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Figure 1.

(mmHg)

In vivo gene transfer of dominant-negative Rac1 into the rostral ventrolateral medulla (RVLM). (A) Schematic diagram
showing the transfection sites. Gene transfer of adenovirus encoding dominant negative Rac1 (AdDNRac1) bilaterally into the
RVLM (1.4x10° pfu/ml; 500ni/site). (B) Transfection sites were confirmed by prior microinjection of -glutamate. (C) Time course
of AdDNRac1 expression levels in the RVLM on western blot. HA, hemagglutinin.
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rats. In addition, superoxide dismutase (SOD) expression and
activity, which are ROS scavenging factors, were decreased
in the RVLM of SHRSP compared with WKY rats. Func-
tionally, microinjection of the membrane-permeable radical
scavenger tempol into the RVLM decreased blood pres-
sure, heart rate, and sympathetic nervous system activity in
SHRSP but not in WK rats. More importantly, overexpres-
sion of Mn-SOD, an antioxidant enzyme, in the RVLM of
SHRSP decreased blood pressure and sympathetic nervous
system activity. These findings strongly indicate that oxida-
tive stress in the RVLM is increased in SHRSP and contrib-
utes to the neural mechanisms of hypertension. As described
here, brain ROS is one of the results of generalized target
organ damage, appearing earlier in the brain due to its sus-
ceptibility. The brain ROS would increase blood pressure
via activation of the sympathetic nervous system and this
would ultimately result in a vicious cycle. It would be pos-
sible, however, that brain ROS is involved in the early stage
of hypertension in SHR or SHRSP, because we found that
oxidative stress in the brain assessed on in vivo ESR was
enhanced in young (6-week-old) SHR or SHRSP compared
with age-matched WKY rats (unpublished data). The levels
of TBARS were not different, probably because the levels
of TBARS reflect lipid peroxidation caused by ROS. Other
investigators also found that an increase in superoxide anions
in the RVLM is associated with hypertension in SHR," and
reduced expression and activity in Cu/Zn-SOD and Mn-SOD
within the RVLM contribute to oxidative stress and neuro-
genic hypertension in SHR.?’ An increase in oxidative stress
within the RVLM also plays an important role in maintaining
high arterial blood pressure and sympathetic activation in 2-
kidney 1-clip (2K-1C) hypertensive rats, which is a renovas-
cular hypertension model.?! In that study, Oliveira-Sales et al

demonstrated that the mRNA expression of NAD(P)H oxi-
dase subunits (p477"~ and gp91#hox) in the RVLM was greater
in 2K-1C than in the control group. Interestingly, there were
no differences in Cu/Zn-SOD expression between the two
groups. TBARS levels in the RVLM were significantly greater
in the 2K-1C than in the control group, suggesting enhanced
oxidative stress. Functionally, microinjection of vitamin C into
the RVLM decreased blood pressure and renal sympathetic
nerve activity in 2K-1C but not in controls. Importantly, in a
subsequent study, these authors suggested that the paraven-
tricular nucleus of the hypothalamus is also involved.?? Nota-
bly, although 2K-1C is a model of renovascular hypertension,
suggesting that circulating Ang II is increased, angiotensin
type I (AT1) receptor gene expression levels within the RVLM
and paraventricular nucleus were upregulated in this model,
indicating that ROS was produced via the activation of nico-
tinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase.

Sources of ROS Production in the Brain

As a source of ROS production in the CNS, NAD(P)H oxi-
dase is a major player. NAD(P)H oxidase is composed of two
membrane-bound subunits, gp9 1P"* and p22rhex; several cyto-
plasmic subunits, p47rhox, p40rhox, and p67Px; and the small
G-protein Rac1.2%-26 Stimulation of AT1 receptors activates
NAD(P)H oxidase by which the cytoplasmic subunits of
RacINAD(P)H oxidase such as Rac1 bind to the membrane
subunits, thereby activating the enzyme leading to super-
oxide generation. Racl requires lipid modification to migrate
from the cytosol to the plasma membrane, which is a neces-
sary step for activating ROS-generating NAD(P)H oxidase.
NAD(P)H oxidase activity is greater in the brainstem of
SHRSP than in that of WKY.?7% We transfected adenovirus
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Figure 2. Rac1 activity is elevated in
the rostral ventrolateral medulla of stroke-
prone spontaneously hypertensive rats
(SHRSP) compared to Wistar—Kyoto
(WKY) rats. GDP, guanosine 5-diphos-
phate; GTP-yS, guanosine 5-O-(3-thio-
triphospahte).

encoding dominant-negative Racl into the RVLM of SHRSP
and WKY rats (Figure 1).?” Racl activity in the RVLM tissue
was increased in SHRSP compared to WKY rats (Figure 2).27
Importantly, we demonstrated that inhibition of Rac1-derived
ROS in the RVLM decreased blood pressure, heart rate, and
urinary norepinephrine excretion in SHRSP (Figure 3).27 A
similar response occurs after inhibition of Rac1-derived ROS
in the nucleus tractus solitarius (NTS).2

In addition to the cytosolic production of ROS, mitochon-
dria are the primary source of ROS production in many cells.
Ang Il increases mitochondrial ROS production in the RVLM,
leading to sympathoexcitation.?? Furthermore, NAD(P)H oxi-
dase-derived ROS might trigger Ca?* accumulation, which
leads to mitochondrial ROS production.?? This suggestion
is based on the finding that gene transfer of dominant nega-
tive Racl attenuated the Ang II-induced increase in reduced
Mito-Tracker red fluorescence.? In contrast, impairment
of mitochondrial electron transport chain complexes in the
RVLM might be involved in the neural abnormality underly-
ing hypertension in SHR.* This issue was recently discussed
by Zimmerman and Zucker.’ Although we did not detect
impairment of brain mitochondrial respiratory complexes in
SHRSP, we propose that mitochondria-derived ROS mediate
sympathoexcitation via NAD(P)H oxidase activation.?

Another possibility for ROS generation is uncoupling nitric
oxide synthase (NOS). In the absence of L-arginine or with
tetrahydrobiopterin, NO production from inducible NOS
(iNOS) causes uncoupling from the oxidation of NADPH,
resulting in superoxide generation.” INOS overexpression in
the RVLM causes hypertension and sympathoexcitation that
is mediated by an increase in oxidative stress.?> This might
be relevant to our observation that iNOS expression levels
in the RVLM are greater in SHRSP than in WKY rats.* In
addition, microinjection of iNOS antagonists into the RVLM
reduces blood pressure only in SHR, but not in WKY rats.*

ROS-Mediated Activation
of Transcriptional Factors
It has been suggested that an Ang II-mediated influx of Ca2*

in neurons depends on increased superoxide generation by a
Racl-dependent NAD(P)H oxidase.** Ang II also regulates
neuronal activity via inhibition of the delayed rectifier potas-
sium current.* Ang II-mediated upregulation of L-type Ca2*
currents in neurons isolated from the NTS is inhibited by
scavenging ROS, indicating a role for NAD(P)H oxidase-
derived superoxide in the activation of Ca?* channels in the
NTS. %

NAD(P)H oxidase-derived superoxide mediates an Ang
I-induced pressor effect via the activation of p38 mitogen-
activated protein kinase (MAPK) in the RVLM.3 Recently,
we suggested that AT1 receptor-activated caspase-3 acting
through the Ras/p38 MAPK /extracellular signal-related pro-
tein kinase pathway in the RVLM is involved in sympatho-
excitation in SHRSP.¥” These pathways may be downstream
effectors of ROS in the RVLM, which in turn plays a crucial
role in the pathogenesis of hypertension. Interestingly, the
pro-apoptotic proteins Bax and Bad were enhanced and the
anti-apoptotic protein Bcl-2 was decreased in the RVLM of
SHRSP, and inhibition of caspase-3 normalized these changes
in pro- and anti-apoptotic protein levels.’” These alterations
in the RVLM of SHRSP were stimulated by Ang II via acti-
vation of the AT1 receptors, which are upregulated in this
strain and other hypertensive models.* It would be reason-
able to consider that different mechanisms may be responsi-
ble for sympathoexcitation in different brain sites (influx of
Ca?" for RVLM, apoptosis for NTS), and activation of the
apoptotic pathway is involved in sympathoexcitation in the
RVLM.*" The exact physiologic implication of these obser-
vations requires further evaluation.

Effects of Angiotensin Receptor Blockers
on Brain Oxidative Stress

The existence of an independent renin—angiotensin system
in the brain is well established. Activation of the brain renin—
angiotensin system substantially contributes to the develop-
ment and maintenance of hypertension through activation
of the sympathetic nervous system, vasopressin release, and
drinking behavior.*-# There is considerable evidence that
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Figure 3. Inhibition of Rac1-dependent superoxide production in the rostral ventrolateral medulla (RVLM) decreases blood
pressure, heart rate, and urinary norepinephrine excretion in stroke-prone spontaneously hypertensive rats (SHRSP). (A) Time
course of mean blood pressure (BP) and heart rate (HR) before and after gene transfer of dominant negative Rac1 (DNRac1).
(B) Twenty-four-hour urinary norepinephrine excretion before and after gene transfer of DNRac1 into the RVLM. d, day; WKY,

peripherally administered angiotensin receptor blockers
(ARBs) penetrate the blood—brain barrier, although there are
some differences among ARBs.*!¥2 AT1 receptors are abun-
dant in the circumventricular organs, such as the subfornical
organ and the organum vasculosum lamina terminalis, and
the area postrema, which lack a blood—brain barrier.?-42
Therefore, peripherally administered ARBs can also bind to

those areas, thereby inhibiting the central actions of Ang II.
Oral treatment with the ARB telmisartan appears to inhibit
the central responses to AngII in awake rats.** Although
other ARBs also inhibit the central actions of Ang Il within
the brain beyond the blood-brain barrier,*424 these effects
might differ depending on the pharmacokinetics and prop-
erties of each drug (ie, lipophilicity etc).** We evaluated the
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effect of treatment with telmisartan at either a high dose
(10mg-kg'-day") or a low dose (3mg-kg-'-day™), or
hydralazine for 30 days on hypertension.* Systolic blood
pressure (SBP) and heart rate were measured using the tail-
cuff method. Urinary norepinephrine excretion was measured
as a marker of the sympathetic nervous system activity. We
evaluated ROS in the brain (cortex, cerebellum, hypothal-
amus, and brainstem) of SHRSP on ESR spectroscopy and
TBARS. Oral treatment with telmisartan reduced SBP dose-
dependently and hydralazine reduced SBP to a similar level to
the high dose of telmisartan (Figure 4). Telmisartan reduced,
while hydralazine increased, urinary norepinephrine excre-
tion (Figure 4). TBARS levels were significantly increased
in each area of the brain of SHRSP compared with WKY
rats (Figure 5). Oral treatment with telmisartan reduced the
TBARS levels, but hydralazine did not (Figure 5). These
findings suggest that (1) anti-hypertensive treatment with

telmisartan reduces ROS in the brain of SHRSP; (2) telmis-
artan decreases blood pressure, at least in part, via a reduc-
tion of the sympathetic nervous system activity in SHRSP;
and (3) these effects induced by telmisartan might be associ-
ated with protection of the brain of SHRSP from oxidative
stress. We also measured the concentration of hydroxyl radi-
cals using a modified procedure based on the hydroxylation
of sodium salicylate by hydroxyl radicals,* leading to the
production of 2,3-dihydroxybenzoic acid (2,3-DHBA).247
Inhibition of Racl in the RVLM and oral treatment with
telmisartan significantly decreased the production of hydroxyl
radicals in the RVLM (Figure 6).47

Recently, we used in vivo ESR to assess oxidative stress
in the brain, and found that oral treatment with another ARB,
olmesartan, reduces oxidative stress in the brain of SHRSP
without inducing reflex activation of the sympathetic nervous
system.* In that study we evaluated the in vivo ESR signal
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Figure 5. Antioxidant effects of telmisartan in different brain areas. Thiobarbituric acid-reactive substances (TBARS) levels after
treatment with telmisartan (3 or 10mg/kg), hydralazine, or vehicle in SHRSP.
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Figure 6. Reactive oxygen species
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decay rates of the brain using methoxycarbonyl-PROXYL, a
nitroxyl radical species, as a blood—brain barrier-permeable
spin probe.* Oral treatment with olmesartan attenuated the
exaggerated pressor response to an excitatory amino acid,
L-glutamate, in the RVLM of SHR compared to WKY rats.*
Further, the pressor response to microinjection of Ang I into
the RVLM was diminished in SHR treated with olmesartan.™
Thus, the importance of oxidative stress in the brain and
hypertension is supported by our studies as well as those of
others.!!

Several questions, however, remain to be answered. A

recent study suggested that systemic administration of can-
desartan reduces brain Ang Il levels because it attenuates the
mRNA expression of both angiotensinogen and angiotensin-
converting enzyme in Ang II-infused rats.5! Whether systemic
treatment with ARBs indirectly regulates brain Ang II re-
mains to be determined.*?

Effects of Other Cardiovascular Drugs
on Brain Oxidative Stress

Considering that ARBs act to inhibit NAD(P)H oxidase activ-
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ity, it is reasonable that ARBs have an antioxidant effect,
although there are some unresolved questions, as mentioned
previously. Calcium channel blockers, azelnidipine and amlo-
dipine, but not nicardipine, which also have antioxidant
properties, have a sympatho-inhibitory effect on the brain.5354
In particular, treatment with azelnidipine reduces oxidative
stress in the RVLM associated with a decrease in the activity
of NAD(P)H oxidase, Cu/Zn-SOD, and Mn-SOD.5* These
effects might be related to an improvement in NO produc-
tion, because we also demonstrated that overexpression of
endothelial NOS in the NTS or RVLM decreases blood pres-
sure and heart rate via the inhibition of sympathetic nervous
system activity.55 Surprisingly, we also found that atorvas-
tatin inhibits the sympathetic nervous system as a result of
upregulating NO activity and reducing oxidative stress.®0-63
Further studies are needed to determine if this mechanism is
also applicable in humans.

Salt-Sensitive Hypertension
and Brain Oxidative Stress

Activation of the sympathetic nervous system, in particular,
an increase in central sympathetic outflow, plays an impor-
tant role in the pathogenesis of salt-sensitive hypertension
as well as that of kidney diseases.®% Recent studies suggest
that oxidative stress in the brain contributes to blood pres-
sure elevation in salt-sensitive hypertension.®7 We dem-
onstrated that high salt intake exacerbates blood pressure
elevation and sympathetic nervous system activity during
the development of hypertension in SHR, and these responses
are mediated by increased ROS generation, probably because
of an upregulation of AT1 receptors and NAD(P)H oxidase
in the RVLM.% The findings of a recent study from Kyushu
University Graduate School of Medical Sciences indicate that
mice with pressure overload acquired brain salt-sensitivity.5
This means that high salt intake increases the transport from
the blood to the cerebrospinal fluid and the response of the
sympathetic nerve activity to salt administered into the brain.
These results suggest that pressure overload affects salt sen-
sitivity, thereby enhancing central sympathetic outflow and
cardiac function.®® Left ventricular hypertrophy is an inde-
pendent risk of cardiovascular event and high salt intake is an
important environmental factor of hypertension, both of which
increased ROS, and sympathoexcitation may be involved in
the pathogenesis of the development of hypertension. A recent
clinical trial suggested that left ventricular hypertrophy is
related to cardiovascular events in Japanese high-risk hyper-
tensive patients.®

Summary and Future Perspectives

Currently in Japan, many patients with hypertension also
have metabolic syndrome. Importantly, the prevalence of
metabolic syndrome increases linearly with an increase in
heart rate among Japanese men and women,” suggesting that
activation of the sympathetic nervous system is involved in
the pathogenesis of hypertension.” The prevalence of obstruc-
tive sleep apnea has increased as a result of the increase in
the number of obese patients with hypertension. Obese
patients with sleep apnea have enhanced central sympathetic
outflow, which worsens hypertension and leads to cardiovas-
cular events.”? Further, there is considerable evidence that
psychological stress is a major risk factor for cardiovascular
diseases and events associated with hypertension.” Another
therapeutic target for the treatment of hypertension is heart

failure with a preserved ejection fraction.” As suggested
here, salt-sensitivity might also be enhanced in these patients,
thereby further enhancing central sympathetic outflow.6
Oxidative stress in the brain as well as other organs might
underlie these mechanisms. Future studies of the effects of
oxidative stress in the brain are warranted and will provide
useful information for the treatment of hypertension.
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Angiotensin II Type 1 Receptor-Activated Caspase-3
Through Ras/Mitogen-Activated Protein
Kinase/Extracellular Signal-Regulated Kinase in the Rostral
Ventrolateral Medulla Is Involved in Sympathoexcitation in
Stroke-Prone Spontaneously Hypertensive Rats

Takuya Kishi, Yoshitaka Hirooka, Satomi Konno, Kiyohiro Ogawa, Kenji Sunagawa

Abstract—In the rostral ventrolateral medulla (RVLM), angiotensin II-derived superoxide anions, which increase
sympathetic nerve activity, induce a pressor response by activating the p38 mitogen-activated protein kinase (p38
MAPK) and extracellular signal-regulated kinase (ERK) pathway. The small G protein Ras mediates a caspase-3—
dependent apoptotic pathway through p38 MAPK, ERK, and c-Jun N-terminal kinase. We hypothesized that angiotensin
II type 1 receptors activate caspase-3 through the Ras/p38 MAPK/ERK/c-Jun N-terminal kinase pathway in the RVLM
and that this pathway is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats (SHRSP), a
model of human hypertension. The activities of Ras, p38 MAPK, ERK, and caspase-3 in the RVLM were significantly
higher in SHRSP (14 to 16 weeks old) than in age-matched Wistar-Kyoto rats (WKY). The mitochondrial apoptotic
proteins Bax and Bad in the RVLM were significantly increased in SHRSP compared with WKY. c-Jun N-terminal
kinase activity did not differ between SHRSP and WKY. In SHRSP, intracerebroventricular infusion of a Ras inhibitor
significantly reduced sympathetic nerve activity and improved baroreflex sensitivity, partially because of inhibition of
the Ras/p38 MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. Intracerebroventricular infusion of a
caspase-3 inhibitor also inhibited sympathetic nerve activity and improved baroreflex sensitivity in SHRSP.
Intracerebroventricular infusion of an angiotensin II type 1 receptor blocker in SHRSP partially inhibited the Ras/p38
MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. These findings suggest that in SHRSP, angiotensin II type
1 receptor-activated caspase-3 acting through the Ras/p38 MAPK/ERK pathway in the RVLLM might be involved in
sympathoexcitation, which in turn plays a crucial role in the pathogenesis of hypertension. (Hypertension. 2010;55:291-297.)

Key Words: angiotensin II m apoptosis m sympathetic nerve activity m brain m hypertension

euronal apoptosis in the brain is involved in regulating
Nsynaptic plasticity and neural function'-> and is mainly
caused by reactive oxygen species (ROS).*-8 Ras is a member
of a superfamily of related small GTPases implicated in
cellular proliferation and transformation, growth arrest, se-
nescence, and apoptosis.®~!? In cultured tumor celis or endo-
thelial cells, the proapoptotic effects of Ras are mediated by
the p38 mitogen-activated protein kinase (MAPK) and extra-
cellular signal-regulated kinase (ERK) pathway through
phosphorylation of the proapoptotic proteins Bax and Bad
and the antiapoptotic protein Bcl-2, which releases cyto-
chrome ¢ in the mitochondria.!#-!7 Neuronal apoptosis is
characterized by the release of cytochrome ¢, which activates
caspase-3, the major executioner caspase in neurons.!8:1?
Thus, neuronal apoptosis may be mainly mediated by
caspase-3 through the Ras, p38 MAPK, ERK pathway. We
previously demonstrated that ROS in a cardiovascular center

of the brain stem increase sympathetic nerve activity (SNA)
in hypertensive rats.2® Accumulating evidence suggests that
ROS in the brain are involved in the neural mechanisms of
hypertension.?!-22 Although ROS are increased in the brain in
a hypertensive state, it is not known whether a pivotal
signaling pathway (such as the Ras, p38 MAPK, ERK
pathway) and caspase-3, activated by ROS in the brain, are
chronically activated in the hypertensive state or whether this
pathway activates SNA.

The rostral ventrolateral medulla (RVLM) in the brain
stem i a major vasomotor center, and it regulates SNA,23.24
We previously demonstrated that ROS in the RVLM activates
SNA and that ROS are increased in the RVLM of stroke-
prone spontaneously hypertensive rats (SHRSP), a model of
human hypertension,?’ with activation of SNA.2° In the brain,
ROS are produced by activation of the angiotensin II type 1
receptor (AT,R), which in turn activates nicotinamide-
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adenine dinucleotide phosphate (NAD[P]H) oxidase.2¢
NAD(P)H oxidase-derived superoxide anions mediate the
angiotensin II-induced pressor effect via the activation of p38
MAPK and ERK in the RVLM.?7 Furthermore, in experimen-
tal endotoxemia, the proapoptotic protein Bax and caspase-
3—dependent apoptosis in the RVLM mediate cardiovascular
responses.”® The mechanisms by which ROS in the RVLM
regulate SNA have not been fully examined, especially the
pivotal signaling pathway of ROS.

The aims of the present study were to determine whether
stimulation of endogenous AT R activates caspase-3 through
the Ras/p38 MAPK/ERK/c-Jun N-terminal kinase (JNK)
pathway in the RVLM and, if so, to determine whether
activation of this pathway is involved in the increased
sympathoexcitation in SHRSP. Toward this end, we exam-
ined the activity of Ras, p38 MAPK, ERK, JNK, proapoptotic
proteins Bax and Bad, antiapoptotic protein Bcl-2, and
caspase-3 in the RVLM of SHRSP and normotensive rats. In
addition, we performed intracerebroventricular (ICV) injec-
tions of a Ras inhibitor, a caspase-3 inhibitor, and an
angiotensin receptor blocker (ARB), and examined the
changes in blood pressure, heart rate (HR), SNA, and barore-
flex sensitivity (BRS). To determine whether ICV injection of
a Ras inhibitor, a caspase-3 inhibitor, or an ARB inhibits the
pivotal signaling pathway in the RVLM, we also examined
the changes in blood pressure, HR, and SNA evoked by
microinjection of angiotensin II into the RVLM.

Methods

This study was reviewed and approved by the Committee on the Ethics
of Animal Experiments at the Kyushu University Graduate School of
Medical Sciences and conducted according to the Guidelines for Animal
Experiments of Kyushu University. Details of the methods are available
in the online Data Supplement at http:/hyper.ahajournals.org.

Animals and General Procedures

Male SHRSP/Izm rats and age-matched Wistar-Kyoto rats (WKY)
(14 to 16 weeks old), fed standard feed, were divided into 7 groups
(SHRSP treated with Ras inhibitor [S-RI], SHRSP treated with
caspase-3 inhibitor [S-CI], SHRSP treated with ARB [S-ARB],
SHRSP treated with vehicle [S-Veh], WKY treated with Ras
inhibitor [W-RI], WKY treated with caspase-3 inhibitor [W-CI], and
WKY with vehicle [W-Veh]; n=5/group). In the S-RI, W-RI, S-CI,
W-CI, S-Veh, W-Veh, and S-ARB groups, we measured blood
pressure and HR using a radiotelemetry system as described previ-
ously.?0 Urinary norepinephrine excretion (uNE) for 24 hours was
calculated as an indicator of SNA, as described previously.20-22
Furthermore, in the S-RI, W-RI, S-CI, W-CI, S-Veh, and W-Veh
groups, spectral analysis was performed to provide power spectra for
systolic blood pressure.

Activity of Ras, p38 MAPK, ERK, JNK, and
Caspase-3 and Expression of Bax, Bad, and Bcl-2
in the RVLM

The activity of Ras, p38 MAPK, ERK, INK, and caspase-3 and the
expression of Bax, Bad, and Bcl-2 in the RVLM were measured as
described previously.?®

ICV Injection of Ras Inhibitor, Caspase-3
Inhibitor, and AT,R Blocker

S-Farnesylthiosalicylic acid (1 mmol/L), a specific Ras inhibitor3;
N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe) flu-
oromethyl ketone (Z-DEVD-FMK, 1 pmol/L), a specific caspase-3
inhibitor3!; candesartan (1 pg/uL); or vehicle was administered by

ICV infusion for 14 days with an osmotic minipump (Alzet 1003D).
We also determined the changes in blood pressure and HR of SHRSP
after terminating the 14-day ICV infusion of the Ras inhibitor (n=4).
The candesartan dose was selected as described previously.32

Statistical Analysis

Normally distributed variables are expressed as mean*SE. Unpaired
t and Mann-Whitney U tests were used to compare the differences in
normally distributed and nonnormally distributed variables, respec-
tively. Data were also analyzed by a 2-factor repeated-measures
analysis of variances. Differences were considered to be statistically
significant at P<0.05.

Results

Blood Pressure, HR, SNA, and BRS

The Ras inhibitor S-farnesylthiosalicylic acid was infused ICV
for 14 days. Mean blood pressure (MBP), HR, uNE, and
normalized unit of the low-frequency component of systolic
blood pressure (LFnuSBP) at day 14 were significantly higher in
S-Veh than in W-Veh (Figure 1A through 1D). MBP, HR, and
LFnuSBP in SHRSP returned to control levels 4 days after
terminating the ICV infusion of S-farnesylthiosalicylic acid (data
not shown). BRS at day 14 was significantly lower in S-Veh
than in W-Veh (Figure 2). At days 2 to 14, MBP and HR were
significantly lower in S-RI than in S-Veh (Figure 1A and 1B),
and at day 14, uNE and LFnuSBP were significantly lower in
S-RI than in S-Veh (Figure 1C and 1D). BRS at day 14 was
significantly higher in S-RI than in S-Veh (Figure 2). MBP, HR,
LFnuSBP, uNE, and BRS, however, did not differ between
W-RI and W-Veh (Figures 1A through 1D and 2).

The caspase-3 inhibitor Z-DEVD-FMK was infused ICV
for 14 days. At days 4 to 14, MBP and HR were significantly
lower in S-CI than in S-Veh (Figure 1A and 1B), and at day
14, uNE and LFnuSBP were also significantly lower in S-CI
than in S-Veh (Figure 1C and 1D). BRS at day 14 was
significantly higher in S-CI than in S-Veh (Figure 2). MBP,
HR, LFnuSBP, uNE, and BRS did not differ between W-CI
and W-Veh (Figures 1A through 1D and 2).

On day 14 of the ICV infusion of candesartan in SHRSP,
the systolic blood pressure, HR, uNE, and LFnuSBP were
significantly lower in S-ARB than in S-Veh (Figures 1A
through 1D).

Ras, p38 MAPK, ERK, and JNK Activity in

the RVLM

Ras, p38 MAPK, and ERK activities were significantly
higher in S-Veh than in W-Veh and significantly lower in
S-RI than in S-Veh (Figure 3A through 3C). Furthermore,
Ras, p38 MAPK, and ERK activity was significantly lower in
S-ARB than in S-Veh (Figure 3A through 3C). Ras, p38
MAPK, and ERK activity in SHRSP did not differ between
S-CI and S-Veh (Figure 3A through 3C) or between W-Veh
and W-CI (Figure 3A through 3C). JNK activity did not differ
between S-Veh and W-Veh (Figure 3D).

Caspase-3 Activity and Expression of Bax, Bad,
and Bcl-2 in the RVLM

Caspase-3 activity in the cytosolic fraction of the RVLM and
the expression of Bax and Bad in the mitochondrial fraction
of the RVLM were significantly higher in S-Veh than in
W-Veh (Figure 4A through 4C) and significantly lower in
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Figure 1. Time course of MBP (A, mm Hg)
and HR (B, bpm) in S-RI (n=5), S-Cl (n=5),
S-ARB (n=5), S-Veh (n=5), W-RI (n=5),
W-CI (n=5), and W-Veh (n=5). *P<0.05 for
Ras inhibitor (RI), caspase-3 inhibitor (Cl),
or ARB vs vehicle (Veh) values in each
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S-RI than in S-Veh (Figure 4A through 4C). ICV infusion of
Z-DEVD-FMK significantly inhibited caspase-3 activity in
both SHRSP and WKY (Figure 4A). In WKY, however,
neither caspase-3 activity nor the expression of Bax and Bad
differed between W-Veh and W-RI (Figure 4A through 4C).
ICV infusion of candesartan in SHRSP significantly de-
creased caspase-3 activity and the expression of Bax and Bad
(Figure 4A through 4C).

The expression of Bcl-2 was significantly lower in S-Veh than
in W-Veh (Figure 4D) and significantly higher in S-RI than in
S-Veh (Figure 4D). In WKY, however, the expression of Bcl-2
did not differ between W-Veh and W-RI (Figure 4D). ICV
infusion of candesartan in SHRSP significantly increased
Bcl-2 expression (Figure 4D).

Microinjection of Angiotensin II into the RVLM

The changes in MBP, HR, and LFnuSBP evoked by micro-
injection of angiotensin I into the bilateral RVLM were
significantly smaller in S-RI than in S-Veh (MBP,

(ms/mmHg)
20 -
k+ K+
+
10
0"Veh Rl _CI_ Veh RI ClI
SHRSP WKY

Figure 2. BRS (ms/mm Hg) in SHRSP and WKY treated with
vehicle (Veh), Ras inhibitor (RI), or caspase-3 inhibitor (Cl) (n=5
for each). *P<0.05 vs Veh in each strain. +P<0.05 vs W-Veh.
Data are shown as mean+SEM.

SHRSP

WKY

8%5 mm Hg versus 14*3 mm Hg; HR, 7+8 bpm versus
22+9 bpm; LFnuSBP, 3*+3% versus 8+2%; n=>5 for each;
P<0.01).

Discussion

The novel findings in the present study are as follows: (1)
Ras, p38 MAPK, ERK, mitochondrial apoptotic proteins Bax
and Bad, and caspase-3 in the RVLM are activated in
SHRSP; (2) ICV infusion of a Ras inhibitor decreases MBP,
HR, and SNA and increases BRS through the partial inhibi-
tion of p38 MAPK, ERK, Bax, Bad, and caspase-3 in the
RVLM of SHRSP; (3) ICV infusion of a caspase-3 inhibitor
decreases MBP, HR, and SNA and increases BRS through the
partial inhibition of caspase-3 in the RVLM of SHRSP; (4)
ICV infusion of candesartan decreases systolic blood pres-
sure, HR, and SNA through the partial inhibition of Ras, p38
MAPK, ERK, Bax, Bad, and caspase-3 in the RVLM of
SHRSP; and (5) ICV infusion of the Ras inhibitor in SHRSP
abolishes the pressor effect evoked by the microinjection of
angiotensin II into the RVLM. These findings indicate that
AT R-induced activation of caspase-3 through the Ras/p38
MAPK/ERK pathway in the RVLM might increase MBP,
HR, and SNA and decrease BRS (Figure 5).

The present findings are the first to demonstrate that Ras,
p38 MAPK, and ERK activity is increased in the RVLM of
SHRSP. A previous study suggested that an acute injection of
angiotensin II induced AT,;R-dependent ROS production and
phosphorylation of p38 MAPK and ERK in the RVLM.?”
Activation of p38 MAPK and ERK by angiotensin II is also
reported in mesenteric smooth muscle cells3334 and aorta.?5.36
In the forebrain, MAPK is activated in a model of heart
failure in which the brain renin-angiotensin system is upregu-
lated.?” ROS activates Ras,*® and Ras activates caspase-3
through p38 MAPK and ERK.*-7-3 Previously, we demon-
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Figure 3. Activity of Ras (A}, p38 MAPK
(B), ERK (C), and JNK (D) in the RVLM
on day 14 in SHRSP and WKY treated
with vehicle (Veh), Ras inhibitor (Rl),
caspase-3 inhibitor (Cl), or ARB (n=5/
group). *P<0.05 vs Veh in each strain.
+P<0.05 vs Veh-treated WKY. Activity
is expressed relative to that in Veh-
treated WKY, which was assigned a
value of 1. Data are shown as
mean+SEM.
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strated that ROS in the RVLM increases SNA,2022 and ROS
is produced in the brain by angiotensin II and NAD(P)H
oxidase.?’ In the present study, ICV infusion of the Ras
inhibitor decreased MBP, HR, and SNA and increased BRS
because of the partial inhibition of Ras, p38 MAPK, ERK,
and caspase-3 in the RVLM of SHRSP, and it abolished the
pressor effect evoked by the microinjection of angiotensin IT
into the RVLM. ICV infusion of the caspase-3 inhibitor also
inhibited MBP, HR, and SNA and increased BRS through the
partial inhibition of caspase-3 activity in the RVLM of
SHRSP. Furthermore, ICV infusion of candesartan decreased

MBP, HR, and SNA, consistent with previous reports.>? In
the present study, ICV infusion of candesartan also partially
inhibited Ras, p38 MAPK, ERK, and caspase-3 in the RVLM
of SHRSP. The degree of the depressor effect of the Ras
inhibitor on MBP in SHRSP was almost half that in WKY.
These results suggest that AT,R-activated caspase-3 acting
through the Ras/MAPK/ERK pathway in the RVLM is one of
the major pathways through which MBP, HR, and SNA are
increased and BRS is decreased in SHRSP.

Another intriguing finding of the present study is that the
apoptotic proteins Bax and Bad were activated, and the
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Figure 5. lllustration showing the major findings suggested by
the results of the present study.

antiapoptotic protein Bcl-2 was inhibited in the RVLM of
SHRSP. Neuronal apoptosis is mediated by caspase-3 acti-
vated by Bax and Bad and inhibited by Bcl-2 in mitochon-
dria.! Activation of caspase-3 induces neuronal apoptosis.!3-1°
Other reports indicate that p38 MAPK and ERK activate
caspase-3—dependent neuronal apoptosis.? We previously
demonstrated that mitochondria-derived ROS mediate sym-
pathoexcitation induced by angiotensin I in the RVLM,* and
these results suggest that mitochondrial dysfunction in the
RVLM causes sympathoexcitation via ROS production. We
hypothesized that Ras, p38 MAPK, and ERK activate the
mitochondrial apoptotic pathway and inhibit the mitochon-
drial antiapoptotic pathway and that caspase-3—dependent
neuronal apoptosis is activated in the RVLM of SHRSP. The
possibility of caspase-3—independent neuronal apoptosis in
the RVLM or of a direct link between ROS and caspase-3
activation was not examined in the present study. A previous
report suggested that neural apoptosis in the RVLM leads to
a reduction of sympathetic outflow.4® Further study is neces-
sary to determine the reasons for this discrepancy.

In the present study, we determined the ICV infusion dose
of the Ras or caspase-3 inhibitor that inhibits blood pressure,
HR, and SNA. There were dose-dependent effects of the Ras
and caspase-3 inhibitors on blood pressure and HR (data not
shown). Furthermore, the doses of Ras or caspase-3 inhibitor
used in the present study did not change blood pressure or HR
when injected intravenously (data not shown). In addition,
Ras and caspase-3 activity were significantly higher in
SHRSP than in WKY, and the depressor and sympathoinhib-
itory effects of Ras and caspase-3 inhibitors were also
significantly greater in SHRSP than in WKY. Thus, we
consider that the doses of Ras and caspase-3 inhibitor used in
the present study were reasonable to inhibit Ras or caspase-3
activity in the RVLM. Future studies, however, are needed to
investigate the effects of inhibiting Ras or caspase-3 activity
specifically in the RVLM.

Interestingly, JNK was not altered in the RVLM of
SHRSP. JNK is an upstream activator of apoptosis. In a heart
failure model, INK is upregulated in the RVLM.*! Angioten-
sin II and NAD(P)H oxidase-derived superoxide anions,
however, do not activate JNK in the RVLM,?” and these
findings are consistent with the present results. We did not

Ras and Apoptosis in Brain Increase SNA 295

explore the mechanisms of this discrepancy in the present
study and are therefore not able to exclude the importance of
JNK in the RVLM for cardiovascular regulation. JNK in the
RVLM might be significantly activated in heart failure
progressing to hypertension. Furthermore, we did not exam-
ine the protein kinase C—dependent pathway in the RVLM. A
previous report indicates that protein kinase C—dependent
translocation of Bax in the RVLM initiates caspase-3—
dependent apoptosis during experimental endotoxemia.?® It is
possible that this pathway is also a major pathway involved in
the increase in SNA in SHRSP.

The present study has some limitations. Ras activity in the
RVLM was inhibited by ICV infusion of the Ras inhibitor,
and the inhibition of Ras activity was not limited to the
RVLM; therefore, we cannot exclude the possible effects of
Ras inhibition in other brain sites, and our results do not
suggest that the AT,R/Ras/caspase-3 pathway in the RVLM
is the only major pathway of the sympathetic control. More-
over, none of the ICV antagonists completely normalized BP,
HR, and SNA in SHRSP. Many factors in the RVLM may be
involved in changing SNA. Nevertheless, Ras activity was
inhibited in the RVLM, and, therefore, the neural activity of the
RVLM directly influenced SNA.2%-24 Furthermore, we found that
the pressor effect evoked by microinjection of angiotensin II
into the RVLM was attenuated in SHRSP treated with ICV
infusion of the Ras inhibitor. Previous reports suggest that
activation of the brain angiotensin system contributes to the
neural mechanisms of hypertension.23-2442-45 In addition, a
renin-angiotensin system also exists inside the blood-brain
barrier.#246 All components of the renin-angiotensin system
are present in the brain, such as renin, angiotensinogen,
angiotensin-converting enzyme, angiotensin I, and AT, and
angiotensin type 2 (AT,) receptors.*> Importantly, AT, recep-
tors are richly distributed in the paraventricular nucleus of the
hypothalamus, nucleus tractus solitarius, and RVLM, which
are involved in autonomic cardiovascular regulation.+244-46
Therefore, it is conceivable that alteration of a signaling
pathway in the RVLM influences central sympathetic outflow
via ATR in the RVLM of SHRSP, although we cannot
exclude the possible interaction of other autonomic nuclei,
such as the paraventricular nucleus of the hypothalamus. The
findings of the present study do not exclude the possibility
that similar effects might occur in other nuclei or that these
findings are indirect effects. In this regard, further study is
necessary to determine the role of other autonomic nuclei in
neural control of blood pressure, It would be interesting if we
could examine the direct effect of chronic infusion of a Ras
inhibitor and/or a caspase inhibitor directly into the RVLM.
In addition, we did not measure SNA directly in the present
study because chronic direct measurement of SNA is techni-
cally difficult. We examined SNA by measuring 24-hour uNE
and spectral analysis of systolic blood pressure. uNE is
considered to be a measure of SNA,2847 and measurement of
uNE is often used to assess SNA in small awake animals.*”
We consider that uNE and LFnuSBP are appropriate param-
eters for assessing SNA.

In conclusion, AT,R-induced activation of caspase-3 through
Ras/p38 MAPK/ERK and the mitochondrial apoptotic pathway
in the RVLM of SHRSP increases blood pressure, HR, and SNA
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and decreases BRS in SHRSP. Inhibition of this pathway by
ARB in the RVLM may be a novel therapeutic approach to
sympathoexcitation in hypertension.

Perspectives

Our results suggest that Ras-activated caspase-3, acting
through the p38 MAPK, ERK, and mitochondrial apoptotic
pathways in the RVLM, increases SNA. Previous studies
indicate that angiotensin II and ROS produced by NAD(P)H
oxidase are upstream of Ras. In the RVLM, angiotensin II
and ROS are important modulating factors regulating SNA,
which is involved in cardiovascular disease, such as hyper-
tension and heart failure. We consider that neural apoptosis in
the RVLM is a novel target for the treatment of cardiovas-
cular diseases exhibiting increased SNA.
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Supplemental Methods

This study was reviewed and approved by the Committee on the Ethics of Animal Experiments
at the Kyushu University Graduate School of Medical Sciences and conducted according to the
Guidelines for Animal Experiments of Kyushu University.

Animals and General Procedures
Male SHRSP/Izm rats and age-matched Wistar-Kyoto (WKY) rats (14-16 weeks-old; SLC Japan,
Hamamatsu, Japan), fed standard feed, were divided into seven groups (SHRSP treated with Ras
inhibitor, S-RI; SHRSP treated with caspase-3 inhibitor, S-CI; SHRSP treated with an
angiotensin receptor blocker [ARB], S-ARB; SHRSP treated with vehicle, S-Veh; WKY treated
with Ras inhibitor, W-RI; WKY treated with caspase-3 inhibitor, W-CI; and WKY with vehicle,
W-Veh; n=>5 for each). In the S-RI, W-R1, S-CI, W-CI, S-Veh, W-Veh, and S-ARB groups, we
measured blood pressure, and heart rate (HR) using the UA-10 radiotelemetry system (Data
Science International) as described previously.' Urinary norepinephrine concentrations were
measured, and urinary norepinephrine excretion (uNE) for 24 hours was calculated as an
indicator of sympathetic nerve activity (SNA), as described previously."? Furthermore, in the
S-RI, W-RI, S-CI, W-CI, S-Veh, and W-Veh groups, spectral analysis was performed using an
adaptive auto-regressive model to provide power spectra for systolic blood pressure (SBP).
Blood pressure was recorded for 5 minutes between 9AM and 12 PM every day, and we then
determined the total power of SBP and the total spectral density of the variables. The relative
value of each spectral power component was also measured and expressed in normalized units.
The low frequency (LF) power of SBP was computed by integrating the spectra between 0.04
and 0.15 Hz, and SNA was calculated using the normalized unit of the LF component of SBP
(LFnuSBP).*® Baroreflex sensitivity (BRS) was measured using a spontaneous sequence method
as a parameter of autonomic control. Sequence analysis detected sequences of three or more
beats in which there was either an increase in SBP and pulse interval (PI; Up-Sequence) or a
decrease in SBP and PI (Down-Sequence). BRS was estimated as the mean slope of the Up- and
Down-Sequences.” ®

To obtain the RVLM tissues, the rats were deeply anesthetized with sodium pentobarbital
(100 mg/kg IP) and perfused transcardially with phosphate-buffered saline (PBS; 150 mol/L
NaCl, 3 mmol/L KCI, and 5 nmol/L phosphate; pH 7.4, 4°C). The brains were removed quickly,
and 1-mm thick sections were cut using a cryostat at —7+1°C. The RVLM was defined according
to a rat brain atlas, as described previously.'

Activity of Ras, p38 MAPK, ERK, and JNK in the RVLM

The Ras activity was determined by measuring the expression of Ras-GTP per total Ras.” The
activities of p38 MAPK, ERK, and JNK were determined by measuring the expression of the
phosphorylated form of each protein per total Ras, p38 MAPK, ERK, and JNK, respectively. The
expression of phosphorylated or total RAS, p38 MAPK, ERK, and JNK in the RVLM tissue was
determined by Western blot analysis.

Activity of Caspase-3 and Expression of Bax, Bad, and Bcl-2 in the RVLM

The caspase-3 activity in the cytosolic fraction of the RVLM tissues was measured using the
synthetic substrate acetyl-Asp-Glu-Val-Asp-7-amido-4 methyl coumarin (Ac-DEVD-AMC), as
described previously.'® The reactions were incubated at 37°C and the release of the fluorescent
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product was monitored with a spectrofluorometer using excitation and emission wavelengths of
380 and 440 nm, respectively. The expression of Bax, Bad, and Bcl-2 in the mitochondrial
fraction of RVLM tissues was determined by Western blot analysis.

Intracerebroventricular Injection of Ras Inhibitor, Caspase-3 Inhibitor, and Angiotensin 11
Type 1 Receptor Blocker

S-Farnesylthiosalicylic acid (FTS), a specific Ras inhibitor (Calbiochem, La Jolla, CA),'" was
dissolved in dimethylsulfoxide (DMSO) and further diluted in artificial cerebrospinal fluid
(aCSF) at a concentration of 1 mmol/L. N-Benzyloxycarbonyl-Asp (OMe)-Glu (OMe)-Val-Asp-
(OMe)-fluoro-methylketone (Z-DEVD-FMK), a specific caspase-3 inhibitor (Calbiochem), was
also dissolved in DMSO and further diluted in aCSF to a concentration of 750 ymol/L."* FTS,
Z-DEVD-FMK, candesartan (1 pg/ul), or DMSO in aCSF as vehicle was infused at 0.5 pl/h for
14 days with an osmotic minipump (Alzet 1003D; Alza Scientific Products), the cannula of
which was placed in the left ventricle (from bregma: anteroposterior, —0.8 mm; lateral, 1.5 mm;
depth, 3.5 mm) of SHRSP and WKY. These doses of FTS and Z-DEVD-FMK were determined
to decrease blood pressure, HR, and SNA in SHRSP. Changes in blood pressure and HR were
measured in SHRSP after terminating the 14-day ICV infusion of the Ras inhibitor (n=4). The
dose of candesartan used has no centrally mediated antihypertensive effect in SHR and SHRSP
and blocks changes in blood pressure and HR in response to ICV infusion of angiotensin IL."

Microinjection of Angiotensin II into the RVLM

Telemetry was used to monitor the changes in mean blood pressure (MBP), HR, and LFnuSBP
evoked by the bilateral microinjection of angiotensin II (25 pmol in 50 nL of PBS) into the
RVLM of S-RI or S-VEH in anesthetized rats 14 days after beginning the ICV infusion. The
microinjection procedures and the method used to verify cannula placement in the RVLM were
described previously.'

Statistical Analysis

Normally distributed variables are expressed as mean + SE. Unpaired # and Mann-Whitney U
tests were used to compare the differences in normally distributed and non-normally distributed
variables, respectively. Data were also analyzed by a two-factor repeated-measures analysis of
variance. Differences were considered to be statistically significant at a P value of less than 0.05.
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BACKGROUND

Central blood pressure (CBP) has been reported to be superior to
brachial blood pressure (BP) as a cardiovascular risk predictor in
hypertensive patients; however, the effects of antihypertensives on
CBP have not been fully examined. This cross-sectional hypothesis-
generating study aimed to tentatively characterize all classes of
antihypertensives in relation to CBP.

METHODS

Calibrated tonometric radial artery pressure waveforms were
recorded using an automated device in 1,727 treated hypertensive
patients and 848 nonhypertensive (non-HT) participants. Radial
artery late systolic BP (SBP) has been reported to reflect central SBP.
The difference between late and peak SBPs (ASBP2) was assessed
with linear regression model-based adjustments. Separate regression
models for ASBP2 were constructed for both participant groups as
well as specified sub-populations.

RESULTS

ASBP2 was 3.3 mm Hg lower in patients treated with any single-
vasodilating (VD) antihypertensive agent without significant
interclass difference than with non-VD agents, and was 2.0mmHg

From the physical viewpoint, central blood pressure (CBP)
more directly imposes mechanical stress on the left ventricle,
large arteries and the vital organ vasculature than brachial
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lower than estimated in nonhypertensive subjects. Combinations

of two vasodilators were 6.6 and 2.9 mm Hg lower in ASBP2 than
nonvasodilator combinations and nonhypertensive subjects,
respectively (P < 0.001 for all comparisons). Nonvasodilators and their
combination showed high ASBP2, 1.1 and 3.7 mm Hg higher thanin
nonhypertensive subjects (P < 0.001 for both). Additional adjustment
of the pulse rate reduced high ASBP2 with B-blockers (BBLs).

CONCLUSIONS
This cross-sectional observation suggests that vasodilatory
antihypertensives lower CBP independently of peripheral BP levels

Am JHypertens 2010; 23:260-268 © 2010 American Journal of Hypertension, Ltd.

blood pressure (BP). This impact of CBP was suggested by
large-scale intervention trials and population-based studies,
such as the Conduit Artery Function Evaluation (CAFE) study
of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)!
and Strong Heart Study (SHS).? In the CAFE study, only
calcium channel blocker (CCB) and B-blocker (BBL)-based
treatments were compared in estimated CBP. Prior to the study,
several small-scale investigations assessing therapeutic altera-
tions in CBP or aortic wave reflection had been reported.>-!!
Various theoretical explanations of the benefit of vasodilators
to lower CBP have also been published;'?4 however, only
limited classes of antihypertensive drugs, such as angiotensin-
converting enzyme inhibitors (ACEI) and BBL, including
nitrates, have been investigated comparatively or noncom-
paratively. Hence, the effects of various antihypertensives on
CBP are not fully understood. Randomized intervention trials
are necessary to assess the effects of each antihypertensive
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