suggest that at least three quarters of patients with MR are undiag-
nosed by clinical dysmorphic features and karyotyping.

In the past two decades, a number of rapidly developed cytogenetic
and molecular approaches have been applied to the screening or
diagnosis of various congenital disorders including MR, congenital
anomalies, recurrent abortion and cancer pathogenesis. Among them,
array-based comparative genome hybridization (aCGH) is used to
detect copy-number changes rapidly in a genome-wide manner and
with high resolution. The target and resolution of aCGH depend on
the type and/or design of mounted probes, and many types of
microarray have been used for the screening of patients with MR
and other congenital disorders: bacterial artificial chromosome
(BAC)-based arrays covering whole genomes,!® BAC arrays covering
chromosome X, a BAC array covering all subtelomeric regions,'
oligonucleotide arrays covering whole genomes,'#!* an oligonucleo-
tide array for clinical diagnosis' and a single nucleotide polymorph-
ism array covering the whole genome.!” Because genome-wide aCGH
has led to an appreciation of widespread copy-number variants
(CNVs) not only in affected patients but also in healthy popula-
tions,'#20 clinical cytogenetists need to discriminate between CNVs
likely to be pathogenic (pathogenic CNVs, pCNVs) and CNVs less
likely to be relevant to a patient’s clinical phenotypes (benign CNVs,
bCNVs).2! The detection of more CNVs along with higher-resolution
microarrays needs more chances to assess detected CNVs, resulting in
more confusion in a clinical setting.

We have applied aCGH to the diagnosis and investigation of
patients with multiple congenital anomalies and MR (MCA/MR) of
unknown etiology. We constructed a consortium with 23 medical
institutes and hospitals in Japan, and recruited 536 clinically unchar-
acterized patients with a normal karyotype in conventional cyto-
genetic tests. Two-stage screening of copy-number changes was
performed using two types of BAC-based microarray. The first screen-
ing was performed by a targeted array and the second screening was
performed by an array covering the whole genome. In this study, we
diagnosed well-known genomic disorders effectively in the first screen-
ing, assessed the pathogenicity of detected CNVs to investigate an
etiology in the second screening and discussed the clinical significance
of aCGH in the screening of congenital disorders.

MATERIALS AND METHODS

Subjects

‘We constructed a consortium of 23 medical institutes and hospitals in Japan, and
recruited 536 Japanese patients with MCA/MR of unknown etiology from July
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2005 to January 2010. All the patients were physically examined by an expert in
medical genetics or a dysmorphologist. All showed a normal karyotype by
conventional approximately 400-550 bands-level G-banding karyotyping. Geno-
mic DNA and metaphase chromosomes were prepared from peripheral blood
lymphocytes using standard methods. Genomic DNA from a lymphoblastoid cell
line of one healthy man and one healthy woman were used as a normal control for
male and female cases, respectively. All samples were obtained with prior written
informed consent from the parents and approval by the local ethics committee
and all the institutions involved in this project. For subjects in whom CNV was
detected in the first or second screening, we tried to analyze their parents as many
as possible using aCGH or fluorescence in situ hybridization (FISH).

Array-CGH analysis
Among our recently constructed in-house BAC-based arrays,?? we used two
arrays for this two-stage survey. In the first screening we applied a targeting
array, ‘MCG Genome Disorder Array’ (GDA). Initially GDA version 2, which
contains 550 BACs corresponding to subtelomeric regions of all chromosomes
except 13p, 14p, 15p, 21p and 22p and causative regions of about 30 diseases
already reported, was applied for 396 cases and then GDA version 3, which
contains 660 BACs corresponding to those of GDA version 2 and pericentro-
meric regions of all chromosomes, was applied for 140 cases. This means that a
CNV detected by GDA is certainly relevant to the patient’s phenotypes.
Subsequently in the second screening we applied ‘MCG Whole Genome
Array-4500° (WGA-4500) that covers all 24 human chromosomes with 4523
BAGCs at intervals of approximately 0.7 Mb to analyze subjects in whom no
CNV was detected in the first screening. WGA-4500 contains no BACs spotted
on GDA. If necessary, we also used ‘MCG X-tiling array’ (X-array) containing
1001 BAC/PACs throughout X chromosome other than pseudoautosomal
regions.2 The array-CGH analysis was performed as previously described.!>?
For several subjects we applied an oligonucleotide array (Agilent Human
Genome CGH Microarray 244K; Agilent Technologies, Santa Clara, CA, USA)
to confirm the boundaries of CNV identified by our in-house BAC arrays. DNA
labeling, hybridization and washing of the array were performed according to
the directions provided by the manufacturer. The hybridized arrays were
scanned using an Agilent scanner (G2565BA), and the CGH Analytics program
version 3.4.40 (Agilent Technologies) was used to analyze copy-number
alterations after data extraction, filtering and normalization by Feature Extrac-
tion software (Agilent Technologies).

Fluorescence in situ hybridization
Fluorescence in situ hybridization was performed as described elsewhere? using
BAG:s located around the region of interest as probes.

RESULTS

CNVs detected in the first screening

In the first screening, of 536 cases subjected to our GDA analysis,
54 (10.1%) were determined to have CNV (Figure 1; Tables 1 and 2).

1st Screening using GDA 27 Screening using WGA-4500
536 cases 349 cases
Pathogenic CNV Pathogenic CNV
54 cases (10.1%) 48 cases (13.8%) VOUS
6 cases (1.7%)

no CNV
482 cases (89.9%)

Figure 1 Percentages of each screening in the current study.

349 negative cases §

Benign CNV
9 cases (2.6%)

no CNV

286 cases (81.9%) |
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Table 1 A total of 40 cases with CNV at subtelomeric region(s) among 54 positive cases in the first screening

Position where CNV detected

Gender Loss Gain Corresponding disorder® OMIM or citation Parental analysis®

M 1p36.33 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1p36.33p36.32 Chromosome 1p36 deletion syndrome #607872

M 1qa4 Chromosome 1q43-g44 deletion syndrome #612337

F 2q37.3 2q37 monosomy® Shrimpton et al.24

F 2q37.3 2q37 monosomy® Shrimpton et al.24

M 3q29 Chromosome 3q29 deletion syndrome #609425

F 5p15.33p15.32 Cri-du-chat syndrome #123450

M 5q35.2q35.3 Chromosome 5q subtelomeric deletion syndrome Rauch et al.25

F 6p25.3 Chromosome 6pter-p24 deletion syndrome #612582

M 7q36.3 7436 deletion syndrome? Horn et al.26

F 7q36.3 7436 deletion syndrome? Horn et al.26

M 9p24.3p24.2 Chromosome 9p deletion syndrome #158170

F 9q34.3 Kleefstra syndrome #610253

F 10g26.3 Chromosome 10q26 deletion syndrome #609625

F 16pl3.3 Chromosome 16p13.3 deletion syndrome #610543

F 22ql3.31 Chromosome 22q13 deletion syndrome #606232

M 22q13.31q13.33 Chromosome 22q13 deletion syndrome #606232

M 15q26.3 15q overgrowth syndrome® Tatton-Brown et al.2’

F 15q26.3 15q overgrowth syndrome® Tatton-Brown et al.2”

M 21q22.13q22.3 Down's syndrome (partial trisomy 21) #190685

M Xp22.33 A few cases have been reported; e.g. V5-130 in Lu et a/.28

M Xq28 Chromosome Xq28 duplication syndrome #300815

F 1g44 Chromosome 1q43-q44 deletion syndrome #612337
8p23.2p23.3

M 3p26.3 3p deletion syndrome® Femandez et a/.2°
12p13.33p11.22

F 3p26.3 3p deletion syndrome® Fernandez et a/.2°
16pl3.3 Chromosome 16p13.3 duplication syndrome #613458

F 4q35.2 4q- syndrome? Jones et al30
7q36.3

M 5p15.33 Cri-du-chat syndrome #123450
20p13

M 5p15.33p15.32 Cri-du-chat syndrome #123450
2p25.3

F 6q27 6q terminal deletion syndrome? Striano et a/3!
11925

F 6q27 6q terminal deletion syndrome® Striano et al.3!
8q24.3

M 7q36.3 7q36 deletion syndrome? Horn et a/.26 dn
1q44

M 9p24.3p24.2 Chromosome 9p deletion syndrome #158170
7q36.3

F 10pl15.3p15.2 Chromosome 10p terminal deletion? Lindstrand et al.32 pat
7p22.3p22.2

M 10p15.3 Chromosome 10p terminal deletion® Lindstrand et al.32
2p25.3

M 10q26.3 Chromosome 10q26 deletion syndrome #609625
2q37.3 Distal trisomy 2q¢ Elbracht et a/.33

M 18q23 Chromosome 18q deletion syndrome #601808
7q36.3

F 22q13.31q13.33 Chromosome 22q13.3 deletion syndrome #606232 pat
17q25.3 One case was reported Lukusa et al34

M Xp22.33/Yp11.32 Contiguous gene-deletion syndrome on Xp22.3¢ Fukami et a/.35
Xg27.3q28 Chromosome Xq28 duplication syndrome #300815

Abbreviations: F, female; CNV, copy-number variant; M, male; OMIM, Online Mendelian Inheritance in Man; dn, de novo CNV observed in neither of the parents.

aThe name of disorder is based on entry names of OMIM, expect for entry na

bpat, father had a balanced translocation i
SEntry names in DECIPHER.
dDescription in each cited article.

. Jil'l\r

ic regions.
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All the CNV:s detected in the first screening were confirmed by FISH.
Among the positive cases, in 24 cases one CNV was detected. All the
CNVs corresponded to well-established syndromes or already
described disorders (Table 1). In 16 cases two CNVs, one deletion
and one duplication, were detected at two subtelomeric regions,
indicating that one of parents might be a carrier with reciprocal
translocation involved in corresponding subtelomeric regions, and at
least either of the two CNVs corresponded to the disorders. We also
performed parental analysis by FISH for three cases whose parental
samples were available, and confirmed that in two cases the sub-
telomeric aberrations were inherited from paternal balanced translo-
cation and in one case the subtelomeric aberrations were de novo
(Table 1). In the other 14 cases, CNVs (25.9%) were detected in
regions corresponding to known disorders (Table 2).

CNVs detected in the second screening and assessment of the CNVs
Cases were subject to the second screening in the order of subjects
detected no CNV in the first screening, and until now we have
analyzed 349 of 482 negative cases in the first screening. In advance,
we excluded highly frequent CNVs observed in healthy individuals
and/or in multiple patients showing disparate phenotypes from the
present results based on an internal database, which contained all
results of aCGH analysis we have performed using WGA-4500, or
other available online databases; for example, Database of Genomic
Variant (http://projects.tcag.ca/variation/). As a result, we detected 66
CNVs in 63 cases (Figure 1; Table 3). Among them, three patients
(cases 36, 42 and 44) showed two CNVs. All the CNVss detected in the
second screening were confirmed by other cytogenetic methods
including FISH and/or X-array. For 60 cases, we performed FISH
for confirmation and to determine the size of each CNV. For five cases,
cases 13, 36, 48, 57 and 63, with CNVs on the X chromosome, we used
the X-array instead of FISH. For cases 4, 6, 16-19 and 34, we also used
Agilent Human Genome CGH Microarray 244K to determine the
refined sizes of CNVs. The maximum and minimum sizes of each
CNV determined by these analyses are described in Table 3.

Well-documented pCNVs emerged in the second screening

CNVs identified for recently established syndromes. We assessed the
pathogenicity of the detected CNVs in several aspects (Figure 2).2'3738
First, in nine cases, we identified well-documented pCNVs, which are
responsible for syndromes recently established. A’ heterozygous deletion at
1q41-q42.11 in case 2 was identical to patients in the first report of
1q41q42 microdeletion syndrome.® Likewise a CNV in case 3 was identical
to chromosome 1q43—q44 deletion syndrome (OMIM: #612337),%° a CNV
in case 4 was identical to 2q23.1 microdeletion syndrome,*! a CNV in case
5 was identical to 14q12 microdeletion syndrome*? and a CNV in case 6
was identical to chromosome 15g26-gter deletion syndrome (Drayer’s
syndrome) (OMIM: #612626).4> Cases 7, 8 and 9 involved CNVs of
different sizes at 16p12.1-p11.2, the region responsible for 16p11.2-p12.2
microdeletion syndrome.#4° Although an interstitial deletion at 1p36.23-
P36.22 observed in case 1 partially overlapped with a causative region of
chromosome 1p36 deletion syndrome (OMIM: #607872), the region
deleted was identical to a proximal interstitial 1p36 deletion that was
recently reported. Because patients with the proximal 1p36 deletion
including case 1 demonstrated different clinical characteristics from cases of
typical chromosome 1p36 deletion syndrome, in the near term their
dlinical features should be redefined as an independent syndrome.*

CNVs containing pathogenic gene(s). In four cases we identified
pCNVs that contained a gene(s) probably responsible for phenotypes.
In case 10, the CNV had a deletion harboring GLI3 (OMIM: *165240)

Two-stage aCGH analysis for patients with MCAMR
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Table 2 Other cases among 54 positive cases in the first screening

Position where CNV detected

Gender Gain Loss Corresponding disorder OMIM
F 4pl6.3 Ring chromosome
4935.2
M 3q22.323 BPES #110100
M 2q22.3 ZFHX1B region *605802
M 4q22.1 Synuclein (SNCA) region *163890
F 7p21.1 Craniosynostosis, type 1~ #123100
F 7ql11.23 Williams syndrome #194050
F 8q23.3g24.11 Langer-Giedion syndrome #150230
M 15q11.2q13.1 Prader-Willi/Angelman #176270/
#105830
F 17p11.2 Smith-Magenis syndrome #182290
M 17q11.2 Neurofibromatosis, type | +162200
M 22qll.21 DiGeorge syndrome #188400
F 22q11.21 DiGeorge syndrome #188400
F Xp22.31 Kallmann syndrome 1 +308700
F Whole X Mosaicism

Abbreviations: CNV, copy-number variant; F, female; M, male; OMIM, Online Mendelian
Inheritance in Man.

accounting for Greig cephalopolysyndactyly syndrome (GCS; OMIM:
175700).#7 Although phenotypes of the patient, for example, pre-axial
polydactyly of the hands and feet, were consistent with GCS, his severe
and atypical features of GCS, for example, MR or microcephaly, might
be affected by other contiguous genes contained in the deletion.®
Heterozygous deletions of BMP4 (OMIM: *112262) in case 11 and
CASK (OMIM: *300172) in case 13 have been reported previously. 4>
In case 12, the CNV contained YWHAE (OMIM: *605066) whose
haploinsufficiency would be involved in MR and mild CNS dysmor-
phology of the patient because a previous report demonstrated that
haploinsufficiency of ywhae caused a defect of neuronal migration in
mice’! and a recent report also described a microdeletion of YWHAE
in a patient with brain malformation.?

Recurrent CNVs in the same regions. We also considered recurrent
CNVs in the same region as pathogenic; three pairs of patients had
overlapping CNVs, which have never been reported previously.. Case
16 had a 3.3-Mb heterozygous deletion at 10g24.31-q25.1 and case 17
had a 2.0-Mb deletion at 10q24.32—q25.1. The clinical and genetic
information will be reported elsewhere. Likewise, cases 14 and 15 also
had an overlapping CNV at 6q12—q14.1 and 6ql4.1, and cases 18 and
19 had an overlapping CNV at 10p12.1-p11.23. Hereafter, more
additional cases with the recurrent CNV would assist in defining
new syndromes.

CNVs reported as pathogenic in previous studies. Five cases were
applicable to these criteria. A deletion at 3p21.2 in case 20 overlapped
with that in one case recently reported.>> The following four cases had
CNVs reported as pathogenic in recent studies: a CNV at 7p22.1 in
case 21 overlapped with that of patient 6545 in a study by Friedman
etal,'* a CNV at 14q11.2 in case 22 overlapped with those of patients
8326 and 5566 in Friedman et al.,'* a CNV at 17q24.1-q24.2 in case 23
overlapped with that in patient 99 in Buysse et al>* and a CNV at
19p13.2 in case 24 overlapped with case P11 in Fan et al>®

Large or gene-rich CNVs, or CNVs containing morbid OMIM
genes. In cases inapplicable to the above criteria, we assessed CNVs

113
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Figure 2 A flowchart of the assessment of CNVs detected in the second screening.

from several aspects. A CNV that contains abundant genes or is large
(>3 Mb) has a high possibility to be pathogenic.2! The CNVs in cases
25-30 probably correspond to such CNVs. Also, we judged a CNV
containing a morbid OMIM gene as pathogenic:! TBRI (OMIM:
*604616) in case 31,5 SUMFI (OMIM: *607939) in case 32,
SEMA3A (OMIM: *603961) in case 33, EMLI (OMIM: *602033)
and/or YY1 (OMIM: *600013) in case 34,506! A2BPI (OMIM:
*605104) in case 3552 and ILIRAPLI (OMIM: *300206) in case
36.5% Several previous reports suggest that these genes are likely to
be pathogenic, although at present no evidence of a direct association
between these genes and phenotypes exists.

CNVs de novo or X maternally inherited. Among the remaining
27 cases, 12 cases had CNVs considered pathogenic as their CNVs
were de novo (cases 37-47) or inherited del(X)(p11.3) from the
mother (case 48). In the second screening we performed FISH for
36 CNVs of the 34 cases whose parental samples were available to
confirm that 24 cases had de novo CNVs, which were probably
pathogenic. A CNV in case 48, a boy with a nullizygous deletion at
Xpl11.3 inherited from his mother, was also probably relevant to his
phenotype (Tables 3 and 4). Meanwhile, although case 57 was a boy
with a deletion at Xp11.23 inherited from his mother, he was clinically
diagnosed with Gillespie syndrome (OMIM: #206700) that was
reported to show an autosomal dominant or recessive pattern,*
thus we judged that the deletion was not relevant to his phenotype.
As a result, cases 49-57 had only CNVs inherited from one of their
parents which are likely to be unrelated to the phenotypes; that is,
bCNYV (Table 4).

As a result, we estimated that 48 cases among 349 analyzed (13.8%)
had pCNV(s) in the second screening (Table 3; Figure 2). The CNVs
of the remaining six cases, cases 58-63, were not associated with
previously reported pathogenicity and their inheritance could not be
evaluated, thus we estimated they were variants of uncertain clinical
significance (VOUS).38

DISCUSSION
Because aCGH is a high-throughput technique to detect CNVs rapidly
and comprehensively, this technique has been commonly used for

analyses of patients with MCA and/or MR.38¢568 However, recent
studies of human genomic variation have uncovered surprising
properties of CNV, which covers 3.5-12% of the human genome
even in healthy populations.'®20%% Thus analyses of patients with
uncertain clinical phenotypes need to assess whether the CNV is
pathogenic or unrelated to phenotypes.?! However, such an assess-
ment may diminish the rapidness or convenience of aCGH.

In this study, we evaluated whether our in-house GDA can work
well as a diagnostic tool to detect CNVs responsible for well-
established syndromes or those involved in subtelomeric aberrations
in a clinical setting, and then explored candidate pCNVs in cases
without any CNV in the first GDA screening. We recruited 536 cases
that had been undiagnosed clinically and studied them in a two-stage
screening using aCGH. In the first screening we detected CNVs in
54 cases (10.1%). Among them, 40 cases had CNV(s) at subtelomeric
region(s) corresponding to the well-established syndromes or the
already described disorders and the other 14 cases had CNVs in
the regions corresponding to known disorders. Thus about three
quarters of cases had genomic aberrations involved in subtelomeric
regions. All the subtelomeric deletions and a part of the subtelomeric
duplications corresponded to the disorders, indicating that especially
subtelomeric deletions had more clinical significance compared to
subtelomeric duplications, although the duplication might result in
milder phenotypes and/or function as a modifier of phenotypes.”
Moreover, parental analysis in three cases with two subtelomeric
aberrations revealed that two of them were derived from the parental -
balanced translocations, indicating that such subtelomeric aberrations
were potentially recurrent and parental analyses were worth
performing. Recently several similar studies analyzed patients with
MCA/MR or developmental delay using a targeted array for sub-
telomeric regions and/or known genomic disorders and detected
clinically relevant CNVs in 4.4-17.1% of the patients.?865707!
Our detection rate in the first screening was equivalent to these
reports. Although such detection rates depend on the type of
microarray, patient selection criteria and/or number of subjects,
these results suggest that at least 10% of cases with undiagnosed
MCA/MR and a normal karyotype would be detectable by targeted
array.
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Table 4 Parental analysis of 34 cases in the second screening

CNV Size of CNV (bp)
Clinical Protein-coding Parental
Case Gender diagnosis del/dup Position Min. Max. genes analysis Pathogenicity
1 M MCA/MR del 1p36.23p36.22 1670237 2558590 32 de novo P
2 M MCA/MR del 1q41qg42.11 5001 798 6481439 35 de novo P
7 M MCA/MR del 16pl2.1p1l.2 2816866 5648152 138 de novo P
8 M MCA/MR del 16pl1.2 951773 4258984 134 de novo P
with CHD
10 M MCA/MR del 7pl14.2p13 8516513 9421233 70 de novo P
11 F MCA/MR del 14q22.1922.3 2746662 3089980 18 de novo P
12 M MCA/MR del 17q13.3 930940 1018839 22 de novo P
13 M MCAMR del Xpl1.4p11.3 4034171 4103418 9 de novo P
14 M MCAMR del 6ql2ql4.1 14194290 16071847 56 de novo P
18 M MCA/MR del 10q24.31¢25.1 3345595 3368825 66 de novo P
19 M MCA/MR del 10q24.32¢25.1 2077638 2093622 41 de novo P
21 M MCA/MR del 7p22.1 341762 3223668 28 de novo P
24 M SMS susp. del 19p13.2 1719919 3304902 23 de novo P
37 F MCA/MR del 1p34.3 1128084 1753514 7 de novo P
38 M MCA/MR dup 1925.2 338801 771348 9 de novo P
39 M MCA/MR del 2p24.1p23.3 3721550 8376636 86 de novo P
40 F MCA/MR del 3p26.1p25.3 1433024 1835660 18 de novo P
41 M MCA/MR del 3p22.1p21.31 5893173 7832879 123 de novo P
422 M MCA/MR del 8q21.11¢21.13 5289394 5770485 12 de novo P
422 M MCA/MR del 3pl4.3pl4.2 593434 1517140 11 Maternal B
43 M MCA/MR del 3q26.31q26.33 4081515 6002971 12 de novo P
44> M MCA/MR del 13q13.2q13.3 917819 1458769 1 de novo P
440 M MCA/MR del 22q11.21 917819 1458769 15 Paternal B
45 F Rett syndrome del 18q21.2 2121913 3642522 9 de novo P
46 M MCA/MR dup 19p13.3 2041395 2404096 113 de novo P
47 F MCA/MR del 19p13.3 816079 2037409 23 de novo P
48° M MCA/MR del Xpll.3 2362422 2392511 18 Maternal P
49 M MCA/MR dup 3p26.3 176050 250850 1 Paternal B
50 M MCA/MR dup 5p14.3 170578 1752211 1 Paternal B
51 M MCA/MR dup 5q13.3 1020329 1421706 3 Maternal B
52 M MCA/MR dup 7p22.3 568 1101943 12 Maternal B
53 F MCA/MR dup 8p23.2 838610 2648539 1 Paternal B
54 M MCA/MR dup 9g33.1 162612 1030807 2 Paternal B
55 F MCA/MR dup 10q22.3 154664 873124 1 Maternal B
56 M MCA/MR dup 12¢21.31 152042 4843434 3 Paternal B
57 M Gillespie del Xpl11.23 104191 115604 3 Maternal B
syndrome

Abbreviations: B, benign; CNV, copy-number variant; F, female; M, male; MCA/MR, multiple congenital anomalies and mental retardation; P, pathogenic.

#Two CNVs were detected in case 42.
bTwo CNVs were detected in case 44.
“Nullizygous deletion inherited from his mother probably affected the phenotype.

Another interesting observation in the first screening was that
subtelomeric rearrangements frequently occurred even in patients
with MCA/MR of uncertain whose karyotype had been diagnosed as
normal. This result may be consistent with a property of subtelomeric
regions whose rearrangements can be missed in conventional karyo-
typing,” and in fact other techniques involving subtelomeric FISH or
MLPA also identified subtelomeric abnormalities in a number of
patients with MCA and/or MR in previous reports.”%’37# Qur result
may support the availability of prompt screening of subtelomeric
regions for cases with uncertain congenital disorders.

In the second screening we applied WGA-4500 to 349 cases to
detect 66 candidate pCNVs in 63 cases (18.1%), and subsequently
assessed the pathogenicity of these CNVs. The pCNVs included nine

Journal of Human Genetics

CNVs overlapping identical regions of recently recognized syndromes
(cases 1-9; deletion at 1p36.23-p36.22, 1q41-q42.11, 1q43—q44,
2q23.1, 14ql2, 15q26-qter and 16pl1.2-pl2.2, respectively), four
CNVs containing disease-associated genes (cases 10-13; GLI3,
BMP4, YWHAE and CASK, respectively), three pairs of CNVs of
recurrent deletions (cases 14, 15: at 6q12—-q14.1 and 6q14.1; case 16,
17: at 10pl12.1-p11.23 and case 18, 19: at 10q24.31-g25.1 and
10q24.32—q25.1), five CNVs identical to pCNVs in previous studies
(cases 20-24), six large and/or gene-rich CNVs (cases 25-30) and six
CNVs containing a morbid OMIM gene (cases 31-36). For the
remaining cases, we estimated the pathogenicity of the CNVs from
a parental analysis (Table 4). We judged the 11 de novo CNVs
(cases 37-47) and 1 CNV on chromosome Xpl1l.3 inherited from



the mother (case 48) as probably pathogenic. And nine inherited
CNVs (cases 49-57) were probably benign. The clinical significance of
CNVs in the other six cases, cases 58—63, remains uncertain (VOUS).
As a result we estimated CNVs as pathogenic in 48 cases among 349
cases (13.8%) analyzed in the second screening. None of the pCNVs
corresponded to loci of well-established syndromes. This may suggest
that our two-stage screening achieved a good balance between rapid
screening of known syndromes and investigation of CNV of uncertain
pathogenicity.

Table 5 Summary of parental analyses

Average size (bp)
The average number of
Min. Max. protein-coding genes

Pathogenic CNVs®

del 23 3309267 4597689 43

dup 2 1190098 1587722 61

Total 25 3139733 4356892 44
Benign CNVs®

del 3 538481 1030504 10

dup 8 334432 1740327 3

Total 11 390082 1546739 5

Abbreviation: CNV, copy-number variant.
Twenty-four de novo CNVs and case 48.
BEleven inherited CNVs other than case 48.
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Among the cases with parental analyses, the 25 pCNVs had larger
sizes and contained more protein-coding genes (average size, 3.1 Mb at
minimum to 4.4 Mb at maximum; average number of genes, 44) as
compared with the 11 inherited bCNVs that were probably unrelated
to phenotypes (average size, 0.39Mb at minimum to 1.5Mb at
maximum; average number of genes, 5) (Table 5). Although all of
the 25 pCNVs except 2 were deletions, about three quarters (8 of 11
cases) of the inherited bCNVs were duplications (Table 5). These
findings are consistent with previously reported features of pCNVs
and bCNVs.21:38

We also compared our current study with recent aCGH studies
meeting the following conditions: (1) a microarray targeted to whole
genome was applied; (2) patients with MCA and/or MR of uncertain
etiology, normal karyotype and the criteria for patients selection were
clearly described; (3) pathogenicity of identified CNV's were assessed.
On the basis of the above criteria, among studies reported in the past 5
years, we summarized 13 studies (Table 6).10:14.15,17,54,55,75-81 Diag-
nostic yield of pCNVs in each study was 6.3-16.4%, and our current
diagnostic yield of the second screening was 13.8%. Though cases with
subtelomeric aberration detected in the first screening had been
excludéd, our diagnostic yield was comparable to those of the reported
studies. It is not so important to make a simple comparison between
diagnostic yields in different studies as they would depend on the
conditions of each study, for example, sample size or array resolu-
tion, %82 however it seems interesting that the higher resolution of a
microarray does not ensure an increase in the rate of detection of
PCNVs. One recent study showed data that may explain the discre-
pancy between the resolution of microarray and diagnostic yield.>#3
The authors analyzed 1001 patients with MCA and/or MR using one

Table 6 Previous studies of analyzing patients with MCA and/or MR using aCGH targeted to whole genome

Applied array Patients Pathogenic CNV

Author (year) Type Number Distribution® Number Type of disorders Number %
Schoumans et al.”5 BAC 2600 1.0 Mb* 41 MCA and MR 4 9.8
de Vries et al.76 BAC 32477 Tiling 100 MCA and/or MR 10 10.0
Rosenberg et al.”’ BAC 3500 1.0Mb* 81 MCA and MR 13 16.0
Krepischi-Santos et al.’8 BAC 3500 1.0 Mb* 95 MCA and/or MR 15 158
Friedman et al.!4 SNP Affymetrix 100K 23.6kb** 100 MR 11 11.0
Thuresson et al.7® BAC 1.0 Mb* 48 MCA and MR 3 6.3
Wagenstaller et al.8° SNP Affymetrix 100K 23.6kb** 67 MR 11 16.4
Fan et al.55 Oligo Agilent 44K 24 kb—43 kb** 100¢ MCA and MR, Autism 154 15.0
Xiang et al.15 Oligo Agilent 44K 24 kb-43 kb** 408 MR, DD and autism 3 7.5
Pickering et al.10 BAC 2600 1 Mb* 354! MCA and/or MR 368 10.2
McMullan et al.}” SNP Affymetrix 500K 2.5kb-5.8kb** 120 MCA and/or MR 18 15.0
Bruno et al.8! SNP Affymetrix 250K 2.5kb-5.8kb** 117 MCA and/or MR 18 15.4
Buysse et al.54 BAC 3431 1 Mb* 298 MCA and/or MR 26 8.7

Oligo Agilent 44K 24 kb—43 kb** 703 MCA and/or MR 74 10.5
Our current study BAC 4523 0.7Mb 349 MCA and MR 48 13.8
Total 2613 305 11.7
A iati BAC, b ial artificial : CNV, copy-number variant; DD, developmental delay: MCA, multiple congenital anomalies; MR, mental r dation; SNP, single |
polymorphism.

#The number of clones or name of array is described.

bEach distribution referred to each article (*) or manual of each manufacturer (**).
CAll cases were analyzed by both a targeted array and a genome-wide array.

9In five cases, CNVs were also identified by a targeted array.

*Ten cases with an abnormal karyotype were excluded.

fOnly cases studied with an array throughout the genome are described. Ninety-eight cases were also analyzed by a targeted array.

8Seventeen cases with an abnormal karyotype were excluded.
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of two types of microarray, BAC array and oligonucleotide array. The
BAC array was applied for 298 patients to detect 58 CNVs in 47
patients, and among them 26 CNVs (8.7%) were determined to be
causal (pathogenic). Conversely, the oligonucleotide arrays were
applied for 703 patients to detect 1538 CNVs in 603 patients, and
among them 74 CNVs (10.5%) were determined to be pathogenic.
These results may lead to the following idea: a lower-resolution
microarray detects a limited number of CNVs likely to be pathogenic,
because such CNVs tend to be large, and a higher-resolution micro-
array detects an increasing number of bCNVs or VOUS.?® Indeed, in
studies using a high-resolution microarray, most of the CNVs detected
were smaller than 500kb but almost all pCNVs were relatively
large.>*81:83 Most of the small CNVs were judged not to be patho-
genic, and the percentage of pCNVs stabilized at around 10%. This
percentage may suggest a frequency of patients with MCA/MR caused
by CNV affecting one or more genes, other than known syndromes
and subtelomeric aberrations. The other patients may be affected by
another cause undetectable by genomic microarray; for example a
point mutation or microdeletion/duplication of a single gene, aberra-
tion of microRNA, aberration of methylation states, epigenetic aberra-
tion or partial uniparental disomy.

As recently hypothesized secondary insult, which is potentially
another CNV, a mutation in a phenotypically related gene or an
environmental event influencing the phenotype, may result in clinical
manifestation.?* Especially, in two-hit CNVs, two models have been
hypothesized: (1) the additive model of two co-occurring CNVs
affecting independent functional modules and (2) the epistatic
model of two CNVs affecting the same functional module.®® It also
suggests difficulty in selecting an optimal platform in the clinical
screening. Nevertheless, information on both pCNVs and bCNVs
detected through studies using several types of microarrays is unam-
biguously significant because an accumulation of the CNVs will create
a map of genotype—phenotype correlation that would determine the
clinical significance of each CNV, illuminate gene function or establish
a new syndrome.
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To the editor:

Rapid improvement of life-threatening capillary leak syndrome after stem cell transplantation

by bevacizumab

Capillary leak syndrome (CLS) is a severe complication of allogeneic
stem cell transplantation (SCT) characterized by weight gain, general-
ized edema, hypotension, and hypoalbuminemia.! The main CLS
pathogenesis is injury of the capillary endothelium resulting in a loss of
intravascular fluid into interstitial spaces. Treatment is limited to
withdrawal of growth factors and systemic corticosteroids; however, a
good response is limited and most severe CLS cases progress to fatal
multiple-organ dysfunction syndrome. Vascular endothelial growth
factor (VEGF) is a potent inducer of vascular permeability and may
have a crucial role in the mechanism underlying CLS formation.? In the
present study, we report the successful treatment of life-threatening CLS
that developed after allogeneic SCT using the anti-VEGF antibody
bevacizumab (Avastin; Chugai).?

A 6-year-old male with Fanconi anemia received marrow cells
from a HLA-DRB1 mismatched unrelated donor as previously
described.# On day 22 after SCT, the patient developed posterior
reversible encephalopathy syndrome with mild systemic edema,
suggesting generalized injury of the vascular endothelium. Subse-
quently, grade 2 acute graft-versus-host disease of the skin and
gastrointestinal tract ensued but was easily controlled with pred-
nisolone. However, systemic edema accompanying consciousness
disturbance, tachypnea and tachycardia developed 68 days after
SCT. Computed tomography (CT) revealed massive pleural effu-
sion (Figure 1A) and ascites, and the patient was diagnosed with
CLS. Despite intensive conventional treatments, including pred-
nisolone (1 mg/kg daily), ulinastatin (10 000 units/kg daily), and

albumin (0.8 g/kg every other day), hypotension, negative central
venous pressure, and anuria developed 72 days after SCT. Because
of the patient’s critical condition and lack of response to other
therapies, his case was discussed in the transplantation peer review
group. Off-label use of bevacizumab was recommended. Written
informed consent to the treatment in accordance with the Declara-
tion of Helsinki and permission to publish results were obtained
from the parents separately before the study and after the study,
respectively. The publication of this study involving bevacizumab
administration was approved by the institutional review board of
Tokai University Hospital. Rationale and potential side effects
were also discussed with the parents. Intravenous bevacizumab
(5 mg/kg body weight) was administered over a 90-minute
period. On the first day after treatment, urine production started
to improve, and blood pressure and central venous pressure
returned to the normal range. On the second day, all symptoms
were ameliorated. A marked decrease in the amounts of pleural
effusion was evident on the CT films obtained on the fifth day
after bevacizumab administration (Figure 1B), and complete
resolution of pleural effusion was revealed on the CT films taken
20 days after the treatment (Figure 1C). Plasma VEGF level
before bevacizumab administration was not elevated (27 pg/mL;
normal, < 115 pg/mL).

To the best of our knowledge, this is the first report on
bevacizumab treatment of CLS developing after SCT. CLS after
SCT has been difficult to ameliorate; however, bevacizumab was
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Figure 1. Administration of bevacizumab. Chest CT before (A), 5 days after (B),
and 20 days after (C) treatment with bevacizumab.

shown to be highly effective against CLS in a patient even when
plasma VEGF level was not increased, and may be useful under
coexisting illness after SCT. Vascular endothelial damage plays a
causal role in early complications of vascular origin after SCT,
including hepatic veno-occlusive disease, engraftment syndrome,
thrombotic microangiopathy, and idiopathic pneumonia syn-
drome.” Bevacizumab may have a broad specuum of efficacy
against these complications.
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