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Duch lar dy y (DMD) is the most
common lethal genetic disorder of children. The mdx
(C57BL/10 background, C57BL/10-mdx) mouse is a
widely used model of DMD, but the histopathological
hallmarks of DMD, such as the smaller number of
myofibers, accumulation of fat and fibrosis, and in-
sufficient regeneration of myofibers, are not ob-
served in adult C57BL/10-mdx except for in the dia-
phragm. In this study, we showed that DBA/2 mice
exhibited decreased muscle weight, as well as lower
myofiber s after ation—re-
generation cycles. Furthcrmore the sclf renewal effi-
ciency of satellite cells of DBA/2 is lower than that of
C57BL/6. Therefore, we produced a DBA/2-mdx strain
by crossing DBA/2 and C57BL/10-mdx. The hind limb
muscles of DBA/2-mdx mice exhibited lower muscle
weight, fewer myofibers, and increased fat and fibro-
sis, in comparison with C57BL/10-mdx. Moreover,
remarkable muscle weakness was observed in DBA/
2-mdx. These results indicate that the DBA/2-mdx
mouse is a more suitable model for DMD studies, and
the efficient satellite cell self-renewal ability of
C57BU10mdx mlght explain the difference in pa-
logi and mice. (4m J Pathol
2010, 17624144424 DOI: 10.2353/ajpatb.2010.090887)

Duchenne muscular dystrophy (DMD) is a progressive
and lethal X-linked muscular disorder caused by muta-
tions in the dystrophin gene. The dystrophin gene en-
codes a 427-kDa cytoskeletal protein that forms the dys-

2414

trophin/glycoprotein complex at the sarcolemma with a-
and B-dystroglycans, a-, B-, y-, and &-sarcoglycans, and
other molecules, and links the cytoskeleton of myofibers
to the extracellular matrix in skeletal muscle.?* The lack
of dystrophin in the sarcolemma disturbs the assembly
of the dystrophin/glycoprotein complex and causes
instability of the muscle membrane, leading to muscle
degeneration and myofiber loss. The histopathological
hallmarks of DMD include degeneration, necrosis, accumu-
lation of fat and fibrosis, and insufficient regeneration of
myofibers accompanied by a loss of myofibers.* Therefore,
the manifestations of DMD are considered to result from an
imbalance between degeneration and regeneration.

The function and structure of dystrophin has been
elucidated by studies of a variety of dystrophin-deficient
animals. Among these animal models, the mdx mouse
(the correct nomenclature is C57BL/10-Dmd™®), first de-
scribed in1984, is the most prolific. A spontaneous mu-
tation (mdx) arose in an inbred colony of C57BL/10 mice,
which have a high level of serum pyruvate kinase.® The
muscle pathology of the mice includes active fiber ne-
crosis, cellular infiltration, a wide range of fiber sizes, and
numerous centrally nucleated regenerating fibers. How-
ever, in contrast to DMD, replacement of muscle with fat
and fibrosis is not prominent, and no losses of muscle
fiber and muscle weight are observed in the skeletal
muscle of mdx mice except in the diaphragm.®” In con-
trast, most of the limb muscles of the mdx mouse maintain
hypertrophy and increased skeletal muscle mass
throughout much of their life span.® One reason for the
difference between DMD and mdx is explained by the
up-regulation of expression of utrophin, a homolog of
dystrophin.®'° Another reason has been supposed to
be the excellent regeneration capacity of mdx com-
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“pared with DMD. However, this hypothesis has not
been verified.

Regeneration of skeletal muscle depends on the com-
petence of muscle satellite cells. Muscle satellite cells,
which account for 2 to 5% of the total nuclei in adult
skeletal muscle, play a major role in muscle regenera-
tion." Under normal conditions, satellite cells are found
external to the myofiber plasma membrane and beneath
the muscle basal lamina,'? and they are mitotically qui-
escent in adult skeletal muscle.’® When activated by
muscle damage, satellite cells proliferate, differentiate,
fuse with each other or injured myofibers, and eventually
regenerate mature myofibers. During the regenerative
processes, satellite cells not only produce large amounts
of muscle, but also renew themselves to maintain their
own population.™ In fact, it is reported that the satellite
cell pool of C57BL/10 continues to respond efficiently
even when the skeletal muscle is subjected to as many as
50 cycles of severe damage.'S Therefore, it is thought
that maintenance of the satellite cell pool is indispensable
to retain the long-term regenerative potential for skeletal
muscle injury, including in muscular dystrophies.

To investigate genetic differences in long-term regen-
eration potential, we first induced repeated degenera-
tion-regeneration cycles in four inbred strains of mice.
Among these strains, C57BL/6, a widely used strain akin
to C57BL/10, was tolerant of repeated injury. This is con-
sistent with the results of C57BL/10 previously de-
scribed.'® In contrast, among four inbred strains, DBA/2
mice exhibited the most remarkable skeletal muscle loss
and impaired regeneration after repeated injury. Impor-
tantly, the self-renewal potential of DBA/2 satellite cells
was significantly lower than that of C57BL/6. In addition,
in vitro colony formation and proliferation assays indi-
cated that intrinsic difference between C57BL/6 and
DBA/2 satellite cells exist. Finally, we crossed the mdx
genotype with the DBA/2 for more than five generations.
At the fifth backcross, the mice are not yet fully congenic
(D2.B10-DMD™), and thus we refer to them as DBA/2-
madx hereafter. We investigated their phenotypes. Intrigu-
ingly, severe loss of skeletal muscle weight, decreased
myofiber number, increased fat and fibrosis volume, and
apparent muscle weakness were observed in the DBA/
2-mdx mice. These results indicate that the intrinsic ge-
netic program affects the properties of satellite cells, and
DBA/2-mdx will be a more useful model of DMD than
C57BL/10-mdXx. It is also speculated that the high self-
renewal potential of C57BL/10 satellite cells might explain
the difference in pathologies between humans and mice.

Materials and Methods
Mice

Six-week-old, specific pathogen-free, BALB/c, C3H/HeN,
C57BL/6, and DBA/2 mice were purchased from Charles
River Japan (Yokohama, Japan). Six-week-old, specific
pathogen-free C57BL/10 mice were purchased from
Shimizu Laboratory Supplies Co., Ltd (Kyoto, Japan).
Specific pathogen-free mdx mice (of C57BL/10 back-
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ground) were provided by Central Laboratories of Exper-
imental Animals (Kanagawa, Japan) and maintained in
our animal facility by brother-sister matings. Mdx of
C57BL/10 background were backcrossed into DBA/2 ge-
netic background. Mice backcrossed more than five gen-
erations were used in this study. Genotyping was per-
formed according to previous reports.'® All procedures
for experimental animals were approved by the Experi-
mental Animal Care and Use Committee at Osaka
University.

Muscle Injury

Muscle injury was induced by injecting cardiotoxin (10
pmol/L in saline, Wako Pure Chemical Industries, Tokyo,
Japan) into tibialis anterior (50 wl), gastrocnemius (150
wl), and quadriceps femoris (100 ul) muscles as de-
scribed.” All injections were first done when mice were 8
to 10 weeks of age.

Histological Analysis

Tibialis anterior, gastrocnemius, and quadriceps fem-
oris muscles were isolated and frozen in liquid nitro-
gen-cooled isopentane (Wako Pure Chemical Indus-
tries). Cryosections (10 pm) were stained with H&E, Qil
red-O (Sigma-Aldrich, St. Louis, MO), or Sirius Red
(Sigma-Aldrich).

Immunohistochemistry

For immunohistochemical examinations, transverse cryo-
sections (6 pm) were stained with various antibodies.
Monoclonal rat anti-laminin &2 (1:200; clone: 4H8-2) and
mouse anti-Pax7 antibodies were purchased from Alexis
Biochemical (Lausen, Switzerland) and Developmental
Studies Hybridoma Bank (lowa, IA), respectively. For
Pax7 staining, a M.O.M. kit (Vector Laboratories, Burlin-
game, CA) was used to block endogenous mouse IgG.
After the first staining at 4°C overnight, sections were
reacted with secondary antibodies conjugated with Alexa
488 or Alexa 568 (Molecular Probes, Eugene, OR). Sec-
tions were shielded using Vectashield (Vector Laborato-
ries, Inc). The signals were recorded photographically
using an Axiophot microscope (Carl Zeiss, Oberkochen,
Germany).

Preparation of Muscle Satellite Cells and Culture

Satellite cells were isolated from uninjured adult skeletal
muscle using biotinylated-SM/C-2.6® and IMag methods
(BD Immunocytometry Systems, Mountain View, CA) as
described in a previous report.'” Satellite cells were cul-
tured in a growth medium of high-glucose Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich) containing
20% fetal calf serum (Trace Biosciences, N.S.W., Aus-
tralia), 2.5 ng/ml basic fibroblast growth factor (Pepro-
Tech, London, UK), leukemia inhibitory factor (Alexis
Biochemical), and penicillin (100 U/ml)-streptomycin
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(100 pg/ml) (Gibco BRL, Gaithersburg, MD) on culture
dishes coated with Matrigel (BD Bioscience, San Di-
ego, CA).

Colony Forming Assay

Clonal cultures of freshly isolated satellite cells were
performed in 96-well plates coated with type | collagen
(Sumilon, Tokyo, Japan) in growth medium for a week.
The frequency of colony formation and number of cells
in each well were counted under a phase-contrast
microscope.

Cell Proliferation Assay

Isolated satellite cells were cultured in growth medium for
3 to 4 days, and expanded primary myoblasts were har-
vested and additional culture was performed in 96-well
dishes for 1 day. Eight hours later, bromodeoxyuridine
(BrdU) uptake was quantified using the Cell Prolifera-
tion ELISA, BrdU Kit (Roche Diagnostics, Basel, Swit-
zerland) and a microplate reader (Model 680, Bio-Rad,
Hercules, CA).

Measurement of Sizes of Myofibers and Oil
Red-O-Positive and Fibrotic Areas

Image J software was used to measure myofiber sizes
and Oil red-O- and Sirius Red-positive areas.

Evans Blue Dye Injection

Evans blue (Wako Pure Chemical Industries) was dis-
solved in PBS and injected intraperitoneally into mice (1
mg/100 ul/10g body weight).'® Sixteen to 18 hours later,
muscle tissues were removed, and frozen in liquid nitro-
gen-cooled isopentane. The muscle fibers with Evans
Blue incorporated were then counted as injured muscles.

Muscle Endurance and Grip Strength Test

The muscle endurance test was referred to the studies by
Handschin et al.?° In brief, we used a MK-680S treadmill
(Muromachi Kikai Co., Ltd., Tokyo, Japan). For 3 days,
animals were acclimated to treadmill running for 5 min-
utes at a speed of 10 m/min on a 0% grade. After the
acclimation, animals ran on a treadmill with a 10% uphill
grade starting at a speed of 10 m/min for 5 minutes. Every
subsequent 2 minutes, the speed was increased by 2
m/min until the mice were exhausted. Exhaustion was
defined as the inability of the animal to remain on the
treadmill despite mechanical prodding. Running time
and speed were measured, and the distance was cal-
culated. Grip strength was measured using a MK-380M
grip strength meter (Muromachi Kikai Co., Ltd). The
grip strength of each individual mouse was measured
10 times, the same measurements were repeated on
the next day, and the highest value of each experiment
was used.

Statistics

Values were expressed as means + SD. Statistical sig-
nificance was assessed by Student's t-test. In compari-
sons of more than two groups, nonrepeated measures
analysis of variance (analysis of variance) followed by the
Student-Newman-Keuls test were used. A probability of
less than 5% (P < 0.05) or 1% (P < 0.01) was considered
statistically significant.

Results

Genetic Differences in Skeletal Muscle
Regeneration

To examine the long-term regeneration ability of four
inbred strains of mice, repeated cycles of degeneration—
regeneration were induced by injection of cardiotoxin
(CTX). CTX was injected into one side of the tibialis
anterior (TA), gastrocnemius (GC), and quadriceps (Qu)
muscle every 2 weeks. At the last (sixth) CTX injection,
another intact TA muscle received CTX once to examine
the regenerative potential in one cycle of each mouse at
this age. Four weeks later, the muscles were removed
and analyzed. As shown in Figure 1, A and B, none of the
strains displayed a striking difference in either skeletal
muscle weight or histochemistry after one CTX injection
(CTX-1), except for the appearance of adipocytes in
BALB/c. However, the DBA/2 mice that received six CTX
injections (CTX-6) exhibited remarkably impaired regen-
eration (Figure 1A) and loss of TA muscle weight (Figure
1B). A similar loss of muscle weight was also observed in
GC and Qu of DBA/2 (CTX-6 in Figure 1C). In contrast,
none of the other strains showed a significant difference
in uninjured muscle weight at this age (uninjured in Figure
1C). Fat was observed in DBA/2, BALB/c, and C3H/HeN
after six injections, but the sclerosis and loss of muscle
weight was remarkable in DBA/2. Therefore, the following
experiments were performed on C57BL/6 and DBA/2.

Regeneration Impairment in DBA/2 Is Inherited
Recessively

To assess the inheritance of the lower regeneration ability
of DBA/2, we injected CTX into C57BL/6, DBA/2, and their
F1 mice (B6D2F1). To allow more sufficient regeneration
time, the interval between CTX injections was changed to
4 weeks. As shown in Figure 2A, we found marked mus-
cle weight loss in DBA/2 after three CTX injections (4
weeks X 3). The results of BED2F1 mice were similar to
those of C57BL/6 (Figure 2, A and B).

As shown in Figure 1A, DBA/2 mice exhibited impaired
regeneration accompanied by accumulation of fat and
fibrosis after three CTX injections (4 weeks X 3), but not
in the 4 weeks x 1 experiment (Figure 2B). Qil red-O
(Figure 2C) and Sirius Red (Figure 2D) stainings were
performed to determine the amount of fat and fibrosis,
respectively. As shown in Figure 2E, increments in fat and
fibrotic areas were observed in DBA/2 mice receiving
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three injections (4 weeks X 3). In 4 weeks X 1 DBA/2, the
fat accumulation of one mouse was a slightly higher
volume (2.02%), but three mice showed little fat accumu-
lation (less than 0.6%). In contrast to DBA/2, C57BL/6,
and B6D2F1 mice did not show any sign of impaired
regeneration. These results indicate that the impaired
regeneration ability of the DBA/2 strain after repeated
injury is recessive heredity.

Loss of Muscle Mass Results from Decreased
Number and Size of Myofibers

To assess the cause of muscle weight loss in DBA/2, the
numbers and sizes of myofibers were quantified. In un-
injured muscle, no significant difference between the
numbers of myofibers was observed in C57BL/6 and
DBA/2 (Figure 3A). However, as shown in Figure 3B,
decreased numbers of myofibers were observed in
DBA/2 after three CTX injections (4 weeks X 3), as com-
pared with 4 weeks X 1 or uninjured muscle. C57BL/6
showed more myofibers than uninjured muscle after one
or three injections (Figure 3B).

The sizes of myofibers were also measured. Four
weeks after one CTX injection (4 weeks X 1), the size of
myofibers in DBA/2 was similar to that in C57BL/6 (Figure
3, C and D). However, the regenerated myofibers of
DBA/2 (4 weeks X 3) were slightly smaller than those of
C57BL/6 (Figure 3, C and D). These data indicate that the
loss of muscle weight in DBA/2 results from the de-
creased number and size of myofibers.

Decreased Number of Self-Renewed Satellite
Cells in DBA/2

We hypothesized that a decreased number of satellite
cells leads to the loss of myofibers, because myofibers

are mainly made by satellite cells. To elucidate this hy-
pothesis, we examined the number of satellite cells. As
shown in Figure 3E, cells positive for Pax7, a specific
marker of satellite cells,?" lying beneath the basal lamina
were counted. There was no significant difference be-
tween the uninjured TA muscles of C57BL/6 and DBA/2
mice. However, a remarkable decrease in the number of
satellite cells was observed in DBA/2 after three CTX
injections (Figure 3F). These results imply that the func-
tions (including self-renewal potential) of satellite cells
include responsibility for most of the regeneration of im-
paired muscle in DBA/2.

Colony Formation and Proliferation of Satellite
Cells from DBA/2

To examine whether there is an intrinsic difference be-
tween the satellite cells of C57BL/6 and DBA/2, satellite
cells were isolated and cultured in vitro. As shown in
Figure 4A, the BrdU uptake of primary myoblasts of
DBA/2 was inferior to that of C57BL/6 myoblasts. Next,
we performed a colony-forming assay of single satellite
cells. As shown in Figure 4C, single DBA/2 satellite cell
did not produce large colonies similar to those of
C57BL/6. The frequencies of colony forming cells did not
differ in C57BL/6 and DBA/2 (Figure 4B). These results
indicate that intrinsic factors affect the properties of sat-
ellite cells.

Loss of Muscle Weight in DBA/2-mdx

To assess whether the low regenerative potential of mice
with the dystrophin mutation exhibit DMD-like features,
we crossed C57BL/10-mdx (B10-mdx) into DBAZ2. It was
reported that body weight of B10-mdx is heavier than that
of the control wild-type.2? In contrast to B10-mdx, DBA/
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2-mdx (D2-mdx) mice showed the decreased body
weight regardless of gender (Figure 5A). A more remark-
able phenotype of D2-mdx was the loss of skeletal mus-
cle mass (Figure 5B). As previously reported, the muscle
weight of B10-mdx was heavier than that of controls,® but
the TA, GC, and Qu muscle weights of D2-mdx males
were 71%, 59%, and 54% of those of controls, respec-
tively (Figure 5C). Female muscles were 85% (TA), 61%
(GC), and 52% (Qu) of each control muscle, respectively.
The loss of muscle weight did not simply reflect the
decreased body weight because there is also a signifi-
cant difference in muscle weight (mg) per body weight
(g) between D2-mdx and control littermates (Figure 5C).
Control littermates of D2-mdx and normal DBA/2 exhib-

ited similar results in muscle weight per body weight
ratios (data not shown).

Histology of DBA/2-mdx

In contrast to the histology of DMD, it is widely accepted
that fibrosis and fat replacement are minimal in B10-
mdx.” In addition, there was no apparent fiber loss. To
examine the accumulation of fibrosis and fat tissue in
D2-mdx, cross sections were stained with Sirius Red or
Oil red-O. As shown in Figure 6, A and B, there was no
sign of fibrosis or adipogenesis in B10-mdx. However,
D2-mdx mice exhibited increased fibrosis and fat accu-
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Figure 3. Decreased numbers of myofibers and
satellite cells in DBA/2 mice after three repeated
injuries. A: The number of myofibers in unin-
jured TA muscle at 10 weeks old. The y axis
shows the mean number of myofibers per sec-
tion. B6 and D2 indicate C57BL/6 and DBA/2,
respectively. B: The mean numbers of myofiber
in TA muscles after one or three injuries. *P <
0.05 (analysis of variance, SNK-test). The sizes of
myofibers in TA muscle after one or three CTX
injections. C: Cross sections were stained with
anti-laminin a2 antibody (green). D: The size of
each myofiber in TA muscle was measured after
one or three injections. Closed circles or squares
show the results of C57BL/6 or DBA/2, respec-
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mulation in comparison with B10-mdx. In contrast to B10-
mdyx, a decreased number of total myofibers was also
observed in D2-mdx (Figure 6C).

To enumerate the number of necrotic fibers, the mice
were injected with Evans blue dye to visualize necrotic
fibers. As shown in Figure 6C, fewer total necrotic fibers
were observed in D2-mdx. This result suggests that the
D2-mdx phenotype does not result from acceleration of
degeneration.

Decreased Skeletal Muscle Function in
DBA/2-mdx

Skeletal muscle endurance was assessed by treadmill
running to exhaustion as an indicator of maximal muscle
capacity. After acclimatization, mice were run on a 10%
slope at increasing speed until the animals were unable
to remain on the treadmill despite prodding. We then
recorded the end time and speed to calculate the dis-
tance run. As shown in Figure 7A, male and female
D2-mdx ran 45% and 56% shorter distances than control
littermates. The maximum speed of D2-mdx was also
lower than that of their littermate. The distance run
showed the most significantly difference because of the
protocol of increasing speed (Figure 7A). The average
distance run by male controls was 544 meters, but that of
D2-mdx males was 205 meters (38% of the control). A
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cells lying beneath the basal lamina. F: The num-
ber of satellite cells in noninjured TA muscle
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weeks X 3). The yaxis shows the mean number
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similar result was shown by female D2-mdx (25% of the
control). B10-mdx also showed lower values compared
with normal C57BL/10 mice (data not shown), but the
decreased ratio of each parameter in D2-mdx was more
remarkable than that in B10-madx (Figure 7B).

A grip strength test was also performed as an indicator
of motor function and whether D2-mdx exhibited muscle
weakness compared with controls. As shown in Figure
7C, D2-mdx earned a lower score than control mice
regardless of gender. However, there was no significant
difference between B10-mdx and control mice.

Discussion

Repeated Injury Models

Muscle satellite cells play central roles in skeletal muscle
regeneration.?® Satellite cells produce a vast number of
progenitor cells (myoblasts) that finally become myofi-
bers. During this process, at least some of the satellite
cells have self-renewal potential,'*24 but are quiescent
and will respond efficiently to the next damages. In fact,
Luz et al'® indicated that C57BL/10 could regenerate
after 50 bupivacaine injections without the loss of myofi-
bers or gain of fibrotic areas in the TA muscle. Impor-
tantly, C57BL/10-mdx mice exhibited decreased num-
bers of myofibers after 50 bupivacaine injections’®
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Figure 4. Satellite cells of DBA/2 strain show inferior BrdU uptake and
colony-forming potential. A: BrdU uptake of primary myoblasts derived from
C57BL/6 or DBA/2 satellite cells. The yaxis shows the mean with SD of three
independent experiments. *P < 0.05 (Student's rtest). Frequency of colony
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cells/well, 10 to 49 cells/well, and 2 to 9 cells/well. The y axis indicates the
frequency (B) or percentage of each category (C) from three independent
experiments. Scale bar = 100 pm.

because C57BL10-mdx mice already have dystrophic
degeneration-regeneration cycles. Sadeh et al*® also
showed active regeneration cycles in rats that received
weekly injections of bupivacaine for 6 months. They re-
ported that there was lack of evidence for reduction or
exhaustion of muscle fiber capacity to regenerate despite
ongoing degeneration-regeneration over a period ap-
proximating one fourth of the rat life expectancy. These
results indicate that the satellite cell pool was efficiently
maintained for multiple degeneration-regeneration cy-
cles in these animals, and that dystrophic mice exhibit
less regeneration ability. However, DBA/2 showed signif-
icantly decreased numbers of myofibers and self-re-
newed satellite cells after only three injections of CTX.
The number of DBA/2 satellite cells in uninjured TA
muscle is similar to that of C57BL/6. Although, the myo-
fibers in DBA/2 were smaller than those in C57BL/6 2
weeks after one CTX injection (data not shown), the myo-
fiber size and histological characteristics showed few
significant differences between and DBA/2 and C57BL/6
4 weeks after a single CTX injection. These results sug-
gest that the self-renewal ability of DBA/2 satellite cells is
incomplete and that the exhaustion of muscle satellite
cells leads to a decreased number of myofiber and loss
of skeletal muscle weight. Nonmyogenic cells, for exam-
ple, macrophages, also play important roles in skeletal
muscle regeneration. However, dysfunction of macro-
phages leads to impaired regeneration after one CTX
injection.2®2” Furthermore, the remarkable regeneration
deficit was not observed in DBA/2 4 weeks after one CTX
injection in TA muscle. These results suggest that re-
peated injury is a suitable model to assess the long-
term regeneration potential of skeletal muscle, and that
the self-renewal ability of satellite cells is responsible
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Figure 5. DBA/2-mdx mice show decreased body weight and remarkable
muscle weight loss. A: Body weight of D2-mdx (closed squares) and their
wild or heterozygous littermates (open circles) related to age. *P < 0.05,
**P < 0.01 (Student's rtest) B: Photographs of hind limb muscles of male
B10-mdx (15 months) and D2-mdx (12 months). Scale bar = 1 cm. C: TA,
GC, and Qu muscle weights (mg) or per body weight (g) of 6-month-old
mice. xaxis shows the mean with SD. The numbers of muscles used in each
study are shown in each graph. *P < 0.05, **P < 0.01.

at least in part for the result of repeatedly injured
muscle in DBA/2.

Strain Differences of Muscle Regeneration
Ability

C57BL/6, a strain akin to C57BL/10, is the most widely
used strain for skeletal muscle regeneration studies. As
shown in Figure 1, C57BL/6 has the best ability to regen-
erate skeletal muscle among the four inbred strains ex-
amined. An early study by Grounds and McGeachie®®
indicated a strain difference in skeletal muscle regener-
ation between BALB/c and Swiss SJLAJ. They showed
that superior and faster regeneration was observed in the
Swiss SJLM strain. The most outstanding phenotype of
DBA/2 is the remarkable decrease of muscle weight com-
pared with the three other inbred strains, including
BALB/c. Intriguingly, DBA/2 mice have a shorter life span
than C57BL/6.2° In addition, it is reported that muscle
weight loss is increased during aging (sarcopenia) in
DBA/2 mice compared with C57BL/6.%° The reason why
the DBA/2 strain exhibits the loss of muscle weight is
unknown, but our results imply a relationship between
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Figure 6. Histological analyses of DBA/2-mdx mice. Sirius red staining (A) and Oil red-O staining (B) of Qu muscle of 8-month-old B10-mdx and D2-mdx mice.
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the impaired function of satellite cells and sarcopenia
in DBA/2.

Heydemann et al®' reported that y-sarcoglycan-null
mice with DBA/2 background showed decreased skeletal
muscle weight, increased Evans Blue uptake, and a
higher hydroxyproline concentration than C57BL/6, CD1,
and 129 background null mice. Although they ruled out
the voluntary activities of DBA/2, they did not discuss the
cause of these results. Our results suggest that the low

regeneration potential of DBA/2 leads to a severe skeletal
muscle phenotype in various dystrophic mouse models.

The DBA/2J strain has been used in sarcopenia and
y-sarcoglycan-null mouse studies.®*®! To exclude the
possibility that DBA/2 substrain differences exist, we
compared the BrdU uptake of primary myoblasts in
DBA/2N (used in this study) and DBA/2J. Because we
observed similar low BrdU uptakes by primary myoblasts
in both DBA/2N and DBA/2J (data not shown), these
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Figure 7. Comparison of muscle strength in DBA/2-mdx and B10-mdx. A:
Treadmill running test of mice at 24 weeks old. Final time, speed, and
distance were recorded and for the individual p score.
‘The averages are shown with SD. Control indicates heterozygous or wild-
type littermates of D2-mdx. The numbers of mice used in each study are
shown in each graph. *P < 0.05, **P < 0.01. B: Comparison of C57BL/10-mdx
and DBA/2-mdx in treadmill running test. The y axis indicates the percentage
of mdx per control value. The numbers of male C57BL/10, male C57BL/10-
mdx, female C57BL/10, and female C57BL/10-mdx are 4, 4, 4, and 8, respec-
tively. Grip strength test of D2-mdx (C) or B10-mdx (D). Black and white
columns indicate the results for mdx or control mice, respectively. The yaxis
indicates the average score of each mouse with SD. The xaxis shows the ages
of mice. The number in the each graph indicates the number of mice taking
this test. *P < 0.05, **P < 0.01.

results suggest that lower muscle regeneration is com-
mon to the DBA/2 strain.

Stem (Satellite) Cell Function and Mouse Strains

As mentioned above, some previous reports indicated
different responses in skeletal muscle regeneration
among inbred strains of mice. However, to our knowl-
edge, this is the first evidence that there is an intrinsic
difference in satellite cells among inbred mice. The exact
relationship between in vitro and in vivo results of satellite
cells is not clear. However, low or slow proliferation of
satellite cells might explain the decreased muscle weight
and slow regeneration after a single injury in DBA/2 in
comparison with C57BL/6 and B6D2F1, which showed
increased muscle weight in their TA muscle (Figure 2A).
It is unlikely that telomere erosion contributes to the in
vitro and in vivo results of DBA/2 satellite cells because
DBA/2 mice have longer telomeres than C57BL/6 mice.3?

Recently Kuang et al®® reported that satellite cells are
a heterogeneous population of stem cells (satellite stem
cells) and committed progenitor cells, and that they can
be distinguished from others by Myf5 expression. They
showed that Myf5-negative (satellite stem) cells self-re-
newed three times more frequently than Myf-5-positive
(progenitor) cells in vivo. Schultz and Lipton®* first de-

scribed the heterogeneity of satellite cells by the different
colony sizes of each satellite cell and found decreased
colony sizes in aging muscle in the rat. Although it was
not determined whether satellite stem cells form a large-
colonies or not in vitro, our results showed that mice
having low self-renewing satellite cells (DBA/2) exhibit
smaller colony formations than mice having high self-
renewing satellite cells (C57BL/6). These results suggest
that satellite stem cells may form larger colonies in vitro.

In contrast to satellite cells, a highly strain-dependent
function of hematopoietic stem cells was reported.3®
Chen et al®® reported that DBA/2 showed a decline in
primitive hematopoietic stem cell function with age, but
that it increased with age in C57BL/6 in a vivo transplan-
tation study. Recombinant inbred mice, named BXD
strains, are available. Using BXD, Liang et al®” identified
latexin as affecting the size of the hematopoietic stem cell
population in mice. A similar approach might lead to the
discovery of key genes that affect the properties of sat-
ellite cells.

DBA/2-mdx as Model for DMD

Mdx was discovered a quarter of a century ago.® In 1989,
the mdx mutation, a C to T transition within exon 23, was
identified in the dystrophin gene on the X chromosome.®®
Nearly all mdx colonies are maintained as homozygous
inbred lines; in addition, the difficulty of point mutation
typing might impede the effect of genetic background on
mdx phenotype. However, Amalfitano and Chamberlain'®
reported a rapid and simple typing strategy, and we
established DBA/2-mdx following their protocol. C57BL/
10-madx mice have played central roles in a vast array of
pathological, clinical, and physiological studies as a
model for DMD. However, they do not reflect human
pathology in some aspects, including little fat and fibrosis
accumulation, no loss of myofiber numbers, and muscle
weight. Recently, Gargioli et al®® showed that the ad-
vanced stage of dystrophy including sclerosis precluded
treatment by stem cell therapy. Therefore, assessment of
therapeutic effect in more severe disease conditions is
needed.

In marked contrast to the severe phenotype observed
in DMD, early studies using C57BL/10-mdx concluded
that they do not show obvious functional disability.5”
However, some later reports indicated functional differ-
ences between C57BL/10-mdx and control mice.*°~*2 As
shown in Figure 7, C57BL/6-mdx also showed muscle
weakness in the treadmill test. However, the muscle
weakness of DBA/2-mdx is more remarkable than that of
C57BL/10-mdx. Therefore, DBA/2-mdx is a more appro-
priate model to assess skeletal muscle function after
therapeutic treatment.

Chamberlain et al** reported that the average life
spans of female and male C57BL/10-mdx mice were 22.5
and 21.5 months, respectively. Pastoret et al® also re-
ported that C57BL/10-mdx mice have short life spans and
that C57BL/10-mdx older than 78 weeks exhibit progres-
sive weakness. We have not determined the life span of
DBA/2-mdx, but it will be clarified in the future. Intrigu-
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ingly, Chamberlain et al** observed the appearance of
rhabdomyosarcoma-like tumors in C57BL/10-madx. They
speculate that the lifelong continuous myofiber degener-
ation and regeneration that characterize this animal
model are associated with continuous and massive acti-
vation and proliferation of satellite cells, which greatly
increase the chance of developing random and sponta-
neous mutations. To date, we have observed tumors in
C57BL/10-mdx but not in DBA/2-mdx. This observation
supports their speculations.

The reasons why mdx mice do not show the human-like
pathology have been investigated. One reason for the
difference between DMD and mdx is explained by the
presence of utrophin, a homolog of dystrophin. Utrophin
is located in the neuromuscular junction in normal mus-
cle. In dystrophic muscle, utrophin is up-regulated in the
sarcolemma and compensates for dystrophin function.
As shown in Figure 6, the results of Evans blue uptake in
DBA/2-mdx indicated that the degeneration of myofiber
was not accelerated, but that the regeneration potential
was inferior. These results clearly indicate that not only
utrophin expression but also regeneration potential, per-
haps a satellite cell function, directly leads to the patho-
logical condition. The identification of genes that deter-
mine the DBA/2 phenotype will provide new therapeutic
strategies for the treatment of muscular dystrophy.
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