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Figure 1. A, 2-dimensional display of all (>53,000) the MS peaks with m/z values along the x-axis and RT of LC along the y-axis. The peaks are displayed with a
bin size of 1.0 m/z. The 140 MS peaks whose mean intensity of duplicates that distinguished pancreatic cancer patients from healthy controls with AUC values
of greater than 0.800 are highlighted in red. B, CXCL7-derived MS peak (ID 54, at 863 m/z and 50.2 minutes) in representative patients from the cancer

and control groups. C, CXCL7-derived MS peak (ID 54) in 45 duplicate LC-MS runs [patients with pancreatic cancer (red) and healthy controls (blue)] aligned
along the RT of LC. Columns represent the mean intensity of duplicates (bottom). D, detection of CXCL7 and complement C3b- (loading control) by Western

blotting. Multiple bands for CXCL7 indicate the presence of proteolytic products.

25.11%, 25.73%, and 29.16%, respectively. Although the
rates were seemingly low, the HFM treatment was highly
reproducible with a CV of 0.081 and the amount of 2-
microglobulin relative to total protein was increased 150
to 200-fold after HFM treatment.

To identify a diagnostic biomarker for pancreatic can-
cer, we compared the plasma LMW proteome between 24
patients with pancreatic cancer and 21 healthy controls
(training cohort) using 2DICAL. Among a total of 53,009
independent MS peaks detected within the range 250 to
1,600 m/z and within a time range of 20 to 70 minutes, we
found that 140 peaks had discriminatory ability with
a AUC of above 0.800. Figure 1A is a representative
2-dimensional view of all the MS peaks displayed with
m/z along the x-axis and the retention time (RT) of LC
along the y-axis.

Twenty-five MS/MS spectra acquired from those 140
peaks were recurrently matched to 10 proteins in the
database with a Mascot score of greater than 30 (Supple-
mentary Table S1). Notably, one MS peak (ID 54) matched
the amino acid sequence of the CXCL7 gene product
(Swiss-Prot_P02775) with the highest score of 99.6 (Sup-
plementary Fig. S2). Figure 1B shows the CXCL7-derived
MS peak (ID 54, at 863 m/z and 50.2 minutes) that
appeared in a representative pancreatic cancer patient
and a healthy individual. Figure 1C demonstrates the
distribution of the MS peak (ID 54) in patients with
pancreatic cancer (red) and healthy controls (blue) in
the training cohort (AUC = 0.839; P = 4.54 x 1075
Mann-Whitney U test). The differential expression and
identification of CXCL7 was confirmed by immunoblot-
ting (Fig. 1D).
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Validation of reduced CXCL7 in pancreatic cancer
patients

Thelevel of plasma CXCL7 was quantified in 12 patients
with pancreatic cancer and 12 healthy individuals in the
training cohort using multiplex assay. Consistent with
2DICAL, CXCL7 was found to be significantly decreased
in patients with pancreatic cancer (mean =+ SD, 744 4 182
ng/mL) in comparison with healthy controls (1,355 & 386
ng/mL; P = 0.0003). To further verify and validate the
reduction of plasma CXCL? in pancreatic cancer patients,
280 plasma samples [including 43 samples from the train-
ing cohort and new 237 samples (validation cohort)] were
randomly plotted into a reverse-phase protein microarray
and blotted with anti-PBP antibody (Fig. 2). Two samples
from healthy controls in the training cohort were excluded
due to an insufficient sample volume. Quadruplicate
spots for representative cases and controls with high
and low levels of CXCL7 are shown in the right panels
of Figure 2.

The results of reverse-phase protein microarray were
well correlated with those of multiplex assay (Pearson’s r
= 0.65; P = 0.0006; Supplementary Fig. S3). Microarray
analysis also showed a significant reduction of the
plasma CXCL? level in the pancreatic cancer patients
of the training cohort (P = 5.96 x 107> Welch's ¢ test;
Fig. 3A and Table 1) with an AUC value of 0.872 (95% CI:
0.732-0.951; Fig. 3B). The reduction of plasma CXCL7 was
further validated in a larger independent cohort (valida-
tion cohort; P = 1.40 x 107'%; Fig. 3C and AUC value of
0.850, 95% CI: 0.792-0.895; Fig. 3B). Because there was a
difference in age distribution between the cancer patients
and healthy controls of the validation cohort (Table 1), we
performed a subgroup analysis of 79 pancreatic cancer
patients (median age, 61) and 20 healthy controls (median
age, 60) aged 50 to 70 years. The reduction of plasma
CXCLY7 in patients with pancreatic cancer was statistically
significant even in this subgroup (P = 0.0001), indicating
that the decrease of the CXCL7 level was not merely due
to the difference of age distribution between the pancrea-
tic cancer patients and controls.

CXCL7 was significantly reduced in patients with any
stage of pancreatic cancer (Table 2), including those with
stage I (<0.001) and II (<0.001) disease. The significant
alteration evident in early-stage patients indicated that
the reduction of plasma CXCL7 is an early event in
pancreatic carcinogenesis and may precede the develop-
ment of cancer. The persistent presence of inflammation
is known to promote carcinogenesis in various organs,
and chronic pancreatitis is suspected to be one a pre-
cancerous condition for pancreatic cancer, although opi-
nions on this issue vary. We measured the plasma level of
CXCL7 in a small number of patients diagnosed as having
chronic pancreatitis (n = 10) using the reverse-phase
protein microarray (Table 1). The CXCL7 levels in
patients with chronic pancreatitis were significantly
lower than those in healthy controls (P = 0.0002), but
slightly higher than those in patients with pancreatic
cancer (P = 0.095; Fig. 3Q).

Complementation of CA19-9 by CXCL?7

CA19-9 is an established biomarker that has long been
used for the diagnosis of pancreatic cancer. We found that
the levels of CXCL7 and CA19-9 were not mutually
correlated (Pearson’s r = 0.289) and that combination
with CXCL7 significantly improved the ability of
CA19-9 to distinguish patients with pancreatic cancer
from healthy controls: the AUC value improved to
0.965 (95% CI: 0.865-0.994) in the training cohort (P =
0.026) and to 0.961 (0.932-0.979) in the validation cohort
(P = 0.002; Fig. 3D). The AUC values of CA19-9 in the 2
cohorts (Fig. 3D) were comparable with those reported
previously (29-31).

Even among individuals with normal levels of CA19-9
(<37 U/mL; a cutoff value widely used in clinical prac-
tice), CXCL7 was significantly reduced in pancreatic
cancer patients in both the training [P = 0.014 and
AUC = 0.853 (95% CI: 0.650-0.957; Fig. 4A and B)] and
validation [P < 0.0001 and AUC = 0.834 (95% CI: 0.747-
0.899; Fig. 4B and C)] cohorts.

Because of the low prevalence of pancreatic cancer, any
screening biomarker must have high specificity (32). The
sensitivity /specificity of CA19-9 (cutoff: 37 U/mL) were
79%/89% in the training cohort and 79%/95% in the
validation cohort, consistent with previous reports (32).
If we defined the cutoff for CXCL7 as a level at which 95%
of healthy individuals would be excluded, 83% of pan-
creatic cancer patients in the training cohort and 84% in
the validation cohort would be detected using the com-
bination of CXCL7 and CA19-9 (Supplementary
Table S2).

Discussion

Early detection and subsequent radical surgical resec-
tion would most likely provide a chance of cure for
patients with pancreatic cancer (7). However, patients
with early-stage pancreatic cancer are generally asymp-
tomatic and have little opportunity to undergo imaging
and/or other diagnostic procedures until their disease
becomes advanced. If a sensitive, but minimally invasive
and cost-effective, plasma/serum test were available, it
would be effective for alerting patients with early pan-
creatic cancer and offer them a chance to receive prompt
and effective medical attention. In the present study, we
compared the plasma LMW proteome between patients
with pancreatic cancer and healthy controls using a new
proteome platform, 2DICAL (Fig. 1), and found a sig-
nificant decrease of the plasma CXCL7 level in patients
with pancreatic cancer (Fig. 1B and C). The result of
quantitative LC-MS was then verified using 3 different
methods: immunoblotting (Fig. 1D), multiplex, and
reverse-phase protein microarray (Figs. 2 and 3) assays.
We further validated the significant decrease of CXCL7 in
a larger independent cohort (validation cohort). The level
of plasma CXCL7 was confirmed to be decreased repro-
ducibly in patients with pancreatic cancer including those
with Stage I and II disease (Table 2). CXCL7 did not

www.aacrjournals.org

39

Cancer Epidemiol Biomarkers Prev; 20(1) January 2011

Downloaded from cebp.aacrjournals.org on May 12, 2011
Copyright © 2011 American Association for Cancer Research

165



Published OnlineFirst December 8, 2010; DOI:10.1158/1055-9965.EPI-10-0397

Matsubara et al.
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Figure 2. Image of a representative reverse-phase protein microarray slide stained with anti-PBP antibody (left). Samples were randomly assigned, and
quadruplicate spots from representative patients with high and low levels of CXCL7 were extracted (right).

surpass the sensitivity of CA19-9, but was able to supple- In addition to 2DICAL, we utilized 2 state-of-the-art
ment it. Combination with CXCL?7 significantly improved proteome technologies. The proteome analysis of
the sensitivity of CA19-9 (Fig. 3D and Supplementary plasma/serum samples has been hampered by the pro-
Table S2). minence of a handful of abundant proteins such as
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Table 2. Plasma CXCL7 level according to clinical stage of pancreatic cancer

Pancreatic cancer patients

Healthy controls

Stage | Stage Il Stage Il Stage IV

Training cohort
No. of cases 1 6 4 13 19°
CXCL7®, mean (SD) 3.67 (-) 3.93 (0.24) 3.75 (0.17) 3.82 (0.33) 4.14 (0.18)
P {vs. healthy controls) 0.01 0.01 <0.001 <0.001

Validation cohort
No. of cases 5 25 40 70 87
CXCL7%, mean (SD) 3.89 (0.34) 3.96 (0.25) 4.02 (0.18) 3.86 (0.32) 4.18 (0.14)
P (vs. healthy controls) <0.001 <0.001 <0.001 <0.001

2Measured using reverse-phase protein microarrays.

NOTE. Welch's t test was applied to assess differences in values.

"Two patients whose samples were not available for reverse-phase protein microarrays were excluded.

albumin and immunoglobulin. It is anticipated that the
remaining proteins contain an unexplored archive of
disease-driven information, but account for only about
1% of the entire human plasma proteome (24). To reduce
the complexity of the plasma proteome, we used HFM
filtration technology. Our HFM devise can separate and
concentrate LMW plasma proteins in a fully automated
manner (22) and allows identification of any biomarker
candidate that is present at a level of 1 ug/mL. This
discovery justifies the future application of the HFM
system to more detailed proteome studies aimed at
plasma/serum biomarker discovery. The other technol-
ogy we employed is high-density reverse-phase protein
microarray. The protein content of any human sample
varies according to the individual, and therefore it is
essential to distinguish biomarker candidates from sim-
ple interindividual heterogeneity. However, such distinc-
tion is possible only by comparing a statistically sufficient
number of cases and controls. Our high-density protein
microarrays require a minimal sample volume of the
nanoliter order and make it possible to measure the
quantity of any candidate biomarker protein in a statis-
tically sufficient number of cases and controls (>300
samples; ref. 28) for judgment of its clinical potential in
a single experiment.

LMW chemotactic cytokines have been implicated in
various biological processes, such as leukocyte migration,
angiogenesis, hematopoiesis, atherosclerosis, and cancer
migration and metastasis. CXCL7, also known as PBP, is
one of the members of the angiogenic ELR™ CXC che-
mokine family (33). It is reportedly produced and stored
in platelets, monocytes, neutrophils, and megakaryo-
cytes. Secreted CXCL7 binds to CXC chemokine receptor
2 (CXCR2) on endothelium and mediates angiogenesis
through activation of the Ras/Raf/mitogen-activated
protein kinase (MAPK) and PI3K/AKT/mTOR signaling
pathways (33, 34). The histology of pancreatic ductal

adenocarcinoma is often characterized by hypovascular-
ization. The reduction of circulating CXCL7 in patients
with pancreatic cancer may play a certain role in the
suppression of angiogenesis.

Recently, reduction in the level of serum CXCL? has
been reported to be a biomarker for advanced myelo-
dysplastic syndrome (35). In contrast, CXCL7 is
increased in the pulmonary venous blood of lung cancer
patients and is significantly decreased after curative
surgical resection of the lung lesions. Of particular
interest is the fact that the increment of CXCL7 is
detectable several months before diagnosis of lung
cancer (36). We observed a reduction of CXCL7 in 10
patients with chronic pancreatitis; but, examination ofa
larger number of patients will be needed before any
definite conclusion can be reached.

CXCL7 is N-terminally truncated by cathepsin G-like
enzymes and converted to other types of chemokines
with distinct functions such as connective tissue-activat-
ing peptide III (CTAP-III) and neutrophil-activating pep-
tide 2 (NAP-2; refs. 37, 38). One possible explanation for
the reduction of plasma CXCL?7 in patients with pancrea-
tic cancer is degradation by certain exoproteases (39).
Matrix metalloproteinase-9 (MMP9) has been reported to
degrade CXC chemokines (40). MMP9 is often upregu-
lated in pancreatic cancer cells and secreted into plasma
(41). However, in this study, the precise molecular
mechanisms behind the reduction of plasma CXCL7 in
patients with pancreatic cancer remained unexplained.

Because the process of pancreatic carcinogenesis is
probably mediated by various molecular pathways (42),
the diagnosis of pancreatic cancer using a single bio-
marker may not be realistic, and a combination of
different biomarkers with distinct spectra would appear
to be a more realistic alternative. CA19-9 is the most
widely used serum biomarker for pancreatic cancer;
but, its sensitivity and specificity have been recognized
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Figure 3. A and C, plasma levels (in arbitrary units) of CXCL7 in healthy controls, patients with pancreatic cancer, and patients with chronic pancreatitis in the
training (A) and validation (C) cohorts. Horizontal lines represent the average levels of CXCL7. B, ROC analyses for the discriminatory value of CXCL7 in the
training (dotted line) and validation (solid line) cohorts. D, ROC analyses for the discriminatory value of CA19-9 and the composite index of CA19-9 and CXCL7
in the training and validation cohorts.

to be unsatisfactory for pancreatic cancer screening
(7, 12). We demonstrated that CXCL7 significantly
improved the discriminatory ability of CA19-9, and
this improvement was reproducibly validated in a large

multi-institutional cohort. However, further indepen-
dent validation by other investigators is still man-
datory before its clinical application can be warranted
(15, 29-31, 43).
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LEGENDS FOR SUPPLEMENTARY FIGURES

Supplementary Figure S1

Ten randomly selected plasma samples from the Training Cohort were filtered through
hollow-fiber membranes (HFM), loaded onto 5-20% SDS gel under reducing conditions,

and visualized by silver staining.

Supplementary Figure S2
MS/MS spectra and database search results for a representative MS peak (ID 54)
identified as being derived from CXCL7. Peptides that matched the amino acid

sequences in the database are highlighted in red.

Supplementary Figure S3
Two-dimensional plot showing the correlation between the plasma concentration of
CXCL7 determined by RPPM and multiplex assays for 12 patients with pancreatic

cancer (red) and 12 healthy controls (b/ue). RPPM, reverse-phase protein microarrays.
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Supplementary Figure S2

Peak ID: 54

MS/MS Fragmentation of GKEESLDSDLYAELR

Found in SCYB7_HUMAN, Platelet basic protein precursor (PBP) (CXCL7)
[Contains: Connective tissue-activating peptide Il (CTAP-III)]

Match to Query 4: 1723.752730 from(862.883641,2+)

=
S

-~
- g
L] 2
ar #
? n:
i :13
o o
X =
Lol
n& ™ #
‘3 - -~
: = g
#
%
: : 3
3
]

“yi8)
~yl8)

- a6

AR W RN U NN GR NNOGY A NR NR BT WO A ER MR N NS AN R M W

WD) . yeaz)

&mmmnwwmmnwiyﬁ&l"‘z’

oW

Bt st ¥ e e et

Monoisotopic mass of neutral peptide Mr(calc): 1723.8264
lons Score: 100  Expect: 6.2e-008
Matches (Bold): 18/164 fragment ions using 29 most intense peaks

T

o

-
o i

1 30.0338 | 15.5206 58.0287 | 29.5180 G

2| 1581288 | 79.5680 | 141.1022| 71.0548 | 186.1237 | 93.5655| 169.0972| 85.0522| K |1667.8123 |834.4098 | 1650.7857 | 825.8965 | 14
3| 287.1714|144.0893 | 270.1448 | 135.5761 | 315.1663 | 158.0868 | 298.1397 | 149.5735| E |1539.7173|770.3623 | 1522.6908 | 761.8490 | 13
4| 416.2140|208.6106 | 399.1874 | 200.0974 | 444.2089 | 222.6081 | 427.1823 |214.0948 | E |1410.6747 |705.8410 | 1393.6482 | 697.3277 [ 12
5| 503.2460 | 252.1266 | 486.2195 | 243.6134 | 531.2409 | 266.1241 | 514.2144 | 257.6108 | S |[1281.6321 |641.3197 | 1264.6056 | 632.8064 | 11
6| 616.3301 | 308.6687 | 599.3035 | 300.1554 | 644.3250 | 322.6661 | 627.2984 | 314.1529| L |1194.6001 |597.8037 | 1177.5735 | 589.2904 | 10
7| 731.3570|366.1821| 714.3305|357.6689 | 759.3519|380.1796 | 742.3254 |371.6663| D |1081.5160 |541.2617 | 1064.4895 | 532.7484 | 9
8| 818.3890 | 409.6982 | 801.3625 |401.1849 | 846.3840 | 423.6956 | 829.3574 | 415.1823| S 966.4891 | 483.7482 | 949.4625|475.2349 | 8
9| 933.4160(467.2116 | 916.3894 | 458.6984 | 961.4109 | 481.2091 | 944.3843 | 472.6958 | D 879.4571 | 440.2322 | 862.4305|431.7189 | 7
10 | 1046.5000 | 523.7537 | 1029.4735 | 515.2404 | 1074.4950 | 537.7511 | 1057.4684 | 529.2378 | L 764.4301 | 382.7187 | 747.4036 | 374.2054 | 6
11| 1209.5634 | 605.2853 | 1192.5368 | 596.7721 | 1237.5583 | 619.2828 | 1220.5317 | 610.7695 | Y 651.3461 | 326.1767 | 634.3195|317.6634| 5
12 | 1280.6005 | 640.8039 | 1263.5739 | 632.2906 | 1308.5954 | 654.8013 | 1291.5689 | 646.2881| A 488.2827 | 244.6450 | 471.2562 | 236.1317 | 4
13 | 1409.6431 | 705.3252 | 1392.6165 | 696.8119 | 1437.6380 | 719.3226 | 1420.6114 | 710.8094 | E 417.2456 | 209.1264 | 400.2191 | 200.6132| 3
141 1522.7271|761.8672 | 1505.7006 | 753.3539 | 1550.7221 | 775.8647 | 1533.6955 | 767.3514 | L 288.2030 | 144.6051 | 271.1765 | 136.0919 | 2
15 R 175.1190 | 88.0631| 158.0924 | 79.5498 | 1

Matched peptides shown in Bold Red

1 MSLRLDTTPS CHSARPLHAL QVLLLLSLLL TALASSTKGQ TERNLAKGEE
51 ESLDSDLYAE LRCMCIKTITS GIHPENIQSL EVIGKGIHCN QVEVIATLED
101 GRKICLDPDA PRIEKIVQKK LAGDESAD
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The development of a new plasma biomarker for early detection
would be necessary to improve the overall outcome of colorectal
cancer. Here we report the identification and validation of the
ninth component of complement (C9) as a novel plasma biomarker
for colorectal cancer by cutting-edge proteomic technologies.
Plasma proteins were enzymatically digested into a large array of
peptides, and the relative quantity of a total of 94 803 peptide
peaks was compared between 31 colorectal cancer patients and 59
age/sex-matched healthy controls using 2D image-converted anal-
ysis of liquid chromatography and mass spectrometry. The
selected biomarker candidates were validated in 345 subjects (115
colorectal cancer patients and 230 age/sex-matched healthy con-
trols) using high-density reverse-phase protein microarrays.
Plasma levels of Apo Al and C9 in colorectal cancer patients signifi-
cantly differed from healthy controls with P values of 7.94 x 10~*
and 1.43 x 107" (Student's t-test), respectively. In particular, C9
was elevated in patients with colorectal cancer, including those
with stage-l and -lI diseases (P =3.01x 10~ and P = 1.13 x 1075,
respectively). Although the significance of the present study must
be validated in an independent clinical study, the increment of
plasma C9 may be applicable to the early detection of colorectal
cancer. (Cancer Sci, doi: 10.1111/j.1349-7006.2010.01818.x, 2010)

C olorectal cancer is the third most common cancer world-
wide, with an estimated one and half million newly diag-
nosed cases every year."’ In Japan, colorectal cancer is
currently the third cause of cancer death in men and the first
in women, but its incidence is predicted to increase and
become the leading cause by 2015, most likely due to chan%-
ing dietary habits as well as environmental conditions.*”
Successful prevention of death from colorectal cancer depends
on its early detection. The surgical management of early stage
colorectal cancer without metastasis is relatively uncompli-
cated. There is a significant level of evidence that the applica-
tion of the fecal occult blood test to mass screening reduces
the risk of colorectal cancer death, but its sensitivity and
specificity, especially for early stage colorectal cancer, seem
to be insufficient. Barium enema, flexible sigmoidoscopy/
colonoscopy and 18F—ﬂuorodeoxyglucose positron emission
tomography have higher specificity, but may not be cost- and
labor-effective for mass screening of the asymptomatic general
population.

doi: 10.1111/}.1349-7006.2010.01818.x
© 2010 Japanese Cancer Association
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The circulating blood proteome holds great promise as a
reservoir of disease information, and a large variety of plasma/
serum proteins have been used as disease biomarkers. Carcino-
embryonic antigen (CEA) is a serum biomarker most widely
used for colorectal cancer. However, the serum level of
CEA often does not elevate in patients with colorectal cancer
in the early stages and cannot be applicable to early detection of
the disease.” We therefore have been searching for new serum/
plasma biomarkers that can be used for mass survey of colorec-
tal cancer.

Recently, various mass spectrometry (MS)-based proteomic
technologies have been applied to clinical samples in the hope
of identifying new disease biomarkers.®™ Among those tech-
nologies, shotgun proteomics has been considered the most
promising because of its high sensitivity and protein identifica-
tion capability: protein samples are enzymatically digested into
a large array of peptides with uniform physical characteristics,
and every peptide fragment is analyzed by liquid chromatogra-
phy (LC) and MS. However, the number of samples that can be
compared by shotgun proteomics is usually limited because iso-
tope labeling is necessary to give a quantitative dimension to
shotgun proteomics. The protein contents of each human sample
vary significantly among individuals, and biomarker candidates
can be distinguished from simple personal heterogeneity only
by comparing a sufficient number of cases and controls. To
overcome this limitation, we developed a software named 2D
image converted analysis of liquid chromatography and MS
(2DICAL),®' which enabled accurate quantitative comparison
across a theoretically unlimited number of LC-MS data without
isotope labeling.'” Using this powerful software we success-
fully identified biomarkers that can predict the hematological
toxicities and survival of pancreatic cancer patients receiving
gemcitabine. 1%

In the present study we searched for a biomarker that can be
used for the early detection of colorectal cancer using 2DICAL.
We carefully selected cases and controls to be compared by
matching their age and gender distributions, as well as residen-
tial areas. We identified the significance increment of comple-
ment component C9 in the sera of patients with colorectal
cancer, and its significance was validated in a large cohort using
another innovative proteome technology, high-density reverse-
phase protein microarray (RPPM).

12To whom correspondence should be addressed. E-mail: tyamada@ncc.go.jp
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Materials and Methods

Patients and plasma samples. Plasma samples (n = 345) were
collected from 115 patients diagnosed with colorectal cancer
and 230 healthy volunteers matched with cancer patients by sex,
age and residential area (two controls for each cancer patient;
Table 1) between October 1998 and March 2002 with informed
consent, as described previously.'® Thirty-one cancer patients
and 59 controls were randomly selected and subjected to
2DICAL analysis.

Another set of plasma samples were collected prospectively
from 378 individuals including healthy volunteers and newcom-
ers mainly to the Department of Gastroenterology at the
National Cancer Center Hospital (Tokyo), Osaka National Hos-
pital (Osaka), Jichi Medical School Hospital (Shimotsuke),
Osaka Medical College (Osaka), Tokyo Medical University
Hospital (Tokyo), Osaka Medical Center for Cancer and Cardio-
vascular Diseases (Osaka), and Fukuoka University Hospital
(Fukuoka). This multi-institutional study was conducted as part
of the ““Third-Term Comprehensive Control Research for Can-
cer’” conducted by the Ministry of Health, Labour and Welfare
of Japan. Written informed consent was obtained from every
individual, and the study protocol was approved by the ethics
committee of each participating institution.

Sample preparation and LC-MS. Twelve abundant plasma pro-
teins including albumin, IgG, ol-antitrypsin, IgA, IgM, transfer-
rin, haptoglobin, al-acid glycoprotein, o2-macroglobulin, Apo
Al, apolipoprotein AIl and fibrinogen were deduced from
plasma samples using IgY-12 spin columns (Beckman Coulter,
Fullerton, CA, USA) prior to MS analysis." " The deduced sam-
ples were precipitated with acetonitrile, dried and digested to
peptide with modified trypsin. LC- MS and data acquisition were
performed as described prev1ously Bneﬂy, MS spectra were
acquired using nano-electrospray ionization (nano-ESI)-quadru-
ple time-of-flight (QqTOF) MS (QTOF Ultima; Waters, Milford,
MA, USA) every second for 60 min in the 250-1600 m/z range.

Table 1.

The MS peaks of each sample with the same m/z were extracted
every 1 m/z and aligned. Peak lists were created using the Mass-
Navigator software package (version 1.2; Mitsui Knowledge
Industry, Tokyo, Japan). Targeted tandem MS (MS/MS) data
were analyzed with the Mascot software package (version 2.2.1;
Matrix Sciences, London, UK) against the NCBInr database
(NCBInr_20070419. fast).

Antibodies. Anti-Apo Al rabbit polyclonal antibody was pur-
chased from Calbiochem (Darmstadt, Germany), anti-C9 mouse
monoclonal antibody from AntibodyShop (Gentofte, Denmark)
and anti-o2-macroglobulin mouse monoclonal antibody from
R&D Systems (Minneapolis, MN, USA).

Immunoblot analysis. Protein was separated by SDS-PAGE
and transferred to Polyvinyldene difluvoride membrane, as
described previously. The membrane was incubated with
anti-Apo Al, anti-C9 or anti-a2-macroglobulin (loading control)
and then with relevant horseradish peroxidase (HRP)-conjugated
secondary antibody. Blots were detected by ECL western blot-
ting detection reagent according to the manufacturer’s instruc-
tion (Amersham Biosciences, Buckinghamshire, UK).

RPPM. Plasma samples were serially diluted using PBS con-
taining 0.01% triton X with or without 1% bovine serum albu-
min (BSA). The diluted plasma samples were printed onto slide
glasses coaled with ProLinker (ProteoChip; Proteogen, Seoul,
Korea)"! using a protein microarrayer equipped with 32
stainless steel pins of 100 pm diameter (Kakengeneqs, Mat-
sudo, Japan) at 4°C. Printed microarray slides were incubated
overnight at 37°C and stored at 4°C under desiccation. After
returning to room temperature, the array slides were blocked
with PBS containing 0.5% casein for 30 min and hybridized
overnight with the first antibodies at 4°C. After washing, the
array slides were hybridized with relevant biotinylated second
antibodies (Vector Laboratories Inc. Burlingame, CA, USA) for
1h and subsequently with avidin-HRP conjugated reagent
(Amersham Biosciences) for 30 min. The fluorescent Cy5 sig-
nals were amplified using the tyramide signal amplification sys-

Clinicopathological characteristics of individuals examined in the present study

All cases (n = 345)

Cases analyzed
by 2DICAL (n = 90)

Cancer (n = 115)  Healthy (n =230) Pvalue Cancer (n =31) Healthy (n = 59) Pvalue

Age (mean = SD) (years) 59.3 +8.9 59.4 + 89 0.93% 56.8 £ 9.9 56.4 + 9.8 0.79%
Gender

Male 71 142 0.92§ 20 36 0.758

Female a4 88 1 23
Primary site

Cecum 6 0

Ascending colon 27 9

Transverse colon 8 4

Descending colon 5 3

Sigmoid colon 18 5

Rectum 51 10
Clinical staget

0 17 5

| 35 10

] 28 7

] 25 6

v 10 3
Histology

Well-differentiated adenocarcinoma 74 21

Moderately differentiated adenocarcinoma 37 8

Poorly differentiated adenocarcinoma 2 1

Others 2 1

tAccording to TNM Classification of Malignant Tumors (International Union Against Cancer), 6th Edition. #Student’s t-test. §Chi-square test.
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Fig. 1. Plasma biomarker discovery by 2D image converted analysis of liquid chromatography and mass spectrometry (2DICAL). (a) Two-
dimensional display of >90 000 peaks of a representative sample with retention time (RT; in minutes) along the vertical (X) axis and with mass to
charge (m/z) ration value along the horizontal (Y) axis. (b) Peptide peaks derived from apolipoprotein Al (Apo Al; left; ID 3961) and
complement component C9 (C9; right; ID 3510) in a representative colorectal cancer patient (Cancer) and a representative healthy individual
(Control). (c) Detection of Apo Al, C9 and a2-macroglobulin (x2-MG, loading control) in plasma samples of four representative colorectal cancer

patients and four healthy controls by immunoblotting.

tem (Perkin Elmer, Boston, MA, USA) according to the manu-
facturer’s instructions. Counterstaining was performed with
Alexa 488-labeled anti-human IgG antibody (Invitrogen, Carls-
bad, CA, USA). Dual-color fluorescent signals (green and red)
were detected with a confocal laser microarray scanner (Inno-
Scan 700 AL; Innopsys, Carbonne, France). The median signal
intensity of quadruplicates was calculated using the Mapix soft-
ware (Innopsys).

Murakoshi et al.
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Measurement of CEA. The plasma level of CEA was deter-
mined using the CEA Enzyme Immunoassay kit (Hope Labora-
tories, Belmont, CA, USA) according to the manufacturer’s
instruction.

Statistical analysis. Statistically significant differences were
detected using Paired s-test and Student’s r-test. Interquartile
range (IQR), receiver operator characteristics (ROC) and area
under the curve (AUC) analyses were performed using the

Cancer S5ci | 2010 | 3
© 2010 Japanese Cancer Association
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components available in R-project (http://www.r-project.
org/)."" A composite index of two markers was generated using
the results of multivariate logistic regression analysis, which
also enabled calculation of the ROC curve.

Results

Identification of biomarker candidates. We compared plasma
proteome data between 31 colorectal cancer patients and 59
healthy volunteers (Table 1) using 2DICAI. A total of 94 803
independent peptide peaks were detected across the 90 cases
(Fig. 1a) and numbered from ID1 to ID94803. Ninety MS peaks
showed a statistically significant difference between healthy
controls and colorectal cancer patients (maximum mass peak
intensity > 10 [arbitrary unit] and P < 0.0001 [Paired r-test] or
AUC = 0.75). Twenty-nine peaks were further selected by
visual inspection (Fig. 1b) and subjected to MS/MS analysis.
MS/MS spectra obtained from 17 peptide peaks matched 10
proteins deposited in the NCBInr database (Table 2). We
selected two proteins, Apo Al and C9, for further analyses
because the same protein annotation was obtalned from at least
two independent peaks.

Identification and differential expression of Apo AI and C9
were confirmed by immunoblotting plasma samples of represen-
tative cases (Fig. Ic). Apo AI was downregulated in cancer
patients, while C9 was upregulated.

Establishment of RPPM. For the rapid selection and valida-
tion of plasma biomarker candidates, we established a high-
density protein microarray platform. Plasma samples were
serially diluted and printed in quadruplicate onto a hydropho-
bic glass surface in a format of 6144 spots within an area of
17.65 x 34.57 mm. The location of each spot was visualized
by staining human IgG (green), and the relative amounts of
Apo Al and C9 proteins were quantified by hybridization
with antibodies (red). Fluorescent signal intensity showed lin-
earity in the plasma dilution range of x32 to x4096 in a
quality control experiment (Fig. 2a) and was highly reproduc-
ible among four independent experiments (Fig. 2b). Over
78% of spots showed coefficients of variation (CV) values of
< 0.1 (Fig. 2¢).

Validation of biomarker candidates. In order to examine the
significance of Apo Al and C9 in a larger cohort, we used
RPPM, onto which plasma samples were spotted in a high-
density manner. The plasma samples were serially diluted
and randomly printed four times onto a microarray. Fig-
ure 3a depicts the entire image of RPPM stained with anti-
C9 antibody. Representative blots of colorectal cancer and
control samples are shown in Figure 3b. The RPPM revealed
that Apo AI was downregulated in colorectal cancer patients
compared with healthy controls, and the difference between
colorectal cancer and healthy controls was statistically signif-
icant (P = 0.000794; Fig. 3c). C9 was sngmﬁcantly upregulat-
ed in colorectal cancer (P =143 x107'% Fig. 3d). The
results of RPPM were well correlated with those of immu-
noblot assay (Fig. S1), thus confirming the preciseness of
RPPM.

The AUC values of Apo AI and C9 were 0.621 and 0.730,
respectively (Fig. 3e,f). Although the level of plasma Apo Al
was significantly different between colorectal cancer patients
and healthy controls, the utility of Apo AI as a biomarker of
colorectal cancer seems to be limited due to its relatively
low AUC value. Statistically signiﬁcant differences for upreg-
ulation of C9 were observed in patients with Stage I, II, I
and V¥ , colorectal cancer (P =3.02 x 1073, 113 % 10,
522 % 1078 and 3.45 x 107 , respectively; Fig. 3g). The AUC
values of C9 for the early (stages 0-II) and advanced (stages
IIT and IV) colorectal cancer patients were 0.667 and 0.862,
respectively.
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Fig. 2. Reproducibility of reverse-phase plasma microarray (RPPM).
(a) Linearity of RPPM. A plasma sample was serially diluted from 32 to
4096 folds and spotted onto a ProteoChip glass. The glass was stained
with anti-apolipoprotein Al antibody as described in the Materials
and Methods. The mean fluorescence intensity of quadruplicates
(vertical axis in arbitrary units) is plotted against plasma dilution
(horizontal axis). (b) Reproducibility of RPPM. A plasma sample was
serially diluted from 16 to 32 768 folds and processed as described
above. The same experiment was conducted four times (Experiments
1-4), and their dilution curves overlapped. The dots represent the
median intensity of quadruplicates. Bars represent interquartile
ranges (IQR). (c) Distribution of the coefficients of variation (CV)
values among quadruplicates in the 6144 spots (1536 quadruplicates)
of RPPM stained with anti-Apo Al antibody. The dotted line
represents cumulative frequency (%; right vertical axis label).

We measured the plasma level of CEA in 42 samples (20
healthy controls and 22 colorectal cancer patients: stage 0
[n=2], stage 1 [n=25], stage Il [n=25], stage III [n=75]
and stage IV [n = 5]), for which the residual sample volume was
sufficient for the measurement with enzyme-linked immunosor-
bent assay (ELISA). The AUC values of CEA for the early
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Fig. 3. Validation of altered plasma apolipoprotein Al (Apo Al) and C9 in colorectal cancer by reverse-phase plasma microarray (RPPM). (a)
Dual-color scanning image of RPPM, on which serially (64- to 512-fold) diluted plasma samples of colorectal cancer patients (n = 115) and
healthy controls (n = 230) were randomly spotted in quadruplicate. The RPPM was stained with anti-complement component C9 (red) and anti-
human 1gG (green) antibodies, as described in the Materials and Methods. (b) Representative spots of colorectal cancer patients (CRC) and
healthy controls (Cont). (c) Distribution and median values (vertical bars) of the plasma Apo Al level (in arbitrary units) measured by RPPM. A
statistically significant difference was recognized between healthy controls and colorectal patients (P = 0.00794, Student’s t-test). (d) Distribution
and median values (vertical bars) of plasma C9 level (in arbitrary units) measured by RPPM. Statistical significance was recognized between
healthy controls and colorectal patients (P = 1.43 x 107'%, Student’s t-test). (e) Receiver operator characteristic (ROC) analysis of Apo Al. AUC,
area under the curve. (f) ROC analysis of C9. (g) Box-and-whisker diagram showing the different plasma levels of C9, determined by RPPM for
healthy controls and each clinical stage of colorectal cancer. Boxes represent the median values and the 25-75 percentile ranges. Whiskers
indicate the most extreme data point, which are no more than 1.5 times the interquartile ranges from the boxes.

Alterations of Apo Al and C9 in other cancers. Finally, we
measured the level of Apo Al and C9 in 378 plasma samples
collected prospectively from different medical institutions using
RPPM. The observed alterations of plasma Apo Al and C9

(stages 0-II) and advanced (stages III and IV) colorectal cancer
patients over healthy individuals were 0.594 and 0.810, respec-
tively, indicating its inferiority to C9 in detecting early stage
colorectal cancer.
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