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examined in comparison with wild-type mice (Table [). When oocytes
from wild-type mice were fertilized with sperm from wild-type mice,
the fertilized oocytes developed into blastocysts with normal fre-
quency in 4 days. On the other hand. development of the fertilized
oocytes from SODI-deficient mice was totally arrested at the 2-cell
stage. The zygotes/embryos from SOD|-deficient mice were exam-
ined by DNA labeling with Hoechst33342 from 5 to 42 h after IVF.
No abnormality was observed in the timing of pro-nucleus formation
and the first cleavage of SODI-deficient zygotes/embryos, compared
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Figure | Western blot analysis of SOD| and SOD2 in oocytes.
Sixty superovulated MIl oocytes from each genotypic female mouse
were subjected to SDS-PAGE followed by immunoblot analysis.
Antibodies against SODI (upper panel), SOD2 (middle panel) and
GAPDH (lower panel, protein loading conuol) were used as
primary antibodies.

with wild-type zygotes/embryos (Fig. 2). Because SODI protein
rescues the 2-cell arrest that occurs in embryos of some mouse
strains (Nonogaki et al., 1992), the effects of antioxidants, human
SODI protein and B-mercaptoethanol on VF and further develop-
ment were examined, but 2-cell arrest was not negated in any of
the embryos from SOD-deficient oocytes. Thus, oxidative stress
caused by SOD | deficiency appeared to be different from that in pre-
viously reported cases.

Since oxygen content is ~2% in the body, which is one order lower
than the conventional culture conditions with atmospheric oxygen
(20% O,. 150 mmHg), culture was attempted under hypoxic con-
ditions with 1% O, (7 mmHg). As expected, embryos from SODI-
deficient mice developed beyond the 2-cell stage to blastocyst with
efficacy comparable to those from wild-type mice (Table I). Thus,
SOD|-deficient oocytes were found to be vulnerable to exposure
to atmospheric oxygen conditions, but developed normally under
hypoxic culture.

Higher concentration of superoxide in
2-cell arrest embryos

We estimated the oxidative stress in 2-cell embryos from wild-type
and SOD |-deficient oocytes at 36 h after IVF using dihydroethidium,
which is a fluorescent probe frequently used to measure intracellular
superoxide levels (Wilhelm et al., 2009). The resultant fluorescence
was detected spottily in the cytoplasm of both wild-type and SODI -
deficient embryos under 20% O, (Fig. 3A). Then we quantified fluor-
escence intensity of all four groups of embryos. The data indicated that
superoxide levels in SOD | -deficient embryos were significantly higher
than that in the embryos from wild-type embryo under 20% O,
(Fig. 3B). However, there was no significant difference between wild-
type and SODI-deficient embryos under 1% O, culture.

Embryos gradually changed to permanent
2-cell arrest under atmospheric oxygen

To determine the period required for the arrest, the embryos were
incubated under atmospheric oxygen conditions for 12, 24 and 36 h

after IVF, transferred to 1% O; and incubated up to 4 days (Fig. 4).
There was no important effect of atmospheric culture on the

Table | Developmental arrest at 2-cell stage in embryos derived from SOD I-deficient (KO) mouse oocytes under 20% or
1% oxygen culture and effects of antioxidant supplementations.

Oocyte genotype and treatments Number of oocytes cultured

Under 20% O,

Wild 89

KO 76

KO + 100 M B-mercapotethanol 95

KO + 500 ug/ml hSODI 9l
Under 1% O,

Wild 79

KO 96

Number of embryos (%)

2-cell < atDay | 4-cell < at Day 2 Blastocyst at Day 4

85 (95.5)° 83 (93.3)° 75 (84.3)°
72 (94.7)° 0 (0)° 0 (0)°
61 (64.2)° 0 (0) 0 (0)°
73 (80.2)° 0 (0 0 (0)°
77 (97.5)° 68 (86.1)* 53 (67.1)°
93 (96.9)" 81 (84.4)° 59 (61.5)°

W, wild-type. Values vath difference superscript letters within each day are agnificantly different (P - 0.05),
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Figure 2 Chromosome labeling of zygotes/embryos. Superovulated COCs from wild-type (WT) or SOD | -deficient (KO) mice were subjected to
IVF and incubated under atmospheric oxygen conditions, The zygotes/embryos were stained with Hoechst33342 at 5, 18, 20, 36 and 42 h after IVF

and observed under a fluorescent microscope.,

development of embryos from SODI-deficient oocytes by 12 h.
However, the developmental potential of the 4-cell and blastocyst
stages in SODI deficient embryos decreased gradually during the
2-day incubation under atmospheric oxygen. The hypoxic culture
did not rescue most cmbryos with 2-cell arrest after 36 h incubation
under atmospheric oxygen (4-cell: 12.7%, blastocyst: 3.6%). This
was regarded as permanent embryo arrest, with characteristics
similar to the 2-cell arrest observed in embryos from ordinary mice
(Betts and Madan, 2008).

No changes in mitochondrial membran:
potential and mitochondrial function in
2-cell arrested embryos

Mitochondrial function was also examined by measuring the respir-
ation and ATP content of individual 2-cell embryos. Respiratory
activity, as judged by oxygen consumption in a single embryo using
the SECM measuring system, did not differ significantly between the
embryos from wild-type and SOD|-deficient mouse oocytes at 36 h
after IVF (Fig. S5A). Measurement of ATP content again showed no sig-
nificant difference between embryos from the two genotypes under
1% and 20% O cultures (Fig. 5B). Taken together. these data indicate
that mitochondria were normal in embryos that were derived from the
SODI-deficient mouse oocytes and arrested at the 2-cell stage by
incubation under 20% O;. Since mitochondria are major organelies
that produce ROS, and their malfunction is a proposed cause of
2-celi arrest (Liu et al. 2000: Thouas et al., 2004), we assessed
AWm using cationic dye, |C-1, which is an important parameter of
mitochondria function and has been used as an indicator of cell
acuvity. At 36h after IVF. putative -aggregate fluorescence was
thickly detected in the peri-cortical cytoplasm of the 2-cell stage
embryos, and |-monomer fluorescence was distinctly detected in the
peri-nuclear region. There was no difference in the distribution of
both J-aggregate and J-monomer fluorescence between the two
groups (Fig. 6A). The AWm ratio of | aggregate to |-monomer in
SOD! -deficient embryos seemed to be slightly higher than that in
the embryos from wild-type, but no prominent difference existed
between the two groups (Fig. 6B).

Differential injury of zygotes versus 4-ceil
embryos from SODI-deficient mouse
cocytes by atmo-pheric culture

The question of whether oxygen toxicity was found only at the 2-cell
stage was then examined. First the embryos were developed to the
4-cell stage by incubation under hypoxic conditions for 42 h after IVF,
then transferred to atmospheric oxygen conditions and incubated
further. The 4-cell embryos from SODI-deficient mouse oocytes
developed to the morula stage, but could not develop into blasto-
cysts (Table I). Since cellular degeneration was evident in embryos
from SODI-deficient mouse oocytes, the impaired embryos were
further  characterized by reaction with FITC-annexin V,
Hoechst33 342 and Pl FITC-annexin V strongly stained the
embryos from SODI-deficient mouse oocytes (Fig. 7, 2a-2f). but
only minimally stained the embryos from wild-type mouse oocytes
(Fig. 7. la=1f). Staining with Hoechst33 342, which detects nuclear
DNA in any cell, and Pl, which detects only the nuclear DNA of
cells with leaky membranes. indicated nuclear fragmentation in
degenerated embryos from SOD|-deficient mouse oocytes. Some
FITC-annexin V positive cells were stained with Hoechst33 342 but
not with Pl, which is consistent with apoptotic cell death. Thus,
the 4-cell embryos from SOD I -deficient mouse oocytes that over-
came 2-cell arrest were more severely damaged than |-cell
embryos (zygotes) by oxidative stress.

Discussion

Developmental arrest in in vitro-produced embryos is commonly
observed in several strains of mice and other species (Betts and
Madan. 2008). Among a variety of factors that cause such arrest,
oxygen deteriorates the development of the 2-cell mouse embryo
(Auerbach and Brinster, 1968). Oxidative stress due to elevated
ROS is a likely cause of 2-cell arrest and has been extensively
studied in relation to the quality of oocytes (Noda et al., 1991:
Tarin, 1996). In the case of developing human embryos, EDTA effec-
tively supports embryonic development (Suzuki et ai., 1988: finno
et al., 1989). It plays the role of an antioxidant by chelating transition
metal ions, which cause production of a hydroxyl radical via the
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Figure 3 Fluorescent images and signal intensity of 2-cell embryos
stained with dihydroethidium. (A) Two-cell embryos from wild-type
(WT) or SODI-deficient (KO) mouse oocytes under 20% O after
dihydroethidium staining. Scale bars, 100 pum. (B) Embryos from wild
type (WT) and SODI-deficient (KO) oocytes were cultured under 1%
or 20% O; for 36 h after IVF. Then, superoxide in the individual 2-cell
embryos was detected by dihydroethidium swaining (n = [4-17).
Signal intensity was shown as a relative value of averaged W1 value
into individual W value or KO value in the same culture condition.
Bars represent the mean i SD of individual embryos. Differences
were considered to be significant when **P - 0.01. The numbers
inside bars indicate the mean value.

Fenton reaction. Experimental results provide direct evidence that
supplementation of SOD protein and thioredoxin in the culture
medium negates the arrest (Goto et al.. 1992; Nonogaki et al,
1992). In this study, total 2-cell arrest was observed in embryos
from SOD/-deficient mice oocytes under culture with atmospheric
oxygen, but supplementation of SODI protein or B-mercaptoethanol
was found to be ineffective (Table ).

In most studies regarding oxidative stress on embryonic develop-
ment, hydrogen peroxides and other (pro) oxidants have been
used 1o trigger oxidative stress extrinsically to embryos, and mito-
chondrial impairment has been observed (Liu et al.. 2000; Thouas
et al., 2004). In our study, a higher level of production for superoxide
was detected in the prospective 2-cell arrest embryos from SODI-
deficient oocytes at 36 h after IVF, by dihydroethidium staining,
suggesting that the 2-cell arrest was attributed to intrinsic oxidative
stress caused by elevated superoxide due to SODI deficiency.
Oocyte mitochondria consume ~50-70% of respired oxygen
(Benos and Balaban, 1980), which is much less than most somatic
cells, which consume more than 90%. Oxygenase present in
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Figure 4 Time required for 2-cell arrest in oocytes from SODI-
deficient mice. Superovulated COCs from wild-type or SODI-
deficient mice were subjected to in vitro fertilization (IVF) and
incubated under atmospheric oxygen conditions, and then transferred
to 1% O, at 12, 24 and 36 h after IVF. (A) Fertilized oocytes were
assessed as 2-cell embryos at 24 h after IVF. (B) The number of
4-cell embryos was counted at 48 h after IVF. (C) The number of
blastocysts was counted after 4 days culture. Within each graph,
the numbers inside the bars indicate the mean value. Numbers of
each group embryo examined were 12h-WT, n=63: 12 hKO,
n=>50; 24 h-WT. n=62; 24h-KO, n="54; 36 h-WT, n=62;
12 h-KO, n=55. Differences were considered to be significant
when "'P - 0.01.

oocytes consumes a portion of the remaining 20-30% oxygen
(Balling et al., 1985) and may be involved in superoxide production
in the 2-cell embryos. Transient elevation of hydrogen peroxide, a
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Figure 5 Respiratory activity and ATP levels of 2-cell embryos.
(A) Embryos from wild-type (WT) or SOD|-deficient (KO) mouse
oocytes were cultured under 1% or 20% O, for 36 h after IVF, and
oxygen consumption in the individual embryos was measured by an
SECM measuring system (n= 10- 13). (B) ATP content in the indi-
vidual embryos treated under the same conditions as (A) was
measured (n= 22-25). Within each graph, bars represent the
mean + SD of individual embryos. The numbers inside the bars indi-
cate the mean value.

dismutation product of superoxide, is shown in mouse 2-cell stage
embryos when developmental arrest occurs (Nasr-Esfahani et al.,
1990). In addition, immatrity of the mitochandrial electron transport
system may also be responsible for ROS production. Although
oxygen consumption remains relatively constant from the zygotes
to the morula before increasing dramatically at the blastocyst stage
(Houghton et al, 1996: Thompson et al., 1996), mitochondria
remain immature in oocytes and early embryos (Van Blerkom,
2004). This immaturity of the mitochondrial electron transfer
system would cause inappropriate electron transfer to molecular
oxygen instead of cytochrome ¢ oxidase (complex IV), and result
in the production of superoxide. Superoxide originating from these
sources would remain high in SODI-deficient embryos. resulting in
oxidative stress that consequently causes 2-cell arrest. Because
superoxide itself is not very reactive, how the elevated superoxide
causes 2-cell arrest is unclear. Although nitric oxide (NO) plays a
pivotal role in oocyte activation at fertilization and also in

embryogenesis (Kuo et al., 2000: Nishikimi et al., 2001; Tranguch
et al., 2003), superoxide reacts rapidly with NO to generate perox-
ynitrite, which is a highly reactive molecule and oxidizes lipids. pro-
teins and nucleic acids. Thus, elevation of superoxide due to SODI
deficiency would eliminate the important signaling molecule NO and
convert it to the harmful oxidant peroxynitrite.

Mitochondria lack histone and possess weak DNA-repairing ability,
which makes mitochondrial DNA vulnerable to oxidative modification.
In in vivo studies, aging increases oxidative damage in mitochondria,
and the incidence of mitochondrial DNA mutations increases in
human ovarian tissues after the age of 45 (Kitagawa et al.,1993) and
in fertilized oocytes collected from IVF patients at ages above 38
(Keefe ct al.1995). Morphological abnormalities in oocyte mitochon-
dria from old mice were also observed (Tarin et al., 2001): thus, mito-
chondrial damage by ROS produced over long periods may be a
mechanism leading to age-related decline in oocyte quality and
chromosome aneuploidy (Tarin, 1996; Tarin et al, 1998, 2000), as
further supported by in vitro swdies. Treatment of mouse zygotes
with 200 uM hydrogen peroxide for |5 min causes a decline in
mitochondrial membrane potential and mitochondrial malfunction
(Liu et al., 2000). Since developmental arrest occurs after this treat-
ment, it can be concluded that mitochondrial malfunction contributes
to cell-cycle arrest. Similar results are obtained when oxidation of
mitochondria is induced by
mitochondria-specific sensitizing dye (Thouas et al., 2004). In many
studies in which oxidative stress is induced by extracellularly adminis-

photosensitization  using

tered ROS or prooxidants, the abnormal development of embryos is
attributed to energy depletion by mitochondrial malfunction or induc-
tion of apoptosis by cytochrome ¢ released from mitochondria. Low
mitochondrial ATP content has been correlated with reduced devel-
opmental competence
Blerkom et al., 1995). In the present study, respiratory activity, ATP
content and AWm of 2-cell embryos were examined at 36 h after
IVF because embryos from wild-type mouse oocytes, regarded as
the control embryos, developed further after 36 h. Most of the SOD I -
deficient embryos incubated under 20% O, for 36 h were unable to
develop further (Fig. 2), which indicated that this developmental
arrest arose during 36 h incubation under 20% O,. However, there

and post-implantation outcomes (Van

was no evident difference in mitochondrial function between the wild-
type embryos and the 2-cell arrested embryos from SOD |-deficient
mouse oocytes at 36 h after IVF (Figs 5 and 6). Acton et al. (2004)
showed that AWm tend to increase slightly in the complete 2-cell
arrest embryos at 68 h post-hCG compared with that in normal
2-cell embryos at 44 h post-hCG, when ICR zygotes were culured
in HTF. Taken together, these data on SODI-deficient embryos
suggest that mitochondrial malfunction may not play a major role in
the developmental arrest of SODI-deficient embryos. Trimarchi
et al. (2000) have examined oxygen consumption of individual
embryos and have shown that healthy embryos consume more
oxygen than those undergoing cell death. On the basis of their criteria,
the 2-cell embryos obtained from SODI-deficient mice under hypoxic
and atmospheric oxygen culture can be considered healthy. There-
fore, we concluded that the 2-cell arrest observed in SOD | -deficient
embryos is not due to either a defective energy supply or to cell death
by mitochondrial malfunction.

The mechanism that causes 2-cell arrest of developing embryos
from SODI-deficient mice is yet unclear. It was observed that
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Figure 6 Fluorescent images and mitochondrial membrane potential of 2-cell embryos stained with JC-1, (A) Fluorescent images of JC-1-stained
2-cell embryos from wild-type (a-c) or SOD| -deficient (d - ) mouse oocytes under 20% O, (a and d) J-aggregate; (b and e) J-monomer; (c and f)
Merge. Scale bars, 20 jum. (B) The ratio of |-aggregate to J-monomer fluorescence for individual embryo using JC- | staining in embryos from wild-type
(WT) or SODI-deficient (KO) mouse oocytes cultured under 20% O, for 36 h after IVF (n = 15-20). Bars represent the mean I SD of individual

embryos. The numbers inside the bars indicate the mean value.

Table Il Effect of converted culture from 1% to 20% oxygen on the development of 4-cell embryos from SOD |-deficient

(KO) mouse oocytes.

Oocyte genotype  Number of oocytes cultured  Number of embryos (%)

2-cell < at Day |

WT 54 50 (92.6)
KO 59 56 (94.9)

4-cell <atDay2 Morula <atDay3  Blastocyst at Day 4

48 (88.9) 44 (81.5) 39 (722)
55 (93.2) 39 (66.1) 0 (0)*

W1, wild-type. Diferences within each day were sigrificant vhen =P -~ 0.01.

embryonic cells were alive but permanently arrested, resembling cel-
lular senescence. Knockdown of SOD| by employing small interfering
RNA actually induced senescence in human fibroblasts (Blander et al.,
2003). Regarding mouse embryos, defective p34°*? kinase, a key

regulator of the cell cycle, in 2-cell arrest and its restoration by
SOD and thioredoxin, has been reported (Natsuyama et al., 1993).
Moreover, M-phase promoting factor and mitogen-activated protein
kinase, whose activation constitutes a mitotic signal pathway, are
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Figure 7 Cytological examination of embryos with abnormality. Superovulated COCs from wild-type mice (la—If ) or SOD|-deficient mice (2a—2f)
were subjected to IVF and incubated for 42 h after IVF under 1% O,. Four-cell embryos were then transferred to atmospheric oxygen conditions and
incubated further. At 4 days after IVF, embryos were stained with Hoechst 33342 (Ib and 2b), Pl (Ic and 2¢) and FITC-annexinV (Id and 2d) and
were observed under a fluorescent microscope. Merged pictures between Pl + FITC-annexin V (le and 2e) and Hoechst33342 + PI (If and 2f) are

also shown. Scale bars, 20 pm.

down-regulated in oocytes ovulated from aged mice (Tatone et al.,
2006). On the other hand, the involvement of p66*™, a protein
belonging to the Shc family of adaptors for signal transduction in mito-
genic and apoptotic responses, in permanent embryo arrest in bovines
has been proposed as a cause of oxidative stress (Favetta et al., 2007;
Betts and Madan, 2008). If this is the case, expression of a responsible
gene(s) is essential to arrest the cell cycle. From this viewpoint, the
stage of developmental arrest corresponds to the point when
Zygotic gene activation occurs in mouse embryos at the late |- to
2-cell stages (Telford et al., 1990; Schulz, 1993). When embryos
from SODI-deficient oocytes were developed to four cells under
1% O, and transferred to 20% O,, embryos developed to the
morula stage but degenerated thereafter (Table II, Fig. 7). In our

preliminary experiment, when in vivo-developed 2-cell embryos were
collected from SOD|-deficient oocytes and cultured for 3 days
under 20% O,, most of the embryos (24 of 26 embryos) arrested
at the 3- to 4-cell stage. These results indicate that (i) the develop-
mental arrest of SODI-deficient embryos was caused by oxidative
stress around the 2-cell stage regardless of IVF or in vivo fertilization
and (ii) the oxygen exerted deteriorating effects on embryos in a
different manner, depending on the developmental stage. Impaired
regulation of the cell cycle would be responsible for 2-cell arrest by
oxidative stress, while a mechanism for apoptosis appears to be
involved in the degeneration of SODI-deficient embryos at a later
stage. Since mitochondria play pivotal roles in the initiation of apopto-
sis, the mitochondrial maturation process may be involved in the
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differential damage to the oocytes/zygotes and 4-cell embryos. One
of the special features in SODI-deficient mice is female infertility
(Ho et dl., 1998; Matzuk et al., 1998). In this study, 30 oocytes
per female were recovered from SOD1-deficient mice after superovu-
lation, and 29.5 oocytes were recovered from wild-type, which implies
no difference in the ovulation rate between the two genotypes. We
also observed a number of in vivo-developed 2-cell embryos from
SOD|-deficient mice at 36 h after superovulation and in vivo-
developed morula and blastocyst 6 embryos at 84-96 h after super-
owvulation (data not shown). At the least, this evidence could ensure
in vivo-developmental ability of preimplantation embryos in SODI-
deficient female.

In conclusion, we found total 2-cell arrest of embryos from SODI -
deficient mice oocytes in culture under atmospheric oxygen conditions
and the negation of the arrest by incubation under hypoxic conditions.
Since the mitochondrial function of ATP production via oxidative
phosphorylation was almost normal in the embryos, the mechanism
of cell cycle regulation might be a target of elevated ROS. After the
4-cell stage, however, embryos suffering from oxidative stress
undergo degeneration, most likely by apoptosis. Thus, investigation
of embryos developed from SOD|-deficient oocytes would provide
a useful clue to an understanding of the mechanisms involved in
2-cell arrest and cellular degeneration at the later developmental
stage by intrinsic oxidative stress.
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