defined as pain resulting
from lesions or diseases of the sensory transmission
pathways in the peripheral or central nervous system,
and is characterized by pain and sensory abnormalities
in body areas that have lost their normal sensory
innervation (Troels and Nanna, 2009). It is caused by
dysfunctions in the peripheral or central nervous
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EFFECTS OF GABAPENTIN ON NEUROPATHIC PAIN

system without peripheral nociceptive stimulation.
Many common diseases, such as postherpetic neural-
gia, trigeminal neuralgia, diabetic neuropathy, spinal
cord injury, cancer, stroke, and degenerative neurologi-
cal diseases, may produce neuropathic pain. Multiple
mechanisms, including changes in the peripheral nerv-
ous system, spinal cord, brainstem or brain, may con-
tribute to neuropathic pain (Ro and Chang, 2005). To
date, several animal models of chronic pain have been
created to investigate the mechanisms that underlie
the development of neuropathic pain (Beiche et al,
1998; Goppelt-Struebe and Beiche, 1997). Based on
previous studies with these animal models, it has long
been considered that cellular and molecular events
within the spinal cord and/or dorsal root ganglia (DRG)
play important roles in neuropathic pain.

In a clinical setting, it is important to first assess
the intensity of pain felt by patients to understand
the cause of their pain and judge the effect of any
treatment. However, it is very difficult to assess the
intensity of pain because pain is essentially a subjec-
tive experience. Recently, while it has been shown
that pain can be assessed more objectively with the
use of Pain Vision™ (NIPRO CO Ltd., Osaka, Japan),
which judges the intensity of pain by a low electric
current, the degree of pain is typically assessed sub-
jectively through the use of various approaches,
including the visual analog scale (VAS), numerical
rating scale (NRS), verbal rating scale, and face scale.
Therefore, a method is urgently needed to realize the
objective assessment of the intensity of pain.

The nociceptive signals to the central nervous system
are transmitted primarily by small myelinated (A8) and
unmyelinated (C) sensory afferent fibers to the substan-
tia gelatinosa in the dorsal horn, with further rostral
spread to the ventral-posterior nucleus of the thalamus
(Craig, 1996; Han et al., 1998). Furthermore, nocicep-
tive information is transmitted by a neuronal pathway
projecting from the thalamus to the so-called pain ma-
trix, which includes the somatosensory cortex (S1) and
cingulate cortex (CG). While neuropathic pain may
result from hypersensitivity because of the alteration of
these primary afferent neurons and/or spinal dorsal

Abbreviations

BOLD blood oxygenation level-dependent
CG cingulate cortex

DRG dorsal root ganglia

EEG electroencephalogram

EMG electromyogram

EPI echo planar imaging technique
fMRI functional magnetic resonance imaging
GBP gabapentin

ITH lateral thalamic region

mTH medial thalamic region

NREM nonrapid eye movement

NRS numerical rating scale

PMPS postmastectomy pain syndrome
PTPS postthoracotomy pain syndrome
REM rapid eye movement

ROI Regions of interest

VAS visual analog scale.
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horn neurons following nerve injury (Ji and Woolf,
2001), there have been few reports on the hypersensitiv-
ity of sensory neurons following nerve injury that would
lead to the direct activation of ascending pain transmis-
sion in animal models. Interestingly, functional mag-
netic resonance imaging (fMRI) can be used to objec-
tively evaluate pain perception in the central nervous
system in healthy subjects and in those with various
kinds of pain (Honore et al., 2000; Zhang et al., 2004).
Noxious heat stimulation in humans or repetitive heat
stimulation through peltier elements in animals has
been shown to activate several brain regions (Becerra
et al., 1999; Wise et al., 2002, 2004). Recently, it has
been demonstrated that neurcimaging in humans and
animals can be used to detect changes in regional acti-
vation initiated by noxious stimulation or the adminis-
tration of drugs that modulate pain (Honey et al., 2008;
Leslie and James, 2000; Shih et al., 2008), which shows
that fMRI is useful for objectively investigating the
mechanism of neuropathic pain related to the activation
of ascending pain pathways in animal models.

Patients with chronic pain also commonly experi-
ence sleep disturbance (Atkinson et al., 1988; Morin
et al., 1998; O’Brien et al.,, 2010; Pilowsky et al,,
1985), and the treatment of such sleep disturbance
may be beneficial in these patients (O’Brien et al.,
2010). It has been reported that sleep problems and
daytime sleepiness are common among opioid-treated
primary care patients with chronic pain and seem to
be related mainly to depression and the severity of
pain (Zgierska et al., 2007). Therefore, in the present
study, we tried to visualize the intensity of pain by
assessing neuronal activity under a neuropathic pain-
like state in mice using the fMRI assay and investigated
sleep disturbance by using electroencephalogram
(EEG)electromyogram (EMG) recording. Furthermore,
we evaluated the effect of gabapentin (GBP) on pain-
related brain hyperactivation and its relation to sleep
disturbance using both of these techniques.

MATERIALS AND METHODS
Animals

The present study was conducted in accordance
with the Guiding Principles for the Care and Use of
Laboratory Animals, Hoshi University, as adopted by
the Committee on Animal Research of Hoshi Univer-
sity, which is accredited by the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
This study was approved by the Animal Research
Committee of Hoshi University. C57BL/6J mice
(weighing 18-23 g, 260 males) (CLEA Japan, Inc., To-
kyo, Japan) were used for this study. Animals were
kept in a room with an ambient temperature of 23°C
+ 1°C and a 12-h light-dark cycle (lights on 8:00 a.m.
to 8:00 p.m.). Food and water were available ad [ibi-
tum during the experimental period. At the end of
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the experiments, animals were humanely killed by a
rising concentration of ethyl ether.

Neuropathic pain model

We produced a partial sciatic nerve injury by tying
a tight ligature with a 8-0 silk suture around approxi-
mately one-third to one-half the diameter of the sci-
atic nerve on the right side (ipsilateral side) under a
light microscope (SD30, Olympus, Tokyo, Japan) as
described previously. In sham-operated animals, the
nerve was exposed without ligation.

Measurement of thermal thresholds

Thermal and tactile thresholds were performed fol-
lowing the methods described previously. To assess
the sensitivity to thermal stimulation, the right plan-
tar surface of mice was tested individually using a
well-focused radiant heat light source (model 33 Anal-
gesia Meter; IITC/Life Science Instruments, Wood-
land Hills, CA). The intensity of the thermal stimulus
was adjusted to achieve an average baseline paw-
withdrawal latency of ~8-10 s in naive mice. The
paw-withdrawal latency was determined as the aver-
age of three measurements per paw. Only quick hind
paw movements (with or without licking of hind
paws) away from the stimulus were considered to be
a withdrawal response. Paw movements associated
with locomotion or weight-shifting were not counted
as a response. The paws were measured alternating
between left and right with an interval of more than
3 min between measurements. Before the behavioral
responses to the thermal stimulus were tested, mice
were habituated for at least 30 min in a clear acrylic
cylinder (15 em high and 8 ¢cm in diameter). Under
these conditions, the latency of paw withdrawal in
response to the thermal stimulus was tested. The
data represent the average value for the paw with-
drawal latency of the right hind paw.

Mild noxious heat stimulation

Contact heat stimulation was applied using a cus-
tom-made, computer-controlled peltier heating and
cooling device. Peltier elements with a surface area of
8.3 X 8.3 mm? were fixed at the right hindpaw. Start-
ing at a baseline of 34°C, a stimulation temperature
of 43°C—46°C was reached after 18 s at 0.67°C/s. The
stimulation temperature plateau was held for 20 s.
Over the subsequent 22 s, the temperature was
dropped linearly back to the baseline.

Functional magnetic resonance imaging (FMRI)

Experiments were performed with a Unity Inova
spectrometer (Varian, Palo Alto, CA), which was
interfaced to a 9.4-T/31-cm horizontal bore magnet
equipped with actively shielded gradients capable of
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300 mT/m in a risetime of 500 s (Magnex Scientific,
Abingdon, UK). During the measurements, mice were
slightly anesthetized with isoflurane (0.5%—1%). Mice
were then transferred to a cradle designed to fit
inside the probe of the MR system. A continuous
fMRI scanning protocol was used to study changes in
brain signal intensity using T2-weighted blood oxy-
genation level-dependent (BOLD) contrast.

A functional series was acquired using the Echo
Planar Imaging Technique (EPI: matrix = 64 X 64,
TR = 2000 ms, TE = 35 ms, 2 acquisitions, slice
thickness = 1 mm, field of view = 25.6 X 25.6 mm?2).
Anatomical scans with high spatial resolution were
collected using a fast spin echo pulse sequence (ma-
trix = 256 X 256, TR = 2000 ms, TE = 45 ms, slice
thickness = 1 mm, field of view = 25.6 X 25.6 mm?).

Sciatic nerve-ligated mice were lightly anesthetized
with 0.756% of isofturane at 7 days after surgery, and
heat stimuli were applied to the right hindpaw. Like-
wise, to investigate the effect of a single intraperito-
neal (i.p.) treatment with GBP, mice were lightly
anesthetized with 0.75% isoflurane at 2 h after i.p.
injection of GBP (60 mg/kg/mouse), and heat stimuli
were applied to the right hindpaw.

Data analysis was carried out using FEAT (http:/
www.fmrib.ox.ac.uk) software packages. Z (Gaussian-
ised T/F) statistic images were set up on the condition
of Z > 2.3, with clusters with a significance threshold
of P = 0.05. Regions of interest (ROI) were manually
selected and statistical analyses were performed
using ImageJ image-analysis software. ROl were
drawn according to an atlas of the mouse brain. The
BOLD signal intensity values in each ROI were
extracted and normalized to the time of baseline
(expressed as a percent change from baseline).

Electroencephalogram and electromyogram
recordings

Under 3% isoflurane anesthesia, mice were
implanted with electroencephalogram (EEG) and elec-
tromyogram (EMG) electrodes for polysomnographic
recordings (Pinnacle Technology, Inc., KS). Briefly, to
monitor EEG signals, two stainless-steel EEG record-
ing screws were positioned 1 mm anterior to the
bregma or lambda, both 1.5 mm lateral to the mid-
line. EMG activity was monitored by stainless steel,
teflon-coated wires placed bilaterally into both trape-
zius muscles. Sleep-wake states were then monitored
for a period of 24 h, encompassing both the baseline
and the experimental day. The EEG/EMG signals
were amplified, filtered (EEG, 0.5-30 Hz; EMG, 20-
200 Hz), digitized at a sampling rate of 128 Hz, and
recorded by using SLEEPSIGN software (Kissei Com-
tec, Nagano, Japan). Vigilance was automatically
classified off-line by 4-s epochs into three stages, i.e.,
wakefulness, rapid eye movement (REM), and non-
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REM (NREM) sleep, by SLEEPSIGN according to the
standard criteria. As a final step, defined sleep-wake
stages were examined visually and corrected, if neces-
sary. For each epoch, the EEG power density in the
delta (0.75—4.0 Hz) and theta bands (6.25-9.0 Hz) and
the integrated EMG value were displayed on a PC
monitor. Three vigilance states—(1) waking (high
EMG and low EEG amplitude and high theta activity
concomitant with highest EMG values), (2) NREM
sleep (low EMG and high EEG amplitude, high delta
activity), and (3) REM sleep (low EMG and low EEG
amplitude, high theta activity)—were determined for
4-s epochs and the scores were entered into a PC via
a keyboard. EEG and EMG activities were monitored
for 24 h at 7 days after sciatic nerve ligation. Record-
ings were started from 8:00 p.m. Saline or GBP was
injected three times at 8:00 p.m. (saline or 60 mg/kg
of GBP), 2:00 a.m. (saline or 60 mg/kg of GBP), and
8:00 a.m. (saline or 300 mg/kg of GBP).

Drugs
The drug used in this study was gabapentin (GBP:
Sigma-Aldrich Co.). GBP was dissolved in 0.9% sterile
physiological saline.

Statistical analysis
Data are expressed as the mean with SEM. The
statistical significant of differences between the
groups was assessed with one-way or two-way
ANOVA following by the Bonferoni multiple compari-
sons test. All statistical analyses were performed with
Prism version 5.0a (GraphPad Software, Inc., CA).

RESULTS
Thermal hyperalgesia induced by sciatic nerve
ligation in mice

Sciatic nerve ligation caused a marked decrease in
the latency of paw withdrawal in response to a ther-
mal stimulus only on the ipsilateral side (Fig;7) =
17.11, P < 0.001 vs. nerve-ligated mice with saline,
Fig. 1). Such a persistent painful state caused by par-
tial ligation of the sciatic nerve was suppressed by
GBP (F(217) = 17.11, P < 0.001 vs. nerve-ligated mice
with saline). Under the present condition, GBP at the
dose used did not show the acute antinociceptive
effect in sham-operated mice (data not shown).

Changes in BOLD signal intensity under a
neuropathic pain-like state using fMRI
We investigated the changes in BOLD signal inten-
sity in sciatic nerve-ligated mice under 0.5%—1% iso-
flurane anesthesia using fMRI, BOLD signal intensity
correlates with neuronal activity in pain. Sciatic
nerve ligation produced a significant increase in
BOLD signal intensity in the medial thalamic region
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Fig. 1. Effect of gabapentin (GBP) on thermal hyperalgesia
induced by nerve ligation in mice. Groups of mice were injected
with GBP (60 mg/kg, i.p.) or saline at 7 days after sciatic nerve liga-
tion or sham operation. Thermal hyperalgesia was measured 1 h af-
ter a single i.p. injection of GBP or saline treatment. One-way
ANOVA was performed, followed by bonferroni testing. Each point
represents the mean + SEM of six to eight mice. ***P < 0.001 vs.
sham with saline, #P < 0.01 vs. nerve ligation with saline.

(mTH, F(l,l2) = 9.493, P < 0.01), lateral thalamic
region (ITH, F3,15 = 4.993, P < 0.05), cingulate cor-
tex (CG, F1,12) = 15.20, P < 0.01), and somatosensory
cortex (S1, Fy 12 = 50.27, P < 0.001) compared to the
sham operation (Fig. 2).

Changes in the analgesic effect of GBP under a
neuropathic pain-like state using fMRI

Two hours after the i.p. injection of GBP in the sci-
atic nerve ligation groups, BOLD signal intensity was
significantly decreased in the mTH (F(y ;2, = 9.493, P <
0.01), ITH, (F(1,12) = 4993, P < 0.05), CG (1'1(1.12) =
152, P < 0.01), and S1 (F(I,IZ) = 50.27, P < 0.001) com-
pared to that with the injection of saline (Fig. 2B).

Changes in vigilance under a neuropathic
pain-like state using EEG/EMG
Using this experimental model for neuropathic
pain, we next investigated the changes in sleep pat-
terns in sciatic nerve-ligated mice. Cerebral cortical
activity and postural muscle tone, monitored by EEG/
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Fig. 2. Effect of gabapentin (GBP) on the increase in BOLD sig-
nal intensity induced by sciatic nerve ligation. A: BOLD signal inten-
sity in the cingulate cortex (CG), somatosensory cortex (S1), and tha-
lamic region (TH) was measured 60 min (CG), 80 min (S1), or 100 min
(TH), respectively, after a single i.p. injection of GBP (60 mg/kg) or sa-
line in sham-operated or sciatic nerve-ligated mice. GBP or saline
was injected at 7 days after sciatic nerve ligaion or sham operation. B:

EMG, are useful for discriminating sleep/wake abnor-
malities. Vigilance was classified offline into three
stages: wakefulness, rapid eye movement (REM)
sleep, and non-REM (NREM) sleep. Sciatic nerve liga-
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BOLD signal intensity is expressed as percentages of the correspond-
ing baseline levels with mean + SEM for five mice. (B-i): CG, (B-ii)
S1, and (B-iii) medial thalamic region (mTH); (B-i.v) lateral thalamic
region (ITH). Two-way ANOVA was performed followed by bonferroni
testing. Each bar represents the mean +~ SEM of five mice. * P < 0.05,
** P < 0.01, *** P < 0.001 vs. sham-operated mice with saline, **P <
0.01, "™P < 0.001 vs. nerve-ligated mice with saline.

tion groups showed a statistically significant increase
in wakefulness (F(; 4, 17.565, P < 0.05 vs. sham
operated mice with saline) and a decrease in NREM
sleep (F(; 4y = 23.24, P < 0.01 vs. sham-operated mice
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Fig. 3. Changes in sleep vigilance related to hypnotic effects of
GBP under a neuropathic pain-like state as determined by EEG/
EMG recordings. Sleep-wake states following saline or GBP injec-
tion at 7 days after sciatic nerve ligation. Saline or GBP was
injected three times at 8:00 p.m. (saline or 60 mg/kg of GBP), 2:00
a.m. (saline or 60 mg/kg of GBP), and 8:00 a.m. (saline or 300 mg/
kg of GBP). Total time spent in the wakefulness stage [in the light

with saline) during the light phase (Fig. 3A). REM
sleep during the light phase was not affected by sci-
atic nerve ligation. On the other hand, there was no
significant difference in the sleep conditions during
the dark phase between the two groups (Fig. 3B).

Changes in the hypnotic effects of GBP under
a neuropathic pain-like state using EEG/EMG
recording

To confirm the changes in the hypnotic effects of
GBP under a neuropathic pain-like state, we per-
formed EEG/EMG recording. The increased wakeful-
ness and decreased NREM during the light phase were
significantly attenuated by i.p. injection of GBP in
nerve-ligated mice compared to those in sham-operated
mice (wakefulness: F(; 4) = 17.55, P < 0.05 vs. nerve-
hgated mice with saline, NREM: F(1_4) = 23.24, P <
0.01 vs. nerve-ligated mice with saline, Fig. 3).

DISCUSSION

Since cortical areas are activated by receiving nox-
ious information through the spinothalamic tract, neu-
roimaging studies may be able to reveal their activities
by demonstrating brain circuitry (Borsook et al., 2007;
Jones et al., 1991; Talbot et al., 1991). These cortical

Saline GBP 60 mg/kg x2

Saline  GBP60mghgx2

phase (A-i) and dark phase (B-i)), REM sleep stage [in the light
phase (A-ii) and dark phase (B-ii)], and NREM sleep stage [in the
light phase (A-iii) and in dark phase (B-iii)] was determined by
EEG/EMG recording. Two-way ANOVA was performed followed by
bonferroni testing. Each bar represents the mean * SEM of five
mice. **P < 0.01 vs. sham operation with saline, #P < 0.01 vs.
nerve ligation with saline.

representations of pain are called the pain matrix,
which includes the S1, CG, and prefrontal cortex
(Treede et al., 1999). Among these areas, the CG area
is an affective-motivational component of pain and
mainly receives information from the medial system of
the spinothalamic tract (Melzack, 1999; Rorden and
Karnath, 2004). On the other hand, the S1 area is a
sensory-discriminative component of pain and mainly
receives information from the lateral system of the spi-
nothalamic tract. The mTH and ITH are also catego-
rized as centers for pain perception and relay sensory
information to those cortical areas. In the present
fMRI study, we investigated the changes in BOLD sig-
nal intensity in several brain regions following the
application of heat stimuli with the use of peltier ele-
ments tightly attached to the right hindpaws of nerve-
ligated mice. Sciatic nerve-ligated mice with mild nox-
ious stimulation under anesthesia exhibited a signifi-
cant increase in the BOLD signal in the mTH, 1TH,
CG, and S1. Therefore, we propose here that “pain”
may be memorized in the brain during an operation if
analgesic drugs are not used, which results in the de-
velopment of neuropathic pain in some cases. In fact,
postthoracotomy pain syndrome (PTPS) (Hazelrigg
et al., 2002; Karmakar and Ho, 2004; Koehler and
Keenan, 2006) and postmastectomy pain syndrome
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(PMPS) (Couceiro et al., 2009; Ramesh et al., 2009;
Vecht et al.,, 1989) have been classified as neuropathic
pain. Koehler et al. reported that PTPS brings psycho-
logical distress to the patient, and also has detrimental
effects on pulmonary function and postoperative mobil-
ity, leading to increased morbidity. Therefore, aggres-
sive perioperative and postoperative pain management
is best achieved through the use of an epidural anes-
thetic and by covering breakthrough pain with an i.v.-
PCA (Koehler and Keenan, 2006). Karmakar et al.
reported that an aggressive multimodal perioperative
pain management regimen should be commenced
before the surgical incision to prevent PTPS. In PMPS,
one of the most well-established risk factors for the de-
velopment of phantom breast pain and other related
neuropathic pain syndromes is severe acute postopera-
tive pain, indicating that the relief of severe acute pain
may reduce the risk of chronic pain (Ramesh et al.,
2009). Therefore, it seems likely that aggressive multi-
modal perioperative pain management with analgesics
is indispensable for preventing the development of
chronic pain related to invasive surgery, regardless of
whether or not patients are conscious.

GBP is a novel analgesic drug, which was originally
developed as an anticonvulsant (Governo et al., 2008).
GBP has little effect in models of acute nociception (Eck-
hardt et al., 2000; Hunter et al., 1997; Jun and Yaksh,
1998; Stanfa et al., 1997), but significantly attenuates
hyperalgesia (Jones and Sorkin, 1998; Jun and Yaksh,
1998) and allodynia (Hwang and Yaksh, 1997) in neuro-
pathic pain models (Chapman et al., 1998; Coderre
et al., 2007; Field et al., 2000; Fox et al., 2003; Joshi
et al., 2006; Ling et al., 2007; Lynch et al., 2004; Xiao
et al.,, 2007). In the clinical setting, GBP is used to
relieve many chronic pain states, including neuropathic
pain (Attal et al., 2006; Backonja et al., 1998; Hempen-
stall et al., 2005; Iannetti et al., 2005; Rice and Maton,
2001; Rowbotham et al., 1998). GBP binds to the auxil-
iary agd subunit of voltage-sensitive calcium channels
(Dooley et al., 2007; Gee et al., 1996). Although other
mechanisms have also been proposed (Chizh et al.,
2000; Shimoyama et al., 2000), apd subunits are likely
to be important sites of action that underlie the analge-
sic effects of GBP (Governo et al., 2008). In the present
study, increased BOLD signal intensity was almost
absent in brain regions related to pain, including the
mTH, ITH, CG, and S1 after i.p. injection of GBP in sci-
atic nerve-ligated mice, indicating that GBP almost
completely suppressed the transmission of pain signals
to their related regions after nerve injury.

Since GBP almost completely suppressed the trans-
mission of pain signals to the CG area, which is
related to an affective-motivational component of
pain, we next investigated the effect of GBP on sleep
disorder under a neuropathic pain-like state. Several
clinical reports on chronic pain of various etiologies
have shown that it significantly interferes with sleep
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(Atkinson et al., 1988; Galer et al., 2000a,b; Hay-
thornthwaite et al., 1991; Moffitt et al., 1991; Morin
et al., 1998; Nicholson and Verma, 2004; O'Brien
et al, 2010; Pilowsky et al., 1985; Zgierska et al.,
2007). In the present study, we demonstrated that
wakefulness and NREM sleep are equally disturbed
in sciatic nerve-ligated mice. It was previously
reported that constriction of the sciatic nerve induced
poor sleep quality with disrupted sleep in rats, partic-
ularly during the first week of that condition. In the
present study, sleep dysregulation was observed 7
days after sciatic nerve ligation in mice. Under the
present condition, a higher dose of i.p. GBP clearly
improved such sleep disturbance during the light
phase (“sleep period” for mice) in nerve-ligated mice.
In contrast, the i.p. administration of GBP did not
affect the sleep pattern during the dark phase
(“waking period” for mice). Taken together, the pres-
ent results indicate that treatment with adequate
doses of GBP through the “waking-sleep” cycle is an
effective method for patients to control pain and
improve sleeping disturbance without affecting their
daily life under a neuropathic pain-like state.

In conclusion, we successfully visualized the inten-
sity of neuropathic pain in an animal model using
fMRI in this study. Even if mice were under isoflur-
ane anesthesia, sciatic nerve ligation along with the
application of thermal noxious stimuli caused a signif-
icant increase in BOLD signal in brain regions
related to pain. The increased BOLD signal intensity
was dramatically decreased in the pain-matrix brain
area of sciatic nerve-ligated mice after i.p. injection of
GBP. In the EEG/EMG recording, increased wakeful-
ness and decreased NREM sleep were clearly
observed following sciatic nerve ligation. This sleep
disturbance was also completely restored to the nor-
mal sleep condition by a relatively higher dose of
GBP. These findings provide evidence that GBP is
useful for improving the quality of sleep and for con-
trolling pain in patients with neuropathic pain.
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Phase II Study on Control of Cancer Pain by HFT-290

— Dose-Conversion Confirmatory Study —
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A multicenter study was performed to confirm the appropriateness of the dose conversion ratio for switching
to HFT-290, which was established based on a new conversion ratio (morphine : fentanyl =100 : 1). The subjects
were patients whose cancer pain was controlled by morphine preparations or oxycodone hydrochloride hydrate
sustained-release tablets. HFT-290 was applied at the same dose once daily for 7 days, and the difference in the
severity of pain at rest (change of the VAS pain score) between the time of enrollment and final removal of HFT-
290 (discontinuation) was evaluated as the primary end-point.

Of 68 patients who consented to participation in this study, 66 were enrolled. Among them, 65 patients
(morphine group : 29, oxycodone group : 36) and 42 patients (morphine group : 19, oxycodone group : 23) were
classified as the FAS and PPS, respectively.

In the FAS, the 95% confidence interval for the percent change of the VAS pain score was —34 to 4.6 mm.
Because the upper and lower limit values of the 95% confidence interval were both 15 mm or less, the
appropriateness of the dose conversion ratio was confirmed. Similar results were obtained in the groups
receiving morphine or oxycodone as the prior opioid anaigesics. The VAS pain score remained stable before and
after switching in both groups, i.e., satisfactory pain control was maintained. The dose conversion ratio for HFT-
290 was considered to be appropriate from both morphine preparations and oxycodone hydrochloride hydrate
sustained-release tablets.

Adverse drug reactions caused by HFT-290 similar to those due to conventional transdermal preparations of
fentanyl, and none of them had any clinical implications.

These results suggest that the new conversion ratio for switching to HFT-290 from morphine preparations or
oxycodone hydrochioride hydrate sustained-release tablets to HFT-290 is appropriate, so that pain will also be
controlied satisfactorily after switching.

Key words : HFT-290 ; fentanyl citrate ; cancer pain ; conversion ratio ; transdermal patch
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